Биография исаака ньютона смерть. Исаак ньютон - биография, информация, личная жизнь

Исаак Ньютон появился на свет 4 января 1643 года в небольшой британской деревушке Вулсторп, располагавшейся на территории графства Линкольншир. Хилый, преждевременно покинувший лоно матери мальчик пришел в этот мир накануне Английской гражданской войны, вскоре после смерти своего отца и незадолго до празднования Рождества.

Ребенок был настолько слабым, что на протяжении долгого времени его даже не крестили. Но все же маленький Исаак Ньютон, названный так в честь своего отца, выжил и прожил очень долгую для семнадцатого века жизнь – 84 года.

Отец будущего гениального ученого был мелким фермером, однако довольно успешным и состоятельным. После смерти Ньютона-старшего его семья получила несколько сотен акров полей и лесных угодий с плодородной почвой и внушительную сумму размером в 500 фунтов стерлингов.

Мать Исаака, Анна Эйскоу, вскоре снова вышла замуж и родила своему новому супругу троих детей. Анна уделяла больше внимания младшим отпрыскам, а воспитанием ее первенца поначалу занималась бабушка Исаака, а потом его дядя Уильям Эйскоу.

В детстве Ньютон увлекался живописью, поэзией, самозабвенно изобретал водяные часы, ветряную мельницу, мастерил бумажных змеев. При этом он по-прежнему был весьма болезненным, а также крайне необщительным: веселым играм со сверстниками Исаак предпочитал собственные увлечения.


Физик в молодости

Когда ребенка отправили в школу, его физическая слабость и плохие коммуникативные навыки однажды даже стали причиной того, что мальчика избили до полуобморочного состояния. Это унижение Ньютон стерпеть не мог. Но, конечно, в одночасье приобрести атлетическую физическую форму он не мог, поэтому мальчик решил тешить свое самоуважение иначе.

Если до этого случая он достаточно плохо учился и явно не был любимчиком учителей, то после начал серьезно выделяться по успеваемости среди своих одноклассников. Постепенно он стал лучшим учеником, а также еще серьезнее, чем до этого, начал интересоваться техникой, математикой и удивительными, необъяснимыми явлениями природы.


Когда Исааку исполнилось 16 лет, мать забрала его обратно в поместье и попыталась возложить на повзрослевшего старшего сына часть забот по ведению хозяйства (второй муж Анны Эйскоу к тому времени тоже скончался). Однако парень только и занимался тем, что конструировал хитроумные механизмы, «проглатывал» многочисленные книги и писал стихи.

Школьный учитель молодого человека, мистер Стокс, а также его дядя Уильям Эйскоу и знакомый Хэмфри Бабингтон (по совместительству – член Кембриджского Тринити-колледжа) из Грэнтема, где будущий всемирно известный ученый посещал школу, уговорили Анну Эйскоу позволить одаренному сыну продолжить обучение. В результате коллективных уговоров в 1661 году Исаак завершил учебу в школе, после чего успешно выдержал вступительные экзамены в Кембриджский университет.

Начало научной карьеры

Как студент Ньютон имел статус «sizar». Это означало, что он не платил за свое образование, однако должен был выполнять в университете разноплановые работы, либо оказывать услуги более богатым студентам. Исаак мужественно выдержал это испытание, хотя по-прежнему крайне не любил чувствовать себя угнетенным, был нелюдим и не умел заводить друзей.

В то время философию и естествознание в знаменитом на весь мир Кембридже преподавали по , хотя на тот момент миру уже были продемонстрированы открытия Галилея, атомистическая теория Гассенди, смелые труды Коперника, Кеплера и других выдающихся ученых. Исаак Ньютон с жадностью поглощал всю возможную информацию по математике, астрономии, оптике, фонетике и даже теории музыки, какую только мог найти. При этом он нередко забывал про еду и сон.


Исаак Ньютон изучает преломление света

Самостоятельную научную деятельность исследователь начал в 1664 году, составив перечень из 45 проблем в человеческой жизни и природе, которые пока не были решены. Тогда же судьба свела студента с одаренным математиком Исааком Барроу, который начал работать на математической кафедре колледжа. Впоследствии Барроу стал его учителем, а также одним из немногих друзей.

Еще сильнее заинтересовавшись математикой благодаря одаренному преподавателю, Ньютон выполнил биномиальное разложение для произвольного рационального показателя, которое стало его первым блестящим открытием в математической области. В том же году Исаак получил звание бакалавра.


В 1665-1667 годах, когда по Англии прокатилась чума, Великий Лондонский пожар и крайне затратная война с Голландией, Ньютон ненадолго осел в Вусторпе. В эти годы он направил свою основную деятельность на открытие оптических тайн. Пытаясь выяснить, как избавить линзовые телескопы от хроматической аберрации, ученый пришел к исследованию дисперсии. Суть экспериментов, которые ставил Исаак, была в стремлении познать физическую природу света, и многие из них до сих пор проводят в учреждениях образования.

В результате Ньютон пришел к корпускулярной модели света, решив, что его можно рассматривать как поток частиц, которые вылетают из некоторого источника света и осуществляют прямолинейное движение до ближайшего препятствия. Такая модель хоть и не может претендовать на предельную объективность, однако стала одной из основ классической физики, без которой не появились бы и более современные представления о физических явлениях.


Среди любителей собирать интересные факты давно бытует заблуждение о том, что этот ключевой закон классической механики Ньютон открыл после того, как ему на голову упало яблоко. В действительности Исаак планомерно шел к своему открытию, что понятно из его многочисленных записей. Легенду о яблоке популяризовал авторитетный в те времена философ Вольтер.

Научная известность

В конце 1660-ых годов Исаак Ньютон вернулся в Кембридж, где получил статус магистра, собственную комнату для жизни и даже группу юных студентов, у которых ученый стал преподавателем. Впрочем, преподавание явно не было «коньком» одаренного исследователя, и посещаемость его лекций заметно хромала. Тогда же ученый изобрел телескоп-рефлектор, который прославил его и позволил Ньютону вступить в Лондонское королевское общество. Посредством данного приспособления было сделано множество потрясающих астрономических открытий.


В 1687 году Ньютон опубликовал, пожалуй, самую важную свою работу – труд под названием «Математические начала натуральной философии». Исследователь и до этого издавал свои труды, но этот имел первостепенное значение: он стал основной рациональной механики и всего математического естествознания. Здесь содержался хорошо всем известный закон всемирного тяготения, три известных до сих пор закона механики, без которых немыслима классическая физика, вводились ключевые физические понятия, не подвергалась сомнениям гелиоцентрическая система Коперника.


По математическому и физическому уровню «Математические начала натуральной философии» были на порядок выше, чем изыскания всех ученых, работавших над этой проблемой до Исаака Ньютона. Здесь не было недоказанной метафизики с пространными рассуждениями, безосновательными законами и неясными формулировками, которой так грешили работы Аристотеля и Декарта.

В 1699 году, когда Ньютон работал на административных должностях, в университете Кембриджа начали преподавать его систему мира.

Личная жизнь

Женщины ни тогда, ни с годами не проявляли особой симпатии к Ньютону, и за всю свою жизнь он ни разу не женился.


Смерть великого ученого наступила в 1727 году, причем на его похороны собрался практически весь Лондон.

Законы Ньютона

  • Первый закон механики: всякое тело покоится или остается в состоянии равномерного поступательного движения, пока этот состояние не будет скорректировано приложением внешних сил.
  • Второй закон механики: изменение импульса пропорционально приложенной силе и осуществляется по направлению ее воздействия.
  • Третий закон механики: материальные точки взаимодействуют друг с другом по прямой, их соединяющей, с равными по модулю и противоположными по направлению силами.
  • Закон всемирного тяготения: сила гравитационного притяжения между двумя материальными точками пропорциональна произведению их масс, умноженному на гравитационную постоянную, и обратно пропорциональна квадрату расстояния между этими точками.

Кто-то способен умножать в уме пятизначные числа. Другой с трудом подсчитывает сдачу в магазине, но может из мусора на помойке собрать машину Апокалипсиса. Третьему по силам вывести общую формулу всего - если, конечно, с него снимут смирительную рубашку. А иногда рождаются люди, способные за чашкой чая написать теорию оптики, в обед разработать методы интегрального исчисления, а перед сном набросать законы гравитации - и все это в эпоху, когда на площадях еще иногда жгли ведьм, а знаменитые ученые всерьез интересовались оккультизмом.

Трудно знать многое, все знать невозможно. Но делать великие открытия в абсолютно разных областях фундаментальных знаний и определять облик науки на сотни лет вперед - это почти что чудо. На свете было немного людей, чьи портреты одновременно висят в школьных кабинетах математики, физики, астрономии и культурологии. И, пожалуй, главным «мессией от науки» был сэр Исаак Ньютон. В 2005 году Лондонское королевское общество провело голосование по кандидатуре самого влиятельного физика в истории планеты. Ньютон был сочтен более значимым, чем Эйнштейн.

Неразговорчивый и одинокий

В апреле 1642 года зажиточный, но совершенно безграмотный фермер Исаак Ньютон из маленькой деревеньки Вулсторп женился на хорошо образованной 19-летней Анне Эйскоу из деревни Маркет Овертон. Счастье молодых длилось недолго. В октябре муж умер. А аккурат на Рождество, 25 декабря, Анна родила мальчика. Его назвали в честь отца - Исааком. Эти обстоятельства определили участь научного прогресса, ведь будь Исаак старший жив, он наверняка воспитал бы сына-фермера.

Малыш родился недоношенным. По воспоминаниям матери, ребенок был так мал, что мог поместиться в чашку на четверть кварты. Все ожидали, что он не проживет и суток. Однако, несмотря на это, Исаак вырос здоровым и дожил до 84 лет.

Через три года Анна вышла замуж за богатого викария Барнаби Смита, которому к тому времени исполнилось 63 года. Она оставила сына своим родителям и переехала к преподобному. Второй брак матери «подарил» Ньютону двух сводных сестер и одного сводного брата (Мэри, Бенджамина и Анну). Надо сказать, что отношения у них были хорошие - добившись успеха, Исаак всегда помогал сводным родственникам.

Некоторые исследователи полагают, что юный Ньютон страдал от аутизма. Он мало говорил (качество, сохранявшееся на протяжении всей его жизни) и так сильно погружался в свои мысли, что забывал принимать пищу. До семи лет его часто «заклинивало» на повторении одних и тех же предложений, что, естественно, не добавляло странному мальчику друзей.

Необычайные таланты Исаака впервые проявились на практической почве. Он мастерил игрушки, миниатюрные ветряные мельницы, воздушных змеев (запускал с ними фонари и распространял по округе слух о комете), сделал каменные солнечные часы для своего дома, а также измерял силу ветра, прыгая по его направлению и против.

В 1652 году Ньютона послали учиться в школу Грэнтхэма. Этот городок был всего в 5 милях от его дома, но Исаак предпочел покинуть родные стены и поселился у грэнтхэмского аптекаря - мистера Кларка.

В 1656 году викарий умирает, и вдова Смит возвращается в родовое имение. Нельзя сказать, что Исаак был рад ей. В возрасте 19 лет он составил перечень своих былых юношеских грехов, где, в частности, указал намерение сжечь дом викария вместе со своей нерадивой матерью. Анна запоздало решила принять участие в воспитании первенца и решила, что сын пойдет по стопам отца. Исаака забрали из школы, и некоторое время он усердно вскапывал поля графства Линкольншир.

Приобщение к земле длилось недолго. Стараниями преподобного Вильяма Эйскоу (брата матери Ньютона и пастора соседней деревни) английское земледелие лишилось очередного плохого работника. Дядя заметил научные успехи юноши и уговорил Анну послать сына в университет.

Одинокий и гениальный

Первое время Ньютон был субсайзером - а проще говоря, оплачивал учебу работой по хозяйству. Весной 1664 года он был зачислен в Тринити-колледж стипендиатом. Это открыло ему доступ к огромной библиотеке Кембриджа. Молодой человек жадно глотал труды Архимеда, Аристотеля, Платона, Коперника, Кеплера, Галилея и Декарта - тех самых гигантов, на плечах которых, по его собственным словам, он стоял в дальнейшем.

Про его отношения с однокурсниками сохранилось мало сведений. Можно предположить, что замкнутый Ньютон, попавший в цитадель столь обожаемой им науки, избегал разгульной студенческой жизни. Известно, что однажды он поменял комнату из-за «буйства» соседа и поселился рядом с тихим Джоном Уилкинсом.

Увлекшись оптикой, Ньютон посвящал немало времени наблюдению атмосферных явлений - в частности, гало (кольцо вокруг Солнца, подробнее см. «МФ» №11(63), 2008).

Исааку хватило года, чтобы набраться базовых знаний в математике, физике и оптике. В июле 1665 года Лондон поразила страшная эпидемия чумы. Количество жертв было так велико, что руководство университета распустило студентов по домам (на протяжении двух следующих лет Кембридж закрывался и открывался несколько раз).

Ньютон взял «творческий отпуск» и вернулся в родной Вулсторп. Спокойствие деревенской жизни благоприятно сказывалось на Исааке. Шумные студенты не отвлекали его от книг, поэтому уже в январе 1665 года он защитился на бакалавра, а в 1668 стал магистром.

Это покажется странным, но Ньютон сделал основные открытия, еще будучи учеником Кембриджа. Он не кричал «Эврика!» на каждом углу и не стремился популяризовать свои достижения, так что мировую известность Исаак получил лишь в зрелом возрасте.

К 23 годам молодой человек освоил методы дифференциального и интегрального исчисления, вывел формулу бинома Ньютона, сформулировал основную теорему анализа (позже названную «формулой Ньютона-Лейбница), открыл закон всемирного тяготения и доказал, что белый цвет - смесь цветов.

Все это делалось с помощью кратких заметок в дневниках. Судя по ним, мысли Ньютона свободно перескакивали от оптики к математике и наоборот. Деревенская тишина предоставляла ему неограниченное количество времени для размышлений. Сам он объяснял успех тем, что размышлял постоянно.

В 1669 году чума отступила. Кембридж вновь ожил, и Ньютона назначили профессором математики. В то время под математическими науками подразумевались также геометрия, астрономия, география и оптика, однако лекции Ньютона считались скучными и не пользовались спросом у студентов - зачастую ему приходилось выступать перед пустыми скамьями.

Это интересно
  • Ньютон родился в год смерти Галилея. Он никогда не покидал Англии, а все его путешествия ограничивались расстоянием в 200 км.
  • Выпускники Тринити-колледжа получили 31 нобелевскую премию и 5 медалей Филдса (математика). В нем учились 6 британских премьер-министров.
  • Диаграмма «Пушки Ньютона» была выбита на золотой пластине «Вояджера».
  • Ньютон впервые установил сплюснутость Земли у полюсов (ранее высказывались мнения, что Земля имеет вытянутые полюса и больше похожа на лимон). Экваториальный диаметр планеты на 43 км больше, чем на полюсах. Из-за этого самой удаленной точкой поверхности от центра Земли является не Эверест, а вершина вулкана Чимборасо (Эквадор).

Гора Чимборасо.

НЬЮТОН (Newton ) Исаак (1643-1727), английский математик, механик, астроном и физик, создатель классической механики, член (1672) и президент (с 1703) Лондонского королевского общества. Фундаментальные труды "Математические начала натуральной философии" (1687) и "Оптика" (1704). Разработал (независимо от Г. Лейбница) дифференциальное и интегральное исчисления. Открыл дисперсию света, хроматическую аберрацию, исследовал интерференцию и дифракцию, развивал корпускулярную теорию света, высказал гипотезу, сочетавшую корпускулярные и волновые представления. Построил зеркальный телескоп. Сформулировал основные законы классической механики. Открыл закон всемирного тяготения, дал теорию движения небесных тел, создав основы небесной механики. Пространство и время считал абсолютными. Работы Ньютона намного опередили общий научный уровень его времени, были малопонятны современникам. Был директором Монетного двора, наладил монетное дело в Англии. Известный алхимик, Ньютон занимался хронологией древних царств. Теологические труды посвятил толкованию библейских пророчеств (большей частью не опубликованы).

НЬЮТОН (Newton) Исаак (4 января 1643, Вулсторп, близ Грантема, графство Линкольншир, Англия - 31 марта 1727, Лондон; похоронен в Вестминстерском аббатстве), один из основоположников современной физики, сформулировал основные законы механики и был фактическим создателем единой физической программы описания всех физических явлений на базе механики; открыл закон всемирного тяготения, объяснил движение планет вокруг Солнца и Луны вокруг Земли, а также приливы в океанах, заложил основы механики сплошных сред, акустики и физической оптики.

Детские годы

Исаак Ньютон появился на свет в небольшой деревушке в семье мелкого фермера, умершего за три месяца до рождения сына. Младенец был недоношенным; бытует легенда, что он был так мал, что его поместили в овчинную рукавицу, лежавшую на лавке, из которой он однажды выпал и сильно ударился головкой об пол.

Когда ребенку исполнилось три года, его мать вторично вышла замуж и уехала, оставив его на попечении бабушки. Ньютон рос болезненным и необщительным, склонным к мечтательности. Его привлекала поэзия и живопись, он, вдали от сверстников, мастерил бумажных змеев, изобретал ветряную мельницу, водяные часы, педальную повозку. Трудным было для Ньютона начало школьной жизни. Учился он плохо, был слабым мальчиком, и однажды одноклассники избили его до потери сознания. Переносить такое унизительное положение было для самолюбивого Ньютона невыносимо, и оставалось одно: выделиться успехами в учебе. Упорной работой он добился того, что занял первое место в классе.

Интерес к технике заставил Ньютона задуматься над явлениями природы; он углубленно занимался и математикой. Об этом позже написал Жан Батист Био: "Один из его дядей, найдя его однажды под изгородью с книгой в руках, погруженного в глубокое размышление, взял у него книгу и нашел, что он был занят решением математической задачи. Пораженный таким серьезным и деятельным направление столь молодого человека, он уговорил его мать не противиться далее желанию сына и послать его для продолжения занятий". После серьезной подготовки Ньютон в 1660 поступил в Кембридж в качестве Subsizzfr"a (так назывались неимущие студенты, которые обязаны были прислуживать членам колледжа, что не могло не тяготить Ньютона).

Начало творчества. Оптика

За шесть лет Ньютоном были пройдены все степени колледжа и подготовлены все его дальнейшие великие открытия. В 1665 г. Ньютон стал магистром искусств.

В этом же году, когда в Англии свирепствовала эпидемия чумы, он решил временно поселиться в Вулсторпе. Именно там он начал активно заниматься оптикой; поиски способов устранения хроматической аберрации в линзовых телескопах привели Ньютона к исследованиям того, что теперь называется дисперсией, т. е. зависимости показателя преломления от частоты. Многие из проведенных им экспериментов (а их насчитывается более тысячи) стали классическими и повторяются и сегодня в школах и институтах.

Лейтмотивом всех исследований было стремление понять физическую природу света. Сначала Ньютон склонялся к мысли о том, что свет - это волны во всепроникающем эфире, но позже он отказался от этой идеи, решив, что сопротивление со стороны эфира должно было бы заметным образом тормозить движение небесных тел. Эти доводы привели Ньютона к представлению, что свет - это поток особых частиц, корпускул, вылетающих из источника и движущихся прямолинейно, пока они не встретят препятствия. Корпускулярная модель объясняла не только прямолинейность распространения света, но и закон отражения (упругое отражение), и - правда, не без дополнительного предположения - и закон преломления. Это предположение заключалось в том, что световые корпускулы, подлетая, к поверхности воды, например, должны притягиваться ею и потому испытывать ускорение. По этой теории скорость света в воде должна быть больше, чем в воздухе (что вступило в противоречие с более поздними экспериментальными данными).

Законы механики

На формирование корпускулярных представлений о свете явным образом повлияло, что в это время уже, в основном, завершилась работа, которой суждено было стать основным великим итогом трудов Ньютона - создание единой, основанной на сформулированных им законах механики физической картины Мира.

В основе этой картины лежало представление о материальных точках - физически бесконечно малых частицах материи и о законах, управляющих их движением. Именно четкая формулировка этих законов и придала механике Ньютона полноту и законченность. Первый из этих законов был, фактически, определением инерциальных систем отсчета: именно в таких системах не испытывающие никаких воздействий материальные точки движутся равномерно и прямолинейно. Второй закон механики играет центральную роль. Он гласит, что изменение количества, движения (произведения массы на скорость) за единицу времени равно силе, действующей на материальную точку. Масса каждой из этих точек является неизменной величиной; вообще все эти точки "не истираются", по выражению Ньютона, каждая из них вечна, т. е. не может ни возникать, ни уничтожаться. Материальные точки взаимодействуют, и количественной мерой воздействия на каждую из них и является сила. Задача выяснения того, каковы эти силы, является корневой проблемой механики.

Наконец, третий закон - закон "равенства действия и противодействия" объяснял, почему полный импульс любого тела, не испытывающего внешних воздействий, остается неизменным, как бы ни взаимодействовали между собой его составные части.

Закон всемирного тяготения

Поставив проблему изучения различных сил, Ньютон сам же дал первый блистательный пример ее решения, сформулировав закон всемирного тяготения: сила гравитационного притяжения между телами, размеры которых значительно меньше расстояния между ними, прямо пропорциональна их массам, обратно пропорциональна квадрату расстояния между ними и направлена вдоль соединяющей их прямой. Закон всемирного тяготения позволил Ньютону дать количественное объяснение движению планет вокруг Солнца и Луны вокруг Земли, понять природу морских приливов. Это не могло не произвести огромного впечатления на умы исследователей. Программа единого механического описания всех явлений природы - и "земных", и "небесных" на долгие годы утвердилась в физике. Более того, многим физикам в течение двух столетий сам вопрос о границах применимости законов Ньютона представлялся неоправданным.

Лукасовская кафедра в Кембридже

В 1668 Ньютон вернулся в Кембридж и вскоре он получил Лукасовскую кафедру математики. Эту кафедру до него занимал его учитель И. Барроу, который уступил кафедру своему любимому ученику, чтобы материально обеспечить его. К тому времени Ньютон уже был автором бинома и создателем (одновременно с Лейбницем, но независимо от него) метода флюксий - того, что ныне называется дифференциальным и интегральным исчислением. Вообще, то был плодотворнейший период в творчестве Ньютона: за семь лет, с 1660 по 1667 сформировались его основные идеи, включая идею закона всемирного тяготения. Не ограничиваясь одними лишь теоретическими исследованиями, он в эти же годы сконструировал, и начал создавать телескоп- рефлектор (отражательный). Эта работа привела к открытию того, что позже получило название интерференционных "линий равной толщины". (Ньютон, поняв, что здесь проявляется "гашение света светом", не вписывавшееся в корпускулярную модель, пытался преодолеть возникавшие здесь трудности, введя предположение, что корпускулы в свете движутся волнами - "приливами"). Второй из изготовленных телескопов (улучшенный) послужил поводом для представления Ньютона в члены Лондонского королевского общества. Когда Ньютон отказался от членства, сославшись на отсутствие средств на уплату членских взносов, было сочтено возможным, учитывая его научные заслуги, сделать для него исключение, освободив его от их уплаты.

Будучи по натуре весьма осторожным (чтобы не сказать робким) человеком, Ньютон, помимо его воли оказывался порой втянутым в мучительные для него дискуссии и конфликты. Так, его теория света и цветов, изложенная в 1675, вызвала такие нападки, что Ньютон решил не публиковать ничего по оптике, пока жив Гук, наиболее ожесточенный его оппонент. Пришлось Ньютону принять участие и в политических событиях. С 1688 до 1694 он был членом парламента. К тому времени, в 1687 г. вышел в свет его основной труд "Математические начала натуральной философии" - основа механики всех физических явлений, от движения небесных тел до распространения звука. На несколько веков вперед эта программа определила развитие физики, и ее значение не исчерпано и поныне.

Болезнь Ньютона

Постоянное огромное нервное и умственное напряжение привело к тому, что в 1692 Ньютон заболел умственным расстройством. Непосредственным толчком к этому явился пожар, в котором погибли все подготавливавшиеся им рукописи. Лишь к 1694 он, по свидетельству Гюйгенса, "...начинает уже понимать свою книгу "Начала"".

Постоянное гнетущее ощущение материальной необеспеченности было, несомненно, одной из причин болезни Ньютона. Поэтому для него имело важное значение должность смотрителя Монетного двора с сохранением профессуры в Кембридже. Ревностно приступив к работе и быстро добившись заметных успехов, он был в 1699 назначен директором. Совмещать это с преподаванием было невозможно, и Ньютон перебрался в Лондон. В конце 1703 г. его избрали президентом Королевского общества. К тому времени Ньютон достиг вершины славы. В 1705 г. его возводят в рыцарское достоинство, но, располагая большой квартирой, имея шесть слуг и богатый выезд, он остается по-прежнему одиноким. Пора активного творчества позади, и Ньютон ограничивается подготовкой издания "Оптики", переиздания "Начал" и толкованием Священного Писания (ему принадлежит толкование Апокалипсиса, сочинение о пророке Данииле).

Ньютон был похоронен в Вестминстерском аббатстве. Надпись на его могиле заканчивается словам: "Пусть смертные радуются, что в их среде жило такое украшение человеческого рода".

Английский учёный Исаак Ньютон внёс неоценимый вклад в естествознание и прославился в истории как выдающийся физик, совершивший множество открытий, существенно повлиявших на ход развития науки. Помимо этого, Ньютон интересовался математикой, механикой и астрономией.

Сегодня открытые Исааком Ньютоном законы до сих пор остаются актуальными и в обязательном порядке изучаются в рамках школьного курса физики.

Жизненный путь

Исаак Ньютон прожил долгую и насыщенную жизнь. Его жизненный путь начался 25 декабря 1642 года, когда он появился на свет в деревне Вулсторп, затерянной на просторах графства Линкольншир в восточной части Англии. Его отец, землевладелец, на тот момент был мёртв и все обязанности по воспитанию мальчика легли на плечи состоятельной матери.

В детстве Ньютон отличается замкнутостью и имел мрачный характер. Любимым занятиями Ньютона в этом возрасте являлось чтение литературы, но также он не упускал возможность сконструировать что-то примитивное из подручных материалов.

В возрасте 12 лет мать отдала Ньютона в Грэнтемскую школу. Изначально он был посредственным учеником, но после избиения более сильным сверстником получил моральную травму, которая привела к резкой активизации умственных усилий и желанию выбиться в лучшие ученики.

Природные способности Ньютона поспособствовали этому и уже скоро он стал лучшим учеником, на что обратили внимание педагоги. В 1659 году Ньютону пришлось вернуться домой для занятия фермерством, так как матери требовалась помощь.

В 1661 году Исаак Ньютон поступил в Кембриджский университет, где интенсивно занимался науками. В 1663 году после прослушивания лекций профессора Барроу у Ньютона возник повышенный интерес к математике и он даже открыл собственный метод.

Ньютон успешно окончил университет, получив степень бакалавра. В возрасте 26 ему предложили работать профессоров математики, на что он охотно согласился. Это стало его основной профессией на долгие 27 лет и открывало простор для научных изысканий. Именно тогда Ньютон смог совершить свои открытия, которые в дальнейшем сыграли огромную роль в науке.

В 1689 года Ньютона пригласили в парламент, который сверг Стюартов. Политика не пришлась по вкусу Ньютону и уже через год он возглавил лондонский монетный двор, пробыв в этом статусе целых 32 года. Последние годы для учёного были счастливыми, ведь он имел стабильный и большой доход, пользовался уважением в обществе и в его окружении находилось большое количество образованных людей и учёных, которые прислушивались к Ньютону и вдохновлялись на совершение собственных научных изысканий.

Посвятив свою жизнь науке, Ньютон так и не вступил в брак. Хозяйственными делами в Лондоне занималась племянница. Умер выдающийся учёный 20 марта 1727 года, но его имя и труды всё ещё живут в физической и математической науках.

Научные изыскания

Наиболее известными открытиями Исаака Ньютона являются:

  • закон всемирного тяготения;
  • три закона механики;
  • метод «исчисления флюксии».

Изначально Исаак Ньютон испытывал интерес к астрономии и поставил перед собой цель решить определённые астрономические задачи, которые были неразрешимы. В итоге был изобретён метод исчисления флюксии, который позволил проводить математические вычисления.

Параллельно с Ньютоном, схожим способом пользовался немецкий учёный Готфрид Лейбниц. Просто англичанин применял открытый способ исключительно в личных целях и обнародовал его лишь спустя несколько лет. Это вызвало споры между немецкими и английскими учёными о том, кто первый открыл метод.

Ньютона споры особо не волновали и он продолжал проводить исследования. Главная цель учёного, вдохновляющая его на научные открытия, представляет собой постижение причин, из которых возникают те или иные явления природы, а также закономерности их действия.

Ньютон старался объяснить явления с научной точки зрения и применял для этого математические формулы. Первой областью исследования стала оптика, в которой были изучены свойства света. Исследователь установил, что свет представляет собой тонкое вещество, которое подчиняется законам механике. В итоге произошло открытие теории, которая определила свет как движение вещества волнообразным способом.

Важнейшее открытие в сфере астрономии — закон всемирного тяготения. На тот момент учёные уже установили, что Земля и планеты вращаются вокруг Солнца, однако не могли понять причины этого. Ньютон же смог открыть явление гравитации и успешно доказать его существование. По некоторым легендам, побудило его к этому упавшее на голову яблоко, но на самом деле обнаружить закон удалось с помощью интенсивных исследований.

Особого внимания заслуживают и законы, открытые в области механики. Три закона Ньютона заучивает наизусть каждый школьник.

Исаак Ньютон посвятил свой жизненный путь науке и его имя продолжает жить.

Отец Ньютона не дожил до рождения сына. Мальчик родился болезненным, до срока, но всё же выжил. Факт рождения под Рождество Ньютон считал особым знаком судьбы. Несмотря на тяжёлые роды, Ньютон прожил 84 года.

Тринити-колледж, часовая башня

Покровителем мальчика стал его дядя по матери, Вильям Эйскоу. В детстве Ньютон, по отзывам современников, был замкнут и обособлен, любил читать и мастерить технические игрушки: часы, мельницу и т. п. По окончании школы () он поступил в Тринити-колледж (Колледж святой Троицы) Кембриджского университета. Уже тогда сложился его могучий характер - научная дотошность, стремление дойти до сути, нетерпимость к обману и угнетению, равнодушие к публичной славе.

Научной опорой и вдохновителями творчества Ньютона в наибольшей степени были физики: Галилей , Декарт и Кеплер . Ньютон завершил их труды, объединив в универсальную систему мира. Меньшее, но существенное влияние оказали другие математики и физики: Евклид , Ферма , Гюйгенс , Валлис и его непосредственный учитель Барроу .

Похоже на то, что значительную часть своих математических открытий Ньютон сделал ещё студентом, в «чумные годы» - . В 23 года он уже свободно владел методами дифференциального и интегрального исчислений , включая разложение функций в ряды и то, что впоследствии было названо формулой Ньютона-Лейбница . Тогда же, по его утверждению , он открыл закон всемирного тяготения , точнее, убедился, что этот закон следует из третьего закона Кеплера . Кроме того, Ньютон в эти годы доказал, что белый цвет есть смесь цветов, вывел формулу «бинома Ньютона » для произвольного рационального показателя (включая отрицательные), и др.

Продолжаются эксперименты по оптике и теории цвета. Ньютон исследует сферическую и хроматическую аберрации . Чтобы свести их к минимуму, он строит смешанный телескоп-рефлектор (линза и вогнутое сферическое зеркало, которое полирует сам). Всерьёз увлекается алхимией, проводит массу химических опытов.

Оценки

Надпись на могиле Ньютона гласит:

Здесь покоится сэр Исаак Ньютон, дворянин, который почти божественным разумом первый доказал с факелом математики движение планет, пути комет и приливы океанов.
Он исследовал различие световых лучей и появляющиеся при этом различные свойства цветов, чего ранее никто не подозревал. Прилежный, мудрый и верный истолкователь природы, древности и Св. писания, он утверждал своей философией величие Всемогущего Бога, а нравом выражал евангельскую простоту.
Пусть смертные радуются, что существовало такое украшение рода человеческого.

Статуя Ньютона в Тринити-колледже

На статуе, воздвигнутой Ньютону в 1755 г. в Тринити-колледже, высечены стихи из Лукреция :

Qui genus humanum ingenio superavit (Разумом он превосходил род человеческий)

Сам Ньютон оценивал свои достижения более скромно:

Не знаю, как меня воспринимает мир, но сам себе я кажусь только мальчиком, играющим на морском берегу, который развлекается тем, что время от времени отыскивает камешек более пёстрый, чем другие, или красивую ракушку, в то время как великий океан истины расстилается передо мной неисследованным.

Тем не менее в книге II, введя моменты (дифференциалы), Ньютон вновь запутывает дело, фактически рассматривая их как актуальные бесконечно малые.

Примечательно, что теорией чисел Ньютон совершенно не интересовался. По всей видимости, физика ему была гораздо ближе математики.

Механика

Страница «Начал» Ньютона с аксиомами механики

Заслугой Ньютона является решение двух фундаментальных задач.

  • Создание для механики аксиоматической основы, которая фактически перевела эту науку в разряд строгих математических теорий.
  • Создание динамики , связывающей поведение тела с характеристиками внешних воздействий на него (сил).

Кроме того, Ньютон окончательно похоронил укоренившееся с античных времён представление, что законы движения земных и небесных тел совершенно различны. В его модели мира вся Вселенная подчинена единым законам.

Ньютон также дал строгие определения таких физических понятий, как количество движения (не вполне ясно использованное у Декарта) и сила . Он ввёл в физику понятие массы как меры инерции и, одновременно, гравитационных свойств (ранее физики пользовались понятием вес ).

Завершили математизацию механики Эйлер и Лагранж .

Теория тяготения

Закон тяготения Ньютона

Сама идея всеобщей силы тяготения неоднократно высказывалась и до Ньютона. Ранее о ней размышляли Эпикур , Гассенди , Кеплер , Борелли , Декарт , Гюйгенс и другие. Кеплер полагал, что тяготение обратно пропорционально расстоянию до Солнца и распространяется только в плоскости эклиптики; Декарт считал его результатом вихрей в эфире. Были, впрочем, догадки с правильной формулой (Буллиальд, Рен , Гук), и даже кинематически обоснованные (с помощью соотнесения формулы центробежной силы Гюйгенса и третьего закона Кеплера для круговых орбит). . Но до Ньютона никто не сумел ясно и математически доказательно связать закон тяготения (силу, обратно пропорциональную квадрату расстояния) и законы движения планет (законы Кеплера). Только с трудов Ньютона начинается наука динамика .

Важно отметить, что Ньютон опубликовал не просто предполагаемую формулу закона всемирного тяготения , но фактически предложил целостную математическую модель в контексте хорошо разработанного, полного, явно сформулированного и систематически изложенного подхода к механике:

  • закон тяготения;
  • закон движения (2-й закон Ньютона);
  • система методов для математического исследования (математический анализ).

В совокупности эта триада достаточна для полного исследования самых сложных движений небесных тел, тем самым создавая основы небесной механики . До Эйнштейна никаких принципиальных поправок к указанной модели не понадобилось, хотя математический аппарат оказалось необходимым значительно развить.

Ньютоновская теория тяготения вызвала многолетние дебаты и критику концепции дальнодействия .

Важным аргументом в пользу ньютоновской модели послужил строгий вывод на её основе эмпирических законов Кеплера . Следующим шагом стала теория движения комет и Луны, изложенная в «Началах». Позже с помощью ньютоновского тяготения были с высокой точностью объяснены все наблюдаемые движения небесных тел; в этом большая заслуга Эйлера , Клеро и Лапласа , которые разработали для этого теорию возмущений . Фундамент этой теории был заложен ещё Ньютоном, который провёл анализ движения Луны, используя свой обычный метод разложения в ряд; на этом пути он открыл причины известных тогда аномалий (неравенств ) в движении Луны.

Первые наблюдаемые поправки к теории Ньютона в астрономии (объяснённые ОТО) были обнаружены лишь более чем через 200 лет (смещение перигелия Меркурия). Впрочем, и они очень малы в пределах Солнечной системы.

Ньютон также открыл причину приливов : притяжение Луны (даже Галилей считал приливы центробежным эффектом). Более того, обработав многолетние данные о высоте приливов, он с хорошей точностью вычислил массу Луны.

Ещё одним следствием тяготения оказалась прецессия земной оси. Ньютон выяснил, что из-за сплюснутости Земли у полюсов земная ось совершает под действием притяжения Луны и Солнца постоянное медленное смещение с периодом 26000 лет. Тем самым древняя проблема «предварения равноденствий» (впервые отмеченная Гиппархом) нашла научное объяснение.

Оптика и теория света

Ньютону принадлежат фундаментальные открытия в оптике . Он построил первый зеркальный телескоп (рефлектор), в котором, в отличие от чисто линзовых телескопов, отсутствовала хроматическая аберрация . Он также открыл дисперсию света , показал, что белый свет раскладывается на цвета радуги вследствие различного преломления лучей разных цветов при прохождении через призму, и заложил основы правильной теории цветов.

В этот период было множество спекулятивных теорий света и цветности; в основном боролись точка зрения Аристотеля («разные цвета есть смешение света и тьмы в разных пропорциях») и Декарта («разные цвета создаются при вращении световых частиц с разной скоростью»). Гук в своей «Микрографии» (1665) предлагал вариант аристотелевских взглядов. Многие полагали, что цвет есть атрибут не света, а освещённого предмета. Всеобщий разлад усугубил каскад открытий XVII века: дифракция (1665, Гримальди), интерференция (1665, Гук), двойное лучепреломление (1670, Эразм Бартолин (Rasmus Bartholin ), изучено Гюйгенсом), оценка скорости света (1675, Рёмер). Теории света, совместимой со всеми этими фактами, не существовало.

Дисперсия света
(опыт Ньютона)

В своём выступлении перед Королевским обществом Ньютон опроверг как Аристотеля, так и Декарта, и убедительно доказал, что белый свет не первичен, а состоит из цветных компонентов с разными углами преломления. Эти-то составляющие и первичны - никакими ухищрениями Ньютон не смог изменить их цвет. Тем самым субъективное ощущение цвета получало прочную объективную базу - показатель преломления.

Ньютон создал математическую теорию открытых Гуком интерференционных колец, которые с тех пор получили название «кольца Ньютона ».

Титульный лист «Оптики» Ньютона

В 1689 г. Ньютон прекратил исследования в области оптики - по распространённой легенде, поклялся ничего не печатать в этой области при жизни Гука , который постоянно донимал Ньютона болезненно воспринимаемой последним критикой. Во всяком случае, в 1704 году , на следующий год после смерти Гука, выходит в свет монография «Оптика». При жизни автора «Оптика», как и «Начала», выдержала три издания и множество переводов.

Книга первая монографии содержала принципы геометрической оптики , учение о дисперсии света и составе белого цвета с различными приложениями.

Он предсказал сплюснутость Земли у полюсов, примерно 1:230. При этом Ньютон использовал для описания Земли модель однородной жидкости, применил закон всемирного тяготения и учёл центробежную силу. Одновременно аналогичные расчёты выполнил Гюйгенс , который не верил в дальнодействующую силу тяготения и подошёл к проблеме чисто кинематически. Соответственно Гюйгенс предсказал более чем вдвое меньшее сжатие, чем Ньютон, 1:576. Более того, Кассини и другие картезианцы доказывали, что Земля не сжата, а выпукла у полюсов наподобие лимона. Впоследствии, хотя и не сразу (первые измерения были неточны), прямые измерения (Клеро , ) подтвердили правоту Ньютона; реальное сжатие равно 1:298. Причина отличия этого значения от предложенного Ньютоном в сторону Гюйгенсовского состоит в том, что модель однородной жидкости всё же не вполне точна (плотность заметно возрастает с глубиной). Более точная теория, явно учитывающая зависимость плотности от глубины, была разработана только в XIX веке.

Другие сферы деятельности

Уточнённая хронология древних царств

Параллельно с изысканиями, закладывавшими фундамент нынешней научной (физической и математической) традиции, Ньютон много времени отдавал алхимии , а также богословию . Никаких трудов по алхимии он не издавал, и единственным известным результатом этого многолетнего увлечения стало серьёзное отравление Ньютона в 1691 году .

Ньютон предложил свой вариант библейской хронологии , оставив после себя значительное количество рукописей по данным вопросам. Кроме того, он написал комментарий на Апокалипсис . Теологические рукописи Ньютона ныне хранятся в Иерусалиме , в Национальной Библиотеке.

Примечания

Основные опубликованные сочинения Ньютона

  • Method of Fluxions ( , «Метод флюксий», опубликован посмертно, в 1736 году)
  • De Motu Corporum in Gyrum ()
  • Philosophiae Naturalis Principia Mathematica ( , «Математические начала натуральной философии »)
  • Opticks ( , «Оптика»)
  • Arithmetica Universalis ( , «Универсальная арифметика»)
  • Short Chronicle , The System of the World , Optical Lectures , The Chronology of Ancient Kingdoms, Amended и De mundi systemate опубликованы посмертно в 1728 году .
  • An Historical Account of Two Notable Corruptions of Scripture (1754)

Литература

Сочинения

  • Ньютон И. Математические работы. Пер. и комм. Д. Д. Мордухай-Болтовского. М.-Л.: ОНТИ, 1937.
  • Ньютон И. Всеобщая арифметика или Книга об арифметическом синтезе и анализе. М.: Изд. АН СССР, 1948.
  • Ньютон И. Математические начала натуральной философии. Пер. и прим. А. Н. Крылова . М.: Наука, 1989.
  • Ньютон И. Лекции по оптике. М.: Изд. АН СССР, 1946.
  • Ньютон И. Оптика или трактат об отражениях, преломлениях, изгибаниях и цветах света. М.: Гостехиздат, 1954.
  • Ньютон И. Замечания на книгу пророка Даниила и Апокалипсис св. Иоанна. Пг.: Новое время, 1915.
  • Ньютон И. Исправленная хронология древних царств. М.: РИМИС, 2007.

О нём

  • Арнольд В. И. Гюйгенс и Барроу, Ньютон и Гук. . М.: Наука, 1989.
  • Белл Э. Т. Творцы математики. М.: Просвещение, 1979.
  • Вавилов С. И. Исаак Ньютон. 2-е доп. изд. М.-Л.: Изд. АН СССР, 1945.
  • История математики под редакцией А. П. Юшкевича в трёх томах, М.: Наука, 1970. Том 2. Математика XVII столетия.
  • Карцев В. Ньютон. М.: Молодая гвардия, 1987.
  • Катасонов В. Н. Метафизическая математика XVII в. М.: Наука, 1993.
  • Кирсанов В. С. Научная революция XVII века. М.: Наука, 1987.
  • Кузнецов Б. Г. Ньютон. М.: Мысль, 1982.
  • Московский университет - памяти Исаака Ньютона. М., 1946.
  • Спасский Б. И. История физики. Изд. 2-е. М.: Высшая школа, 1977. Часть 1. Часть 2.
  • Хеллман Х. Великие противостояния в науке. Десять самых захватывающих диспутов. M.: Диалектика, 2007. - Глава 3. Ньютон против Лейбница: Битва титанов.
  • Юшкевич А. П. О математических рукописях Ньютона. Историко-математические исследования, 22, 1977, с. 127-192.
  • Юшкевич А. П. Концепции исчисления бесконечно малых Ньютона и Лейбница. Историко-математические исследования, 23, 1978, с. 11-31.
  • Arthur R. T. W. Newton’s fluxions and equably flowing time. Studies in history and philosophy of science, 26, 1995, p. 323-351.
  • Bertoloni M. D. Equivalence and priority: Newton versus Leibniz. Oxford: Clarendon Press, 1993.
  • Cohen I. B. Newton’s principles of philosophy: inquires into Newton’s scientific work and its general environment. Cambridge (Mass) UP, 1956.
  • Cohen I. B. Introduction to Newton’s «Principia». Cambridge (Mass) UP, 1971.
  • Lai T. Did Newton renounce infinitesimals? Historia Mathematica, 2, 1975, p. 127-136.
  • Selles M. A. Infinitesimals in the foundations of Newton’s mechanics. Historia Mathematica, 33, 2006, p. 210-223.
  • Weinstock R. Newton’s Principia and inverse-square orbits: the flaw reexamined. Historia Mathematica, 19, 1992, p. 60-70.
  • Westfall R. S. Never at rest: A biog. of Isaac Newton. Cambridge UP, 1981.
  • Whiteside D. T. Patterns of mathematical thought in the later seventeenth century. Archive for History of Exact Sciences, 1, 1963, p. 179-388.
  • White M. Isaac Newton: The last sorcerer. Perseus, 1999, 928 с.

Художественные произведения



Понравилась статья? Поделитесь с друзьями!