Биологический и геологический круговороты как рисовать. Малый (биологический) круговорот

Большой геологический круговорот веществ. Малый биологический (географический) круговорот веществ

Большой геологический круговорот веществ обусловлен взаимодействием солнечной энергии с глубинной энергий Земли и осуществляет перераспределение веществ между биосферой и более глубокими горизонтами Земли. Осадочные горные породы погружаются в зону высоких температур и давления в подвижных зонах земной коры. Там они переплавляются и образуют магму - источник новых магматических пород. После поднятия этих пород на земную поверхность и действия процессов выветривания вновь происходит трансформация их в новые осадочные породы.

Большой круговорот включает также и круговорот воды между сушей и океаном через атмосферу. Влага, испарившаяся с поверхности с поверхности мирового океана, переносится на сушу, куда выпадает в виде осадков, которые вновь в океан в виде поверхностного стока и подземного. Круговорот воды происходит и по более простой схеме: испарение влаги с поверхности океана - конденсация водяного пара - выпадение осадков на поверхность океана. В круговороте воды ежедневно участвует более 500 тыс. куб. км. воды. Весь запас воды на Земле распадается и восстанавливается за 2 млн. лет.

Малый круговорот веществ (биогеохимический) совершается лишь в пределах биосферы. Сущность его заключается в образовании живого вещества из неорганических соединений в процессе фотосинтеза и в превращении органического вещества при разложении вновь в неорганические соединения. Этот круговорот для жизни биосферы - главный и является продолжением самой жизни. Изменяясь, рождаясь и умирая, живое вещество поддерживает жизнь на нашей планете, обеспечивая биогеохимический круговорот веществ. Главным источником энергии круговорота является солнечный свет, который обеспечивает фотосинтез.

Суть биогеохимического цикла заключается в том, что химические элементы, поглощенные организмом, в последствии его покидают и уходят в абиотическую среду, через некоторое время они вновь попадают в живой организм. В биогеохимических круговоротах принято различать резервный фонд, или вещества, несвязанные с организмами; обменный фонд, обусловленный прямым обменом биогенными веществами между организмами и их непосредственным окружением. Если же рассматривать биосферу в целом, то можно выделить круговорот газообразных веществ с резервным фондом в атмосфере и гидросфере и осадочный цикл с резервным фондом в земной коре в геологическом круговороте.

Круговороты целом обеспечивают выполнение следующих важнейших функций живого вещества в биосфере:

  • o Газовую: продукт разложения отмершей органики.
  • o Концентрационную: организмы накапливают многие химические элементы.
  • o Окислительно-восстановительную: организмы обитающие в водоемах, регулируют кислотный режим.
  • o Биохимическую: размножение, рост и перемещение в пространстве живого вещества
  • o Биогеохимическую деятельность человека: вовлечение природных веществ для хозяйственный и бытовых нужд человека.

Единственным на Земле процессом, который не расходует, а накапливает солнечную энергию - это создание органического вещества в результате фотосинтеза. В связывании и запасании солнечной энергии и заключается основная планетарная функция живого вещества на Земле. Наиболее важными биогенными веществами является углерод, азот, кислород, фосфор, сера.

Трофическая сеть

Обычно для каждого звена цепи можно указать не одно, а несколько других звеньев, связанных с ним отношением «пища - потребитель». Так, траву едят не только коровы, но и другие животные, а коровы являются пищей не только для человека. Установление таких связей превращает пищевую цепь в более сложную структуру - трофическую сеть .

Трофический уровень

Трофический уровень - условная единица, обозначающая удалённость от продуцентов в трофической цепи данной экосистемы. В некоторых случаях в трофической сети можно сгруппировать отдельные звенья по уровням таким образом, что звенья одного уровня выступают для следующего уровня только в качестве пищи. Такая группировка называется трофическим уровнем.

Круговорот веществ и потоки энергии в экосистемах

Питание - основной способ движения веществ и энергии. Организмы в экосистеме связаны общностью энергии и питательных веществ, которые необходимы для поддержания жизни. Главным источником энергии для подавляющего большинства живых организмов на Земле является Солнце. Фотосинтезирующие организмы (зеленые растения, цианобактерии, некоторые бактерии) непосредственно используют энергию солнечного света. При этом из углекислого газа и воды образуются сложные органические вещества, в которых часть солнечной энергии накапливается в форме химической энергии. Органические вещества служат источником энергии не только для самого растения, но и для других организмов экосистемы. Высвобождение заключенной в пище энергии происходит в процессе дыхания. Продукты дыхания - углекислый газ, вода и неорганические вещества - могут вновь использоваться зелеными растениями. В итоге вещества в данной экосистеме совершают бесконечный круговорот. При этом энергия, заключенная в пище, не совершает круговорот, а постепенно превращается в тепловую энергию и уходит из экосистемы. Поэтому необходимым условием существования экосистемы является постоянный приток энергии извне. Таким образом, основу экосистемы составляют автотрофные организмы - продуценты (производители, созидатели), которые в процессе фотосинтеза создают богатую энергией пищу - первичное органическое вещество. В наземных экосистемах наиболее важная роль принадлежит высшим растениям, которые, образуя органические вещества, дают начало всем трофическим связям в экосистеме, служат субстратом для многих животных, грибов и микроорганизмов, активно влияют на микроклимат биотопа. В водных экосистемах главными производителями первичного органического вещества являются водоросли. Готовые органические вещества используют для получения и накопление энергии гетеротрофы, или консументы (потребители). К гетеротрофам относятся растительноядные животные (консументы I Порядка), плотоядные, живущие за счет растительноядных форм (консументы II порядка), потребляющие других плотоядных (консументы Ш порядка) и т. д. Особую группу консументов составляют редуценты (разрушители, или деструкторы), разлагающие органические остатки продуцентов и консументов до простых неорганических соединений, которые зат-ем используются продуцентами. К редуцентам относятся главным образом микрорганизмы - бактерии и грибы. В наземных экосистемах особенно важное значение имеют почвенные редуценты, вовлекающие в общий круговорот органические вещества отмерших растений (они потребляют до 90% первичной продукции леса). Таким образом, каждый живой организм в составе экосистемы занимает определенную экологическую нишу (место) в сложной системе экологических взаимоотношений с другими организмами и абиотическими условиями среды.

Биологический и геологический круговороты.

Процессы фотосинтеза органического вещества из неорганических компонентов продолжается миллионы лет, и за такое время химические элементы должны были перейти из одной формы в другую. Однако этого не происходит благодаря их круговороту в биосфере. Ежегодно фотосинтезирующие организмы усваивают около 350 млрд т углекислого газа, выделяют в атмосферу около 250 млрд т кислорода и расщепляют 140 млрд т воды, образуя более 230 млрд т органического вещества (в пересчёте на сухой вес). Громадные количества воды проходят через растения и водоросли в процессе обеспечения транспортной функции и испарения. Это приводит к тому, что вода поверхностного слоя океана фильтруется планктоном за 40 дней, а вся остальная вода океана – приблизительно за год. Весь углекислый газ атмосферы обновляется за несколько сотен лет, а кислород за несколько тысяч лет. Ежегодно фотосинтезом в круговорот включается 6 млрд т азота, 210 млрд т фосфора и большое количество других элементов (калий, натрий, кальций, магний, сера, железо и др.). Существование этих круговоротов придаёт экосистеме определённую устойчивость.

Различают два основных круговорота: большой (геологический) и малый (биотический). Большой круговорот, продолжающийся миллионы лет, заключается в том, что горные породы подвергаются разрушению, а продукты выветривания (в том числе растворимые в воде питательные вещества) сносятся потоками воды в Мировой океан, где они образуют морские напластования и лишь частично возвращаются на сушу с осадками. Геотектонические изменения, процессы опускания материков и поднятия морского дна, перемещения морей и океанов в течение длительного времени приводят к тому, что эти напластования возвращаются на сушу и процесс начинается вновь. Малый круговорот (часть большого) происходит на уровне экосистемы и состоит в том, что питательные вещества, вода и углерод аккумулируются в веществе растений, расходуются на построение тела и на жизненные процессы как самих этих растений, так и других организмов (как правило животных), которые поедают эти растения (консументы). Продукты распада органического вещества под действием деструкторов и микроорганизмов (бактерии, грибы, черви) вновь разлагаются до минеральных компонентов, доступных растениям и вовлекаемых ими в потоки вещества. Круговорот химических веществ из неорганической среды через растительные и животные организмы обратно в неорганическую среду с использованием солнечной энергии и энергии химических реакций называется биогеохимическим циклом. В такие циклы вовлечены практически все химические элементы и прежде всего те, которые участвуют в построении живой клетки. Так, тело человека состоит из кислорода (62,8%), углерода (19,37%), водорода (9,31%), азота (5,14%), кальция (1,38%), фосфора (0,64%) и ещё примерно из 30 элементов.

Роль Человека.

Человеку подвластно менять силу действия и число лимитирующих факторов, а также расширять или, наоборот, сужать границы оптимальных значений факторов среды. Например, снятие урожая неизбежно связано с обеднением почв элементами минерального питания растений и переводом некоторых из них в категорию лимитирующих факторов. Различного рода мелиорации земель (обводнение, осушение, внесение удобрений и т. п.) оптимизируют факторы, снимают их лимитирующий эффект. Человек неизмеримо расширил свои адаптационные возможности за счет кондиционирования условий своей среды (одежда, жилище, новые материалы и т.п.) и тем самым резко уменьшил зависимость от природной среды и представляемых ею ресурсов. Например, в рационе человека пищевые ресурсы дикой природы составляют только 10-15%. Остальные пищевые потребности удовлетворяются за счет культурного хозяйства. Следствием уменьшения зависимости от факторов среды является расширение человеком своего ареала на всю планету и снятие естественных механизмов регулирования численности популяции.

Человек изменил этому принципу цепей питания и экологических пирамид по отношению, как к своей популяции, так и к другим видам (сортам, породам), особенно выращиваемым в культурном хозяйстве. Такое несоответствие природным экосистемам стало возможным благодаря присвоению и вложению в системы дополнительной энергии. Нарушение правил экологических пирамид оказывается неоправданно дорогим. Оно неизбежно сопровождается изменениями в круговоротах веществ, накоплением отходов и загрязнением среды. В качестве примера можно назвать животноводческие комплексы с их экологическими проблемами. Нарушение правил пирамид обусловливается также тем, что потребительские интересы человека вышли за пределы биологических ресурсов в целом. В круг его интересов включаются продукты (ресурсы) прежних геологических эпох, а многие из производимых продуктов становятся тупиковым звеном (отходами и загрязнителями). Людям Земли только как биологическому виду ежедневно требуется около 2 млн. т пищи, 10 млрд. м3 кислорода. Помимо этого, добывается и перерабатывается почти 30 млн. т веществ, сжигается около 30 млн. т топлива, используется 2 млрд. м3 воды и 65 млрд. м3 кислорода для технических нужд

В силу своей всеядности люди начинают поедать все более разнообразные организмы, для чего необходимы самые различные способы отлова добычи или поиска растений. Конечно, приходится также придумывать способы, как сделать добычу съедобной. Одно дело - изжарить кролика и совсем другое - приготовить на обед медузу. Только изощренный ум мог додуматься употребить в пищу, например, маниок, клубни которого горьки, да еще содержат синильную кислоту. Однако по всей Бразилии, да и не только там, маниок выращивают и поедают в количествах, сравнимых с поеданием в России картофеля. А ведь придумать технологию его обработки было весьма сложным делом.

Поедая самые различные организмы, человек включается во множество цепей питания, изымая дополнительную органику и заканчивая эти цепи собой. Он везде оказывается хищником высшего порядка. Так человек стал укорачивать цепи питания во множестве экосистем, а чем короче такая цепь, тем быстрее оборот вещества и энергии.

Также деятельность человека связана с сильным преобразованием естественных местообитаний. Современный человек предпочитает не изменяться в соответствии с условиями среды, а изменять сами эти условия. Поэтому он тратит значительные интеллектуальные и технические усилия на преобразование окружающей среды. Вспахав пространство луга и засеяв его нужными растениями, пахарь уже кардинально изменил среду. От множества растений луга он оставил одно, да и то чаще всего здесь чужое. Почву и ее фауну, сформированные здесь за много сотен лет, он преобразовал в несколько часов. В итоге ликвидирован ресурс практически всех видов животных, их кормовые растения исчезли. Преобразованное пространство стало непригодным для многих местных растений, а для других - недостижимо. Хозяин посева оберегает свое поле, поливает его гербицидами, сражается с потребителями-конкурентами.

Как мы помним, в экосистемах человек обитает не один, а с огромным количеством соседей - растительных и животных организмов. Далеко не всем им подходит эта преобразованная среда. Многие, особенно примитивные формы жизни, легко приспосабливаются к изменившимся условиям. Подавляющему же числу сложных организмов новая среда не годится. Они покидают эти места или погибают. Так что любое преобразование природы всегда приводит к гибели множества организмов .

Поедание . Диапазон кормов этого зоологического вида, наверное, самый широкий на планете. Человек - удивительный эврифаг (многояд) и ест практически все. Огромен перечень животных в его меню, куда наряду с традиционными коровами, овцами и домашней птицей входят термиты, саранча, кивсяки и сколопендры, некоторые пауки. Как лакомство поедаются многими народами личинки различных насекомых - пчел, древесных жуков. Жители Африки с аппетитом поедают громадных личинок жука голиафа, там, где он водится. Разнообразные ящерицы, змеи, черепахи и лягушки тоже прочно вошли в рационы людей. Обитатели воды - рыбы и моллюски - это традиционная пища еще со времен кроманьонца. Однако и здесь рацион вида расширился, включив огромную массу животных от китов до некоторых медуз и эвфаузид.

Экологи, исследуя рационы животных, особенно тех, что являются пищевыми конкурентами человека, отмечают у многих из них поразительную разноядность. Например, типичный полифаг, водяная полевка, уничтожающая посевы крестьян в южной части Западной Сибири, способна поедать более 300 видов растений. По мере изучения этого зверька составляются все более длинные списки пригодных для него кормов. Человек же в роли растительноядного животного (первичного консумента) далеко превзошел все прочие виды. Полных списков его пищевых растений на планете пока никто не составлял, но длину их нетрудно предположить. Так, в японской кухне используются для приготовления различных блюд бутоны цветков около 300 видов растений. Китайская же кухня еще более изощренна и разнообразна. А если добавить сюда списки пищевых видов растений из поваренных книг жителей тропической зоны!?

И животных, и растения человек использует в пищевых целях со все возрастающей интенсивностью. Если он не ест каких-то животных непосредственно, то скармливает их своим кормовым животным или удобряет ими поля. Человек расточителен и часто даже деликатесные виды наряду с питанием пускает как кормовые, а то и как удобрения. Например, история промысла морского полосатого окуня - рыбы почти 2-метровой длины и 50 - 70 кг веса. По вкусовым качествам она превосходит атлантического лосося. Этот окунь добывался в начале XVII века у берегов Новой Англии в огромных количествах. Большая часть таких уловов шла на удобрение земельных участков местных жителей. Колонисты фермеры сотни тонн этой рыбы закапывали в свои кукурузные поля. В районе Ньюфаундленда многие тонны атлантического лосося в начале XIX века использовали для удобрения полей. То же происходило при избыточном лове трески и осетра. Построены громадные заводы для переработки на удобрения и корма для животных макрели, сельди, мойвы и других морских рыб. В Ньюфаундленде в начале XVIII века мясо громадных морских раков омаров (они весили до 10 - 12 кг) использовали для наживки при лове трески, а также для откорма домашних животных. Каждое картофельное поле было усеяно панцирями этих ракообразных, ибо для удобрения под каждый картофельный куст закладывали по 2 - 3 омара. До середины XX столетия этими гигантскими и очень вкусными раками откармливали скот в некоторых районах Ньюфаундленда. Даже такая просвещенная страна, как Россия, до самого конца XX века поступала расточительно. В 1998 году по телевизору не очень сытому ее населению показывали, как на российском Дальнем Востоке бульдозерами зарывали в землю сотни тонн деликатесных лососевых рыб. Люди не смогли утилизировать свои уловы!

Человек обеспечил свое превращение в гиперэврибионта не за счет биологических механизмов, а за счет технических средств, и поэтому он в значительной мере утратил потенциал биологических адаптации. В этом причина того, что человек находится в числе первых кандидатов на уход с арены жизни в результате им же вызываемых изменений среды. Отсюда важный вывод: если современная ниша человека прежде всего результат разумной деятельности, власти над окружением, следовательно, разум должен выступать основной движущей силой ее изменения.

©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-04-26

Все вещества на нашей планете находятся в процессе круговорота. Солнечная энергия вызывает на Земле два круговорота веществ:

1) Большой (геологический или абиотический);

2) Малый (биотический, биогенный или биологический).

Круговороты веществ и потоки космической энергии создают устойчивость биосферы. Круговорот твердого вещества и воды, происходящий в результате действия абиотических факторов (неживой природы), называют большим геологическим круговоротом. При большом геологическом круговороте (протекает миллионы лет) горные породы разрушаются, выветриваются, вещества растворяются и попадают в Мировой океан; протекают геотектонические изменения, опускание материков, поднятие морского дна. Время круговорота воды в ледниках 8 000 лет, в реках - 11 дней. Именно большой круговорот поставляет живым организмам элементы питания и во многом определяет условия их существования.

Большой, геологический круговорот в биосфере характеризуется двумя важными моментами:

а) осуществляется на протяжении всего геологического развития Земли;

б) представляет собой современный планетарный процесс, принимающий ведущее участие в дальнейшем развитии биосферы.

На современном этапе развития человечества в результате большого круговорота на большие расстояния переносятся также загрязняющие вещества - оксиды серы и азота, пыль, радиоактивные примеси. Наибольшему загрязнению подверглись территории умеренных широт Северного полушария.

Малый, биогенный или биологический круговорот веществ происходит в твердой, жидкой и газообразных фазах при участии живых организмов. Биологический круговорот в противоположность геологическому требует меньших затрат энергии. Малый круговорот является частью большого, происходит на уровне биогеоценозов (внутри экосистем) и заключается в том, что питательные вещества почвы, вода, углерод аккумулируются в веществе растений, расходуются на построение тела. Продукты распада органического вещества разлагаются до минеральных компонентов. Малый круговорот незамкнут , что связано с поступлением веществ и энергии в экосистему извне и с выходом части их в биосферный круговорот.

В большом и малом круговоротах участвует множество химических элементов и их соединений, но важнейшими из них являются те, которые определяют современный этап развития биосферы, связанный с хозяйственной деятельностью человека. К ним относятся круговороты углерода, серы и азота (их оксиды - главнейшие загрязнители атмосферы ), а также фосфора (фосфаты -главный загрязнитель материковых вод) . Практически все загрязняющие вещества выступают как вредные, и их относят к группе ксенобиотиков.

В настоящее время большое значение имеют круговороты ксенобиотиков - токсичных элементов - ртути (загрязнитель пищевых продуктов) и свинца (компонент бензина) . Кроме того, из большого круговорота в малый поступают многие вещества антропогенного происхождения (ДДТ, пестициды, радионуклиды и др.), которые причиняют вред биоте и здоровью человека.

Суть биологического круговорота заключается в протекании двух противоположных, но взаимосвязанных процессов - созидания органического вещества и его разрушения живым веществом.

В отличие от большого круговорота малый имеет разную продолжительность: различают сезонные, годовые, многолетние и вековые малые круговороты .

Круговорот химических веществ из неорганической среды через растительность и животных обратно в неорганическую среду с использованием солнечной энергии химических реакций называется биогеохимическим циклом .

Настоящее и будущее нашей планеты зависит от участия живых организмов в функционировании биосферы. В круговороте веществ живое вещество, или биомасса, выполняет биогеохимические функции: газовую, концентрационную, окислительно-восстановительную и биохимическую.

Биологический круговорот происходит при участии живых организмов и заключается в воспроизводстве органического вещества из неорганического и разложении этого органического до неорганического посредством пищевой трофической цепи. Интенсивность продукционных и деструкционных процессов в биологическом круговороте зависит от количества тепла и влаги. Например, низкая скорость разложения органического вещества полярных районов зависит от дефицита тепла.

Важным показателем интенсивности биологического круговорота является скорость обращения химических элементов. Интенсивность характеризуется индексом , равным отношению массы лесной подстилки к опаду. Чем больше индекс, тем меньше интенсивность круговорота.

Индекс в хвойных лесах - 10 - 17; широколиственных 3 - 4; саванне не более 0,2; влажных тропических лесах не более 0,1 , т.е. здесь биологический круговорот наиболее интенсивный.

Поток элементов (азота, фосфора, серы) через микроорганизмы на порядок выше, чем через растения и животных. Биологический круговорот не является полностью обратимым, он тесно связан с биогеохимическим круговоротом. Химические элементы циркулируют в биосфере по различным путям биологического круговорота:

поглощаются живым веществом и заряжаются энергией;

покидают живое вещество, выделяя энергию во внешнюю среду.

Эти циклы бывают двух типов: круговорот газообразных веществ; осадочный цикл (резерв в земной коре).

Сами круговороты состоят из двух частей:

- резервного фонда (это часть вещества, не связанная с живыми организмами);

- подвижного (обменного) фонда (меньшая часть вещества, связанная с прямым обменом между организмами и их непосредственным окружением).

Круговороты делят на:

Круговороты газового типа с резервным фондом в земной коре (круговороты углерода, кислорода, азота) - способны к быстрой саморегуляции;

Круговороты осадочного типа с резервным фондом в земной коре (круговороты фосфора, кальция, железа и др.) - более инертны, основная масса вещества находится в «недоступном» живым организмам виде.

Круговороты также можно разделить на:

- замкнутые (круговорот газообразных веществ, например, кислорода, углерода и азота - резерв в атмосфере и гидросфере океана, поэтому нехватка быстро компенсируется);

- незамкнутые (создающие резервный фонд в земной коре, например, фосфор - поэтому потери плохо компенсируются, т.е. создается дефицит).

Энергетической основой существования биологических круговоротов на Земле и их начальным звеном является процесс фотосинтеза. Каждый новый цикл круговорота не является точным повторением предыдущего. Например, в ходе эволюции биосферы часть процессов имела необратимый характер, в результате чего происходило образование и накопление биогенных осадков, увеличение количества кислорода в атмосфере, изменение количественных соотношений изотопов ряда элементов и т.д.

Циркуляцию веществ принято называть биогеохимическими циклами . Основные биогеохимические (биосферные) циклы веществ: цикл воды, цикл кислорода, цикл азота (участие бактерий-азотфиксаторов), цикл углерода (участие аэробных бактерий; ежегодно около 130 т углерода сбрасывается в геологический цикл), цикл фосфора (участие почвенных бактерий; ежегодно в океаны вымывается 14 млн.т фосфора), цикл серы, цикл катионов металлов.

Все вещества на нашей планете находятся в процессе круговорота. Солнечная энергия вызывает на Земле два круговорота веществ, большой или биосферный (охватывающий всю биосферу), и малый или биологический (внутри экосистем).

Биосферному круговороту веществ предшествовал геологический, связанный с образованием и разрушением горных пород и последующим перемещением продуктов разрушения - обломочного материала и химических элементов. Значительную роль в этих процессах играли и продолжают играть термические свойства поверхности суши и воды: поглощение в отражение солнечных лучей, теплопроводность в теплоемкость. Вода больше поглощает солнечной энергии, а поверхность суши в одних и тех же широтах больше нагревается. Неустойчивый гидротермический режим поверхности Земли вместе с планетарной системой циркуляции атмосферы обусловливал геологический круговорот.веществ, который на начальном этапе развития Земли наряду с эндогенными процессами, был связан с формированием континентов, океанов и современных геосфер. О геологическом проявлении его говорит и перенесение воздушными массами продуктов выветривания, а водой - растворенных в ней минеральных соединений. Со становлением биосферы в большой круговорот включились продукты жизнедеятельности организмов. Геологический круговорот, не прекратив своего существования, приобрел новые черты: он стая начальным этапом биосферного перемещения вещества. Именно он поставляет живым организмам элементы питания и во многом определяет условия их существования.

Большой круговорот веществ в биосфере характеризуется двумя важными моментами:

Осуществляется на протяжении всего геологического развития Земли;

Представляет собой современный планетарный процесс, принимающий ведущее участие в дальнейшем развития биосферы (Радкевич, 1983).

На современном этапе развития человечества в результате большого круговорота на большие расстояния переносятся также загрязняющие вещества, такие как оксиды серы и азота, пыль, радиоактивные примеси. Наибольшему загрязнению подверглась территория умеренных широт Северного полушария.

Малый или биологический круговорот веществ развертывается на фоне большого, геологического, охватывающего биосферу в целом. Он происходит внутри экосистем, но не замкнут, что связано с поступлением вещества и энергии в экосистему извне и с выходом части их в биосферный круговорот. По этой причине иногда говорят не о биологическом круговороте, а об обмене энергии в экосистемах и отдельных организмах.

Растения, животные и почвенный покров на суше образуют сложную мировую систему, которая формирует биомассу, связывает и перераспределяет солнечную энергию, углерод атмосферы, влагу, кислород, водород, азот, фосфор, серу, кальций и другие элементы, участвующие в жизнедеятельности организмов. Растения, животные и микроорганизмы водной среды образуют другую планетарную систему, выполняющую ту же функцию связывания солнечной энергии и биологического круговорота веществ.

Суть биологического круговорота заключается в протекании двух противоположных, но взаимосвязанных процессов - созидания органического вещества и его разрушения. Начальный этап возникновения органического вещества обусловлен фотосинтезом зеленых растений, т.е. образованием этого вещества из углекислого газа, воды и минеральных соединений с использованием лучистой энергии Солнца. Растения извлекают из почвы в растворенном виде серу, фосфор, кальций, калий, магний, марганец, кремний, алюминий, медь, цинк и другие элементы. Растительноядные животные поглощают уже соединения этих элементов в виде пищи растительного происхождения. Хищники питаются растительноядными животными, потребляют пищу более сложного состава, включая белки, жиры, аминокислоты и др. В процессе разрушения микроорганизмами органического вещества отмерших растений и остатков животных в почву и водную среду поступают простые минеральные соединения, доступные для усвоения растениями, и начинается следующий виток биологического круговорота.

В отличие от большого круговорота малый имеет разную продолжительность: различают сезонные, годовые, многолетние и вековые малые круговороты. При изучении биологического круговорота веществ основное внимание уделяется годовому ритму, определяемому годичной динамикой развития растительного покрова.

К эндогенным процессам относятся: магматизм, метаморфизм (действие высо­ких температур и давления), вулканизм, движение земной коры (землетрясения, го­рообразования).

К экзогенным – выветривание, деятельность атмосферных и поверхностных вод морей, океанов, животных, растительных организмов и особенно человека – техногенез.

Взаимодействие внутренних и внешних процессов образует большой геологи­ческий круговорот веществ .

При эндогенных процессах образуются горные системы, возвышенности, океанические впадины, при экзогенных – происходит разрушение магматических горных пород, перемещение продуктов разрушения в реки, моря, океаны и формирование осадоч­ных пород. В результате движения земной коры осадочные породы погружаются в глубокие слои, подвергаются процессам метаморфизма (действию высоких темпера­тур и давления), образуются метаморфические породы. В более глубоких слоях они пе­реходят в расплавленное …
состояние (магматизация). Затем, в результате вулканиче­ских процессов, поступают в верхние слои литосферы, на ее поверхность в виде магматических пород. Так образуются почвообразующие породы и различные формы рельефа.

Горные породы , из которых формируется почва, называются почвообразую­щими или материнскими. По условиям образования они подразделяются на три группы: магматические, метаморфические и осадочные.

Магматические горные породы состоят из соединений кремния, Al, Fe, Mg, Ca, K, Na. В зависимости от соотношения этих соединений различают кислые и ос­новные породы.

Кислые (граниты, липариты, пегматиты) имеют высокое содержание кремне­зема (более 63%), оксидов калия и натрия (7-8%), оксидов кальция и Mg (2-3%). Они имеют светлую и бурую окраску. Почвы, образующиеся из таких пород, имеют рыхлое сложение, повышенную кислотность и малоплодородны.

Основные магматические породы (базальты, дуниты, периодиты) характери­зуются низким содержанием SiO 2 (40-60%), повышенным содержанием CaO и MgO (до 20%), оксидов железа (10-20%), Na 2 O и K 2 O менее менее 30%.

Почвы, образующиеся на продуктах выветривания основных пород, имеют щелочную и нейтральную реакцию, много гумуса и высокое плодородие.

Магматические породы составляют 95% общей массы пород, но в качестве почвообразующих они занимают небольшие площади (в горах).

Метаморфические горные породы , образуются в результате перекристал­лизации магматических и осадочных пород. Это мрамор, гнейсы, кварцы. Занимают небольшой удельный вес в качестве почвообразующих пород.

Осадочные породы . Формирование их обусловлено процессами выветривания магматических и метаморфических горных пород, переносом продуктов выветрива­ния водными, ледниковыми и воздушными потоками и отложением на поверхности суши, на дне океанов, морей, озер, в поймах рек.

По составу осадочные породы подразделяются на обломочные, хемогенные и биогенные.

Обломочные отложения различаются по величине обломков и частиц: это валуны, камни, гравий, щебень, пески, суглинки и глины.

Хемогенные отложения образовались в результате выпадения солей из водных растворов в морских заливах, озерах в условиях жаркого климата или в результате химических реакций.

К ним относятся галоиды (каменная и калийная соль), сульфаты (гипс, ангид­рид), карбонаты (известняк, мергель, доломиты), силикаты, фосфаты. Многие из них являются сырьем для производства цемента, химических удобрений, используются как агро­руды.

Биогенные отложения образованы из скоплений остатков растений и живот­ных. Это: карбонатные (биогенные известняки и мел), кремнистые (доло­мит) и углеродистые породы (угли, торф, сапропель, нефть, газ).

Главными генетическими типами осадочных пород являются:

1. Элювиальные отложения – продукты выветривания горных пород, остав­шиеся на листе их образования. Расположен элювий на вершинах водоразделов, где смыв выражен слабо.

2. Делювиальные отложения – продукты эрозии, отложенные временными во­дотоками дождевых и талых вод в нижней части склонов.

3. Пролювиальные отложения – образовались в результате переноса и отложе­ний продуктов выветривания временными горными реками и потопами у подножий склонов.

4. Аллювиальные отложения – формируются в результате отложения продуктов выветрива­ния речными водами, поступающих в них с поверхностным стоком.

5. Озерные отложения – донные отложения озер. Илы с высоким содержанием органического вещества (15-20%) называются сапропелями.

6. Морские отложения – донные отложения морей. При отступлении (транс­грессии) морей они остаются как почвообразующие породы.

7. Ледниковые (гляциальные) или моренные отложения – продукты выветрива­ния различных пород, перемещенные и отложенные ледником. Это несортирован­ный грубообломочный материал красно-бурого или серого цвета с включениями камней, валунов, гальки.

8. Флювиогляциальные (водно-ледниковые) отложения временных водотоков и замкнутых водоемов, образовавшиеся при таянии ледника.

9. Покровные глины относятся к внеледниковым отложениям и рассматрива­ются как отложения мелководных приледниковых разливов талых вод. Они пере­крывают марену сверху слоем 3-5 м. Имеют желто-бурую окраску, хорошо отсорти­рованы, не содержат камней и валунов. Почвы на покровных суглинках более пло­дородные, чем на марене.

10. Лессы и лессовидные суглинки характеризуются палевой окраской, повы­шенным содержанием пылеватых и илистых фракций, рыхлым сложением, высокой пористостью, высоким содержанием карбонатов кальция. На них образовались пло­дородные серые лесные, каштановые почвы, черноземы и сероземы.

11. Эоловые отложения образовались в результате деятельности ветра. Разру­шительная деятельность ветра слагается из коррозии (оттачивание, шлифование песком горных пород) и дефляции (сдувание и перенос ветром мелких частиц почв). Оба эти процесса вместе взятые представляет собой ветровую эрозию.

Основные схемы, формулы и т.д., иллюстрирующие содержание: презентация с фотографиями видов выветривания.

Вопросы для самоконтроля:

1. Что такое выветривание?

2. Что такое магматизация?

3. Чем отличается физическое и химическое выветривание?

4. Что такое геологический круговорот веществ?

5. Опишите строение Земли?

6. Что такое магма?

7. Из каких слоев состоит ядро Земли?

8. Что такое породы?

9. Как классифицируются породы?

10. Что такое лесс?

11. Что такое фракция?

12. Какие характеристики называются органолептические?

Основная:

1. Добровольский В.В. География почв с основами почвоведения: Учебник для вузов. — М.: Гуманит. изд. Центр ВЛАДОС, 1999.-384 с.

2. Почвоведение/ Под.ред. И.С. Кауричева. М. Агропромиадат изд. 4. 1989.

3. Почвоведение/ Под.ред. В.А. Ковды, Б.Г. Розанова в 2-х частях М. Высшая школа 1988.

4. Глазовская М.А., Геннадьев А.И. География почв с основами почвоведения МГУ. 1995

5. Роде А.А., Смирнов В.Н. Почвоведение. М. Высшая школа, 1972

Дополнительная:

1. Глазовская М.А. Общее почвоведение и география почв. М. Высшая школа 1981

2. Ковда В.А. Основы учения о почвах. М. Наука.1973

3. Ливеровский А.С. Почвы СССР. М. Мысль 1974

4. Розанов Б. Г. Почвенный покров земного шара. М. изд. У. 1977

5. Александрова Л.Н., Найденова О.А. Лабораторно-практические занятия по почвоведению. Л. Агропромиздат. 1985



Понравилась статья? Поделитесь с друзьями!