Алкены — Гипермаркет знаний. Гомологический ряд алкенов

АЛКЕНЫ

Углеводороды, в молекуле которых помимо простых σ-связей углерод - углерод и углерод - водород имеются углерод-угле­родные π-связи, называются непредельными. Так как образование π-связи формально эквивалентно потере моле­кулой двух атомов водорода, то непредельные углеводороды содержат на 2п атомов водорода меньше, чем предельные, где п - число π -связей:

Ряд, члены которого отличаются друг от друга на (2Н) n , называется изологическим рядом. Так, в приведенной выше схеме изологами являются гексаны, гексены, гексадиены, гексины, гексатриены и т. д.

Углеводороды, содержащие одну π-связь (т. е. двойную связь), называются алкенами (олефинами) или, по первому члену ряда - этилену, этиленовыми углеводородами. Общая формула их гомологического ряда С п Н 2л.

1. Номенклатура

В соответствии с правилами ИЮПАК при построении назва­ний алкенов наиболее длинная углеродная цепь, содержащая двойную связь, получает название соответствующего алкана, в котором окончание -ан заменено на -ен. Эта цепь нумеруется таким образом, чтобы углеродные атомы, участвующие в образовании двойной связи, получили номера, наименьшие из возможных:

Радикалы называются и нумеруются как и в случае алканов.

Для алкенов сравнительно простого строения разрешается применять более простые названия. Так, некоторые наиболее часто встречающиеся алкены называют, добавляя суффикс -ен к названию углеводородного радикала с тем же углеродным скелетом:

Углеводородные радикалы, образованные из алкенов, по­лучают суффикс -енил. Нумерация в радикале начинается от углеродного атома, имеющего свободную валентность. Однако для простейших алкенильных радикалов вместо систематиче­ских названий разрешается использовать тривиальные:

Водородные атомы, непосредственно связанные с ненасы­щенными атомами углерода, образующими двойную связь, часто называют винилъными атомами водорода,

2. Изомерия

Помимо изомерии углеродного скелета, в ряду алкенов по­является еще и изомерия положения двойной связи. В общем виде изомерия такого типа - изомерия положения заместителя (функции) - наблюдается во всех случаях, когда в моле­куле имеются какие-либо функциональные группы. Для алкана С 4 Н 10 возможны два структурных изомера:

Для алкена С 4 Н 8 (бутена) возможны три изомера:

Бутен-1 и бутен-2 являются изомерами положения функ­ции (в данном случае ее роль выполняет двойная связь).

Пространственные изомеры различаются пространственным расположением заместителей относительно друг друга и называются цис-изомерами, если заместители расположены по одну сторону от двойной связи, и транс-изомерами, если по разные стороны:

3. Строение двойной связи

Энергия разрыва молекулы по двойной связи С=С равна 611 кДж/моль; так как энергия σ-связи С-С рав­на 339 кДж/моль, то энергия разрыва π -связи равна лишь 611-339 = 272 кДж/моль. π -электроны значительно легче σ -электронов поддаются влиянию, например, поляризующих растворителей или воздействию любых атакующих реагентов. Это объясняется различием в симметрии распреде­ления электронного облака σ- и π-электронов. Максимальное перекрывание р-орбиталей и, следовательно, минимальная сво­бодная энергия молекулы реализуются лишь при плоском стро­ении винильного фрагмента и при укороченном расстоянии С-С, равном 0,134нм, т.е. значительно меньшем, чем рас­стояние между углеродными атомами, связанными простой связью (0,154 нм). С поворотом «половинок» молекулы относи­тельно друг друга по оси двойной связи степень перекрывания орбиталей снижается, что связано с затратой энергии. Следст­вием этого является отсутствие свободного вращения по оси двойной связи и существование геометрических изомеров при соответствующем замещении у атомов углерода.

4. Физические свойства

Как и алканы, низшие гомологи ряда простейших алкенов при обычных условиях - газы, а начиная с С 5 - низкокипя­щие жидкости.

Все алкены, как и алканы, практически нерастворимы в воде и хорошо растворимы в других органических растворите­лях, за исключением метилового спирта; все они имеют мень­шую плотность, чем вода.

5. Химические свойства

При рассмотрении реакционной способности сложных ор­ганических соединений действует общий принцип. В боль­шинстве реакций участвует не «инертный» углеводородный радикал, а имеющиеся функциональные группы и их ближай­шее окружение. Это естественно, ибо большинство связей менее прочны, чем связи С-С и С-Н, и, кроме того, связи в функци­ональной группе и вблизи нее наиболее поляризованы.

Естественно ожидать, что реакции алкенов будут проходить по двойной связи, которую тоже можно считать функциональ­ной группой, а следовательно, будут реакциями присоедине­ния, а не реакциями замещения, характерными для ранее рас­смотренных алканов.

Присоединение водорода

Присоединение водорода к алкенам приводит к образованию алканов:

Присоединение водорода к этиленовым соединениям в от­сутствие катализаторов происходит лишь при высоких темпе­ратурах, при которых часто начинается разложение органиче­ских веществ. Значительно легче присоединение водорода идет в присутствии катализа­торов. Катализаторами служат металлы платиновой группы в мелкодисперсном состоянии, сама платина и особен­но палладий - уже при обычной температуре. Большое прак­тическое значение имело открытие Сабатье, применившего специально приготовленный мелкораздробленный никель при температуре 150-300°С и в многочисленных работах пока­завшего универсальность этого катализатора для целого ряда реакций восстановления.

Присоединение галогенов

Галогены присоединяются к алкенам с образованием дигалогенопроизводных, содержащих атомы галогена у соседних атомов углерода:

На первой стадии этой реакции происходит взаимодействие между π-электронами двойной связи и электрофильной частицей галогена с образованием π-комплекса (I). Далее π-комплекс перегруппировывается в ониевый (бромониевый) ион (II) с ощеплением аниона галогена, находящийся в равновесии с карбкатионом (III). Затем анион атакует ониевый ион с образованием продукта присоединения (IV):

Атака анионом бромониевого иона (II) с образованием дибромида (IV) происходит в транс-положение. Так, в случае присоединения Вг 2 к циклопентену образуется только транс-1,2-дибромдикло-пентан:

Доказательством двухстадийного присоединения галогена к алкенам является тот факт, что при присоединении Вг 2 к циклогексену в присутствии МаС1 образуется не только транс-1,2-дибромциклогексан, но и транс-1-бром-2-хлорциклогексан:

Радикальное галогенирование

В жестких условиях (газовая фаза, 500°С) галогены не присоединяются по двойной связи, а происхо­дит галогенирование α-положения:

В этом случае реакция идет по радикальному механизму.

Присоединение галогеноводородов

Галогеноводороды присоединяются к алкенам с образованием галогеналкилов. Присоединение в случае несимметричных молекул идет по правилу Марковникова, т. е. водород присоединяется к наи­более гидрогенизированному атому углерода (с наибольшим числом водородных атомов):

Эта реакция, как и присоединение брома к этилену, идет после образования π-комплекса через стадию образования протониевого иона:

В присутствии перекисей бромоводород присоединяется не по правилу Марковникова (эффект Хараша):

В присутствии перекисей реакция идет не по механизму электрофильного присоединения, как выше, а по радикально­му механизму. Первой стадией является атака перекисного радикала на молекулу НВг:

Возникший радикал брома присоединяется к пропилену с образованием нового радикала:

Последний стабилизируется за счет вырывания водорода из новой молекулы НВг с регенерацией нового радикала брома и т. д.:

И в этом случае направление процесса определяется устойчи­востью радикалов бромпропана: образуется преимущественно более устойчивый, приводя к 1-бромпропану.

Присоединение воды и серной кислоты

В присутст­вии кислот вода присоединяется по двойной связи по правилу Марковникова:

Так же идет реакция и с серной кислотой:

Окисление перманганатом калия в нейтральной или слабощелочной среде (реакция Вагнера)

На первой стадии по механизму цис-присоединения идет присоедине­ние иона МпО 4 к кратной связи с последующим гидролитическим расщепле­нием неустойчивого продукта присоединения и выделения иона МпО 3 -

Реакция идет по схеме цис-присоединения:

Кислые растворы перманганата окисляют алкены с разры­вом цепи по С=С-связи и образованием кислот или кетонов:

Действие озона на алкены

Эта реакция приводит к кристаллическим сильновзрывчатым озонидам, которые при гидролизе образуют альдегиды или кетоны:

Реакция часто применяется для определения положения двойной связи в молекуле, так как по образующимся карбо­нильным соединениям можно представить себе и строение ис­ходного алкена.

Реакция идет путем цис-циклоприсоединения через стадию неустой­чивого мольозонида, который подвергается диссоциации и последующей рекомбинации:

Полимеризация алкенов

Особо важное значение полу­чила полимеризация этилена и пропилена в полимеры с молеку­лярной массой около 10 5 . До 1953 г. в основном применялась радикальная (инициируемая свободными радикалами) полиме­ризация, хотя в принципе использовалось и анионное, и катионное инициирование процесса.

После работ Циглера и Натта, которые получили Нобелев­скую премию за эти исследования, наиболее широко стала ис­пользоваться так называемая координационная полимериза­ция. Простейший «циглеровский» катализатор этого типа со­стоит из триэтилалюминия и соединений титана (IV). При этом происходит образование полимеров с высокой степенью стереорегулярности. Например, при полимеризации пропиле­на образуется изотактический полипропилен - полимер, в ко­тором все боковые СН 3 -группы занимают одинаковое про­странственное положение:

Это придает полимеру большую прочность, и он может даже применяться для изготовления синтетического волокна.

Полиэтилен, получаемый этим способом, представляет со­бой предельный углеводород с неразветвленной цепью. Он ме­нее эластичен, чем полиэтилен, получаемый при высоких дав­лениях, но обладает большей твердостью и способен выдержи­вать воздействие более высоких температур.

Благодаря сочетанию многих ценных свойств полиэтилен имеет очень широкое применение. Он является одним из лучших материалов для изоляции кабелей, для применения в радарной технике, радиотехнике, сельском хозяйстве и др. Из него изготавливают трубы, шланги, сосуды, тару для сель­скохозяйственных продуктов и удобрений, пленки различной толщины и многие бытовые предметы. Прочные пленки из полиэтилена начали применяться даже в качестве покрытия дна искусственных каналов для придания им водонепроницае­мости.

Теломеризация

Интересен имеющий промышленное примене­ние процесс сополимеризации этилена с тетрахлоридом углерода, назван­ный теломеризацией. Если в смесь этилена с СС1 4 внести перекись бензоила или другой инициатор, распадающийся с образованием свободных радикалов, происходит следующий процесс:

Радикалы СС1 3 " инициируют цепную полимеризацию этилена:

При встрече с другой молекулой СС1 4 рост цепи прекращается:

Радикал СС1 3 - дает начало новой цепи.

Образующиеся низкомолекулярные продукты полимеризации, со­держащие на концах цепи атомы галогена, называются теломерами. По­лучены теломеры со значениями п =2,3, 4, ...,15.

При гидролизе продуктов теломеризации образуются ω-хлорзаме-щенные карбоновые кислоты, являющиеся ценными химическими про­дуктами.

Продолжение. Начало см. в № 15, 16, 17, 18, 19/2004

Урок 9.
Химические свойства алкенов

Химические cвойства алкенов (этилена и его гомологов) во многом определяются наличием в их молекулах д… связи. Алкены вступают в реакции всех трех типов, причем наиболее характерными для них являются реакции п… . Рассмотрим их на примере пропилена С 3 Н 6 .
Все реакции присоединения протекают по двойной связи и состоят в расщеплении -связи алкена и образовании на месте разрыва двух новых -связей.

Присоединение галогенов:

Присоединение водорода (реакция гидрирования):

Присоединение воды (реакция гидратации):

Присоединение галогеноводородов (HHal) и воды к несимметричным алкенам происходит по правилу В.В.Марковникова (1869). Водород кислоты Hhal присоединяется к наиболее гидрированному атому углерода при двойной связи. Соответственно остаток Hal связывается с атомом С, при котором находится меньшее число атомов водорода.

Горение алкенов на воздухе.
При поджигании алкены горят на воздухе:

2СН 2 =СНСН 3 + 9О 2 6СО 2 + 6Н 2 О.

С кислородом воздуха газообразные алкены образуют взрывчатые смеси.
Алкены окисляются перманганатом калия в водной среде, что сопровождается обесцвечиванием раствора KMnO 4 и образованием гликолей (соединений с двумя гидроксильными группами при соседних атомах С). Этот процесс – гидроксилирование алкенов :

Алкены окисляются кислородом воздуха в эпоксиды при нагревании в присутствии серебряных катализаторов:

Полимеризация алкенов – связывание множества молекул алкена друг с другом. Условия реакции: нагревание, присутствие катализаторов. Соединение молекул происходит путем расщепления внутримолекулярных-cвязей и образования новых межмолекулярных -cвязей:

В этой реакции диапазон значений n = 10 3 –10 4 .

Упражнения.

1. Напишите уравнения реакций бутена-1 с: а) Br 2 ; б) HBr; в) H 2 O; г) H 2 . Назовите продукты реакций.

2. Известны условия, в которых присоединение воды и галогеноводородов по двойной связи алкенов протекает против правила Марковникова. Составьте уравнения реакций
3-бромпропилена по анти-Марковникову с: а) водой; б) бромоводородом.

3. Напишите уравнения реакций полимеризации: а) бутена-1; б) винилхлорида СН 2 =СНСl;
в) 1,2-дифторэтилена.

4. Составьте уравнения реакций этилена с кислородом для следующих процессов: а) горение на воздухе; б) гидроксилирование с водным KMnO 4 ; в) эпоксидирование (250 °С, Ag).

5. Напишите структурную формулу алкена, зная, что 0,21 г этого соединения способно присоединить 0,8 г брома.

6. При сгорании 1 л газообразного углеводорода, обесцвечивающего малиновый раствор перманганата калия, расходуется 4,5 л кислорода, причем получается 3 л СО 2 . Составьте структурную формулу этого углеводорода.

Урок 10.
Получение и применение алкенов

Реакции получения алкенов сводятся к обращению реакций, представляющих химические свойства алкенов (протеканию их справа налево, см. урок 9). Надо только подыскать соответствующие условия.
Отщепление двух атомов галогена от дигалогеноалканов , содержащих галогены при соседних атомах С. Реакция протекает под действием металлов (Zn и др.):

Крекинг предельных углеводородов. Так, при крекинге (см. урок 7) этана образуется смесь этилена и водорода:

Дегидратация спиртов. При действии на спирты водоотнимающих средств (концентрированной серной кислоты) или при нагревании 350 °С в присутствии катализаторов отщепляется вода и образуются алкены:

Таким способом в лаборатории получают этилен.
Промышленным способом получения пропилена наряду с крекингом служит дегидратация пропанола над оксидом алюминия:

Дегидрохлорирование хлоралканов проводят при действии на них раствора щелочи в спирте, т.к. в воде продуктами реакции оказываются не алкены, а спирты.

Применение этилена и его гомологов основано на их химических свойствах, т. е. способности превращаться в различные полезные вещества.

Моторные топлива , обладающие высокими октановыми числами, получают гидрированием разветвленных алкенов:

Обесцвечивание желтого раствора брома в инертном растворителе (ССl 4) происходит при добавлении капли алкена или пропускании через раствор газообразного алкена. Взаимодействие с бромом – характерная качественная реакция на двойную связь :

Продукт гидрохлорирования этилена – хлорэтан – используют в химическом синтезе для введения группы С 2 Н 5 – в молекулу:

Хлорэтан также обладает местным анестезирующим (обезболивающим) действием, что используется при хирургических операциях.

Гидратацией алкенов получают спирты, например, этанол :

Спирт C 2 H 5 ОН используют как растворитель, для дезинфекции, в синтезе новых веществ.

Гидратация этилена в присутствии окислителя [O] приводит к этиленгликолю – антифризу и полупродукту химического синтеза :

Окислением этилена получают этиленоксид и ацетальдегид – сырье в химической отрасли промышленности:

Полимеры и пластики – продукты полимеризации алкенов, например, политетрафторэтилен (тефлон):

Упражнения.

1. Завершите уравнения реакций элиминирования (отщепления), назовите получающиеся алкены :

2. Составьте уравнения реакций гидрирования: а) 3,3-диметилбутена-1;
б) 2,3,3-триметилбутена-1. В этих реакциях получаются алканы, используемые в качестве моторных топлив, дайте им названия.

3. Через трубку с нагретым оксидом алюминия пропустили 100 г этилового спирта С 2 Н 5 ОН. В результате получили 33,6 л углеводорода (н.у.). Сколько спирта (в %) прореагировало?

4. Сколько граммов брома прореагирует с 2,8 л (н.у.) этилена?

5. Составьте уравнение реакции полимеризации трифторхлорэтилена. (Образующаяся пластмасса устойчива к действию горячей серной кислоты, металлического натрия и т.п.)

Ответы на упражнения к теме 1

Урок 9

5. Реакция алкена С n H 2n с бромом в общем виде:

Молярная масса алкена M n H 2n ) = 0,21 160/0,8 = 42 г/моль.
Это – пропилен.
Ответ . Формула алкена – СН 2 =СНСН 3 (пропилен).

6. Поскольку все участвующие в реакции вещества – газы, стехиометрические коэффициенты в уравнении реакции пропорциональны их объемным соотношениями. Запишем уравнение реакции:

С a H в + 4,5О 2 3СО 2 + 3Н 2 О.

Число молекул воды определяем по уравнению реакции: 4,5 2 = 9 атомов О вступило в реакцию, 6 атомов О связаны в СО 2 , остальные 3 атома О входят в состав трех молекул Н 2 О. Поэтому индексы равны: а = 3, в = 6. Искомый углеводород – пропилен С 3 Н 6 .
Ответ . Структурная формула пропилена – СН 2 =СНСН 3 .

Урок 10

1. Уравнения реакций элиминирования (отщепления) – синтез алкенов:

2. Реакции гидрирования алкенов при нагревании под давлением в присутствии катализатора:

3. Реакция дегидратации этилового спирта имеет вид:

Здесь через х обозначена масса спирта, превратившегося в этилен.
Найдем значение х : х = 46 33,6/22,4 = 69 г.
Доля прореагировавшего спирта составила: 69/100 = 0,69, или 69%.
Ответ . Прореагировало 69% спирта.

4.

Поскольку стехиометрические коэффициенты перед формулами реагирующих веществ (С 2 Н 4 и Br 2) равны единице, справедливо соотношение:
2,8/22,4 = х /160. Отсюда х = 20 г Br 2 .
Ответ . 20 г Br 2 .

Алкены химически активны. Их химические свойства во многом определяются наличием двойной связи. Для алкенов наиболее характерны реакции электрофильного присоединения и реакции радикального присоединения. Реакции нуклеофильного присоединения обычно требуют наличие сильного нуклеофила и для алкенов не типичны. Алкены легко вступают в реакции окисления, присоединения а также способны к алильному радикальному замещению.

Реакции присоединения

    Гидрирование Присоединение водорода (реакция гидрирования) к алкенам проводят в присутствии катализаторов. Чаще всего используют измельченные металлы - платину, никель, палладий и др. В результате образуются соответствующие алканы (насыщенные углеводороды).

    $CH_2=CH_2 + H2 → CH_3–CH_3$

    Присоединение галогенов. Алкены легко при обычных условиях вступают в реакции с хлором и бромом с образованием соответствующих дигалогеналканов, в которых атомы галогена находятся у соседних атомов углерода.

    Замечание 1

    При взаимодействии алкенов с бромом наблюдается обесцвечивание желто-бурой окраски брома. Это одна из старейших и самых простых качественных реакций на ненасыщенные углеводороды, поскольку аналогично реагируют также алкины и алкадиены.

    $CH_2=CH_2 + Br_2 → CH_2Br–CH_2Br$

    Присоединение галогеноводородов. При взаимодействии этиленовых углеводородов с галогеноводородами ($HCl$, $HBr$) образуются галогеналканы, направление реакции зависит от строения алкенов.

    В случае этилена или симметричных алкенов реакция присоединения происходит однозначно и ведет к образованию только одного продукта:

    $CH_2=CH_2 + HBr → CH_3–CH_2Br$

    В случае несимметричных алкенов возможно образование двух разных продукта реакции присоединения:

    Замечание 2

    На самом деле в основном образуется только один продукт реакции. Закономерность направлении прохождения таких реакций установил российский химик В.В. Марковников в 1869 Она носит название правило Марковникова. При взаимодействии галогеноводородов с несимметричными алкенами атом водорода присоединяется по месту разрыва двойной связи в наиболее гидрированного атома углерода, то есть до того, что соединен с большим количеством атомов водорода.

    Данное правило Марковников сформулировал на основе экспериментальных данных и только значительно позже оно получило теоретическое обоснование. Рассмотрим реакцию пропилена с хлористым водородом.

    Одной из особенностей $p$-связи является его способность легко поляризоваться. Под влиянием метильной группы (положительный индуктивный эффект + $I$) в молекуле пропена электронная плотность $p$-связи смещается к одному из атомов углерода (= $CH_2$). Вследствие этого на нем возникает частичный отрицательный заряд ($\delta -$). На другом атоме углерода двойной связи в соответствии возникает частичный положительный заряд ($\delta +$).

    Такое распределение электронной плотности в молекуле пропилена определяет место будущей атаки протоном. Это - атом углерода метиленовой группы (= $CH_2$), который несет частичный отрицательный заряд $\delta-$. А хлор, соответственно, атакует атом углерода с частичным положительным зарядом $\delta+$.

    Как следствие, основным продуктом реакции пропилена с хлористым водородом является 2-хлорпропан.

    Гидратация

    Гидратация алкенов происходит в присутствии минеральных кислот и подчиняется правилу Марковникова. Продуктами реакции являются спирты

    $CH_2=CH_2 + H_2O → CH_3–CH_2–OH$

    Алкилирование

    Присоединение алканов к алкенам в присутствии кислотного катализатора ($HF$ или $H_2SO_4$) при низких температурах приводит к образованию углеводородов с большей молекулярной массой и часто используется в промышленности для получения моторного топлива

    $R–CH_2=CH_2 + R’–H → R–CH_2–CH_2–R’$

Реакции окисления

Окисление алкенов может происходить в зависимости от условий и видов окислительных реагентов как с разрывом двойной связи, так и с сохранением углеродного скелета:

Реакции полимеризации

Молекулы алкенов способны присоединяться при определенных условиях друг к другу с раскрытием $\pi$-связей и образования димеров, триммеров или высокомолекулярных соединений - полимеров. Полимеризация алкенов может протекать как по свободнорадикальному, так и катионно-анионому механизму. Как инициаторы полимеризации применяют кислоты, перекиси, металлы и др. Реакцию полимеризации осуществляют также под действием температуры, облучения, давления. Типичным примером является полимеризация этилена с образованием полиэтилена

$nCH_2=CH_2 → (–CH_2–CH_{2^–})_n$

Реакции замещения

Реакции замещения для алкенов не являются характерными. Однако при высоких температурах (свыше 400 ° C) реакции радикального присоединения, что носят обратимый характер, и подавляются. В этом случае становится возможным провести замещение атома водорода, находящегося в аллильном положении при сохранении двойной связи

$CH_2=CH–CH_3 + Cl_2 – CH_2=CH–CH_2Cl + HCl$

Низшие алкены (С 2 - С 5), в промышленных масштабах получают из газов, образующихся при термической переработке нефти и нефтепродуктов. Алкены можно также получить, используя лабораторные методы синтеза.

4.5.1. Дегидрогалогенирование

При обработке галогеналканов основаниями в безводных растворителях, например, спиртовым раствором едкого кали, происходит отщепление галогеноводорода.

4.5.2. Дегидратация

При нагревании спиртов с серной или фосфорной кислотами происходит внутримолекулярная дегидратация (- элиминирование).

Преобладающее направление реакции, как и в случае дегидрогалогенирования, - образование наиболее устойчивого алкена (правило Зайцева).

Дегидратацию спиртов можно провести, пропуская пары спирта над катализатором (оксиды алюминия или тория) при 300 - 350 о С.

4.5.3. Дегалогенирование вицинальных дигалогенидов

Действием цинка в спирте дибромиды, содержащие галогены у соседних атомов (вицинальные), могут быть превращены в алкены.

4.5.4. Гидрирование алкинов

При гидрировании алкинов в присутствии платинового или никелевого катализаторов, активность которых уменьшена добавлением небольшого количества соединений свинца (каталитический яд), образуется алкен, который не подвергается дальнейшему восстановлению.

4.5.5. Восстановительное сочетание альдегидов и кетонов

При обработке алюмогидридом лития и хлоридом титана(III) из двух молекул альдегида или кетона с хорошими выходами образуются ди- или соответственно тетразамещённые алкены.

5. АЛКИНЫ

Алкинами называются углеводороды, содержащие тройную углерод-углеродную связь –СС–.

Общая формула простых алкинов С n H 2n-2 . Простейшим представителем класса алкинов является ацетилен H–СС–H, поэтому алкины называют также ацетиленовыми углеводородами.

5.1. Строение ацетилена

Атомы углерода ацетилена находятся в sp -гибридном состоянии. Изобразим орбитальную конфигурацию такого атома. При гибридизации 2s -орбитали и -орбитали образуются две равноценные sp -гибридные орбитали, расположенные на одной прямой, и остаются две негибридизованные р -орбитали.

Рис. 5.1 Схема формирования sp -гибридных орбиталей атома углерода

Направленияи формы орбиталей s р -гибридизованного атома углерода: гибридизованные орбитали эквивалентны, максимально удалены друг от друга

В молекуле ацетилена простая связь (- связь) между атомами углерода образована перекрыванием двух sp -гибридизованных орбиталей. Две взаимно перпендикулярные - связи возникают при боковом перекрывании двух пар негибридизованных 2р- орбиталей, - электронные облака охватывают скелет так, что электронное облако имеет симметрию, близкую к цилиндрической. Связи с атомами водорода образуются за счёт sp -гибридных орбиталей атома углерода и 1s -орбитали атома водорода, молекула ацетилена линейна.

Рис. 5.2 Молекула ацетилена

а - боковое перекрывание орбиталей дает две -связи;

б - молекула линейна, -облако имеет цилиндрическую форму

В пропине простая связь (- связь) С sp sp3 короче аналогичной связи С sp sp2 в алкенах, это объясняется тем, что sp- орбиталь ближе к ядру, чем sp 2 - орбиталь .

Тройная углерод-углеродная связь С  С короче двойной связи, а общая энергия тройной связи приблизительно равна сумме энергий одной простой связи С–С (347 кДж/моль) и двух -связей (259·2 кДж/моль) (табл. 5.1).

Алкены - непредельные углеводороды, в составе которых есть одна двойная связь. Примеры алкенов:

Методы получения алкенов.

1. Крекинг алканов при 400-700°С. Реакция идет по свободнорадикальному механизму:

2. Дегидрирование алканов:

3. Реакция элиминирования (отщепление): от соседних атомов углерода отщепляются 2 атома или 2 группы атомов, и образуется двойная связь. К таким реакциям относят:

А) Дегидратацию спиртов (нагрев свыше 150°С, при участии серной кислоты , как водоотнимающего реагента):

Б) Отщепление галогенводородов при воздействии спиртового раствора щелочи:

Атом водорода отщепляется преимущественно от того атома углерода, который связан с меньшим числом атомов водорода (наименее гидрогенизированного атома) - правило Зайцева .

В) Дегалогенирование:

Химические свойства алкенов.

Свойства алкенов обуславливаются наличием кратной связи, поэтому алкены вступают в реакции электрофильного присоединения, которое протекает в несколько стадий (Н-Х - реагент):

1-я стадия:

2-я стадия:

.

Ион водорода в такого типа реакциях принадлежит тому атому углерода, который имеет более отрицательный заряд. Распределение плотности такое:

Если в качестве заместителя стоит донор, который проявляется +I- эффект, то электронная плотность смещается в сторону наиболее гидрогенизированного атома углерода, создавая на нем частично отрицательный заряд. Реакции идут по правилу Марковникова : при присоединении полярных молекул типа НХ (HCl , HCN , HOH и т.д.) к несимметричным алкенам водород присоединяется преимущественно к более гидрогенизированому атому углерода при двойной связи.

А) Реакции присоединения:
1) Гидрогалогенирование:

Реакция идет по правилу Марковникова. Но если в реакции присутствует пероксид , то правило не учитывается:

2) Гидратация. Реакция идет по правилу Марковникова в присутствие фосфорной или серной кислоты :

3) Галогенирование. В результате происходит обесцвечивание бромной воды - это качественная реакция на кратную связь:

4) Гидрирование. Реакция протекает в присутствие катализаторов.



Понравилась статья? Поделитесь с друзьями!