Черты сходства в строении хлоропласта и митохондрии. Строение и функции митохондрий и пластид

1. От чего зависит соленость океанических вод?

Мировой океан — главная часть гидро­сферы — представляет собой непрерыв­ную водную оболочку земного шара. Воды Мирового океана неоднородны по своему составу и различаются соленостью, темпе­ратурой, прозрачностью и другими при­знаками.

Соленость вод в океане зависит от усло­вий испарения воды с поверхности и при­тока пресных вод с поверхности суши и с «атмосферными осадками. Испарение воды происходит более интенсивно в экваториальных и тропических широтах и замед­ляется в умеренных и приполярных ши­ротах. Если сравнить соленость северных и южных морей, то можно установить, что вода в южных морях более соленая. Соленость вод в океанах также изменя­ется в зависимости от географического по­ложения, однако в океане перемешивание воды происходит более интенсивно, чем в более замкнутых морях, поэтому и разли­чие в солености водных масс океана не бу­дет слишком резким, как в морях. Наибо­лее солеными (более 37%о) являются во­ды океана в тропиках.

2. Каковы различия в температуре воды в океане?

Температура воды в Мировом океане также меняется в зависимости от гео­графической широты. В тропических и экваториальных широтах температура во­ды может достигать +30 °С и выше, в по­лярных областях понижается до -2 °С. При более низких температурах океани­ческая вода замерзает. Сезонные измене­ния температуры вод океана более резко проявляются в умеренном климатическом поясе. Средняя годовая температура Ми­рового океана на 3 °С выше, чем средняя температура суши. Это тепло передается на сушу с помощью воздушных масс атмо­сферы.

3. В каких районах океана образуются льды? Как они влияют на природу Земли и на хозяйственную деятельность человека?

Воды Мирового океана замерзают в арк­тических, субарктических и частично в умеренных широтах. Образующийся ле­довый покров оказывает влияние на кли­мат материков, затрудняет использование на севере дешевого морского транспорта для транспортировки грузов.

4. Что называют водной массой? Назовите основ­ные типы водных масс. Какие водные массы выде­ляют в поверхностном слое океана?

Определение понятия водные массы вы найдете в учебнике (9).

Водные массы по аналогии с воздушны­ми массами называют по географическо­му поясу, в котором они сформировались. Каждая водная масса (тропическая, эква­ториальная, арктическая) имеет свои ха­рактерные свойства и отличается от ос­тальных соленостью, температурой, проз­рачностью и другими признаками. Вод­ные массы различаются не только в зави­симости от географических широт их формирования, но и в зависимости от глубины. Поверхностные воды отличаются от глубинных и придонных. На глубинные и придонные воды практически не оказыва­ют влияния солнечный свет и тепло. Их свойства более постоянны во всем Мировом океане, в отличие от поверхностных под, свойства которых зависят от количе­ства получаемого тепла и света. Теплой воды на Земле значительно больше, чем холодной. Жители умеренных широт с большим удовольствием проводят свои новогодние каникулы на побережьях тех морей и океанов, где вода теплая и чис­тая. Загорая под жарким солнцем, плавая в соленой и теплой воде, люди восстанав­ливают силы и укрепляют здоровье.

Общая масса всех вод Мирового океана подразделяется специалистами на два типа - поверхностные и глубинные. Однако такое разделение является весьма условным. Более детальная категоризация включает в себя следующие несколько групп, выделенных по признаку территориального расположения.

Определение

Для начала дадим определение того, что такое водные массы. Под этим обозначением в географии понимается достаточно большой объем воды, который образуется в той или иной части океана. Водные массы отличаются друг от друга по ряду характеристик: солености, температуре, а также плотности и прозрачности. Также различия выражаются и в количестве кислорода, наличии живых организмов. Мы дали определение, что такое водные массы. Теперь необходимо рассмотреть их различные типы.

Воды у поверхности

Поверхностными водами называют те зоны, где их термическое и динамическое взаимодействие с воздухом происходит наиболее активно. В соответствии с климатическими особенностями, присущими определенным зонам, их разделяют на отдельные категории: экваториальные, тропические, субтропические, полярные, субполярные. Школьникам, которые собирают информацию для ответа на вопрос о том, что такое водные массы, нужно знать и о глубине их залегания. Иначе ответ на уроке географии будет неполным.

Доходят до глубины 200-250 м. Их температура нередко меняется, поскольку они формируются вод воздействием атмосферных осадков. В толщах поверхностных вод образуются волны, а также горизонтальные Именно здесь находится наибольшее количество рыбы и планктона. Между поверхностными и глубинными массами располагается прослойка промежуточных водных масс. Глубина их расположения составляет от 500 до 1000 м. Образуются они в областях высокой солености и высокого уровня испарения.

Глубинные водные массы

Нижняя граница глубинных вод иногда может достигать 5000 м. Такой тип водных масс чаще всего попадается в тропических широтах. Формируются они под воздействием поверхностных и промежуточных вод. Интересующимся тем, что такое и каковы особенности их различных типов, также важно иметь представление и о скорости течения в океане. Глубинные водные массы очень медленно движутся в вертикальном направлении, однако скорость их движения по горизонтали может составлять до 28 км в час. Следующий слой - придонные водные массы. Они находятся на глубинах свыше 5000 м. Данный тип характеризуется постоянным уровнем солености, а также высоким уровнем плотности.

Экваториальные водные массы

«Что такое водные массы и их типы» - это одна из общеобязательных тем курса общеобразовательной школы. Учащемуся нужно знать, что воды могут быть отнесены к той или иной группе не только в зависимости от их глубины, но и от территориального расположения. Первый из упомянутых в соответствии с такой классификацией тип - это экваториальные водные массы. Они характеризуются высокой температурой (достигает 28°С), низким уровнем плотности, низким содержанием кислорода. Соленость таких вод невысокая. Над экваториальными водами располагается пояс низкого атмосферного давления.

Тропические водные массы

Они также достаточно хорошо прогреты, и их температура не меняется в течение разных сезонов больше, чем на 4°С. Большое влияние на данный тип вод оказывают океанические течения. Соленость их выше, поскольку в данном климатическом поясе устанавливается зона высокого атмосферного давления, и осадков выпадает очень мало.

Умеренные водные массы

Уровень солености этих вод ниже, чем у других, ведь на них оказывают опресняющее воздействие осадки, реки, айсберги. По сезонам температура водных масс этого типа может варьироваться до 10°С. Однако при этом смена времен года наступает гораздо позднее, чем на материке. Умеренные воды различаются в зависимости от того находятся ли они в западных или восточных районах океана. Первые, как правило, являются холодными, а вторые - более теплыми за счет согревания внутренними течениями.

Полярные водные массы

Какие водные массы самые холодные? Очевидно, что ими являются те, что находятся в Арктике и у берегов Антарктиды. С помощью течений они могут быть вынесены в умеренные и тропические области. Основной чертой полярных водных масс являются плавающие глыбы льда и огромные ледяные пространства. Их соленость крайне низка. На территории Южного полушария морские льды переходят в область умеренных широт намного чаще, чем это происходит на севере.

Способы формирования

Школьникам, которые интересуются, что такое водные массы, будет интересно также узнать и информацию об их образовании. Основным способом их формирования является конвекция, или перемешивание. В результате перемешивания вода погружается на значительную глубину, где снова достигают вертикальной устойчивости. Такой процесс может происходить в несколько стадий, а глубина конвективного перемешивания может достигать до 3-4 км. Следующий способ - субдукция, или «подныривание». При данном способе формирования масс вода опускаются за счет комбинированного действия ветра и охлаждения поверхности.

На вопрос Помогите!!! В чем проявляется сходство? заданный автором Пользователь удален лучший ответ это В целом организмы можно разделить на две группы: на организмы, клетки которых содержат настоящие клеточные ядра, и организмы, которые этим свойством не обладают. Первые называются эукариотами, вторые - прокариотами. К прокариотам относятся бактерии и сине-зеленые водоросли. Эукариоты объединяют все остальные одно- и многоклеточные живые существа. В противоположность прокариотам, кроме обладания клеточными ядрами, эти существа отличаются выраженной способностью к образованию органоидов. Органоиды - это разделенные мембранами составные части клеток. Так, самыми большими клеточными органоидами (по крайней мере, различимыми в световой микроскоп) , которыми обладают эукариоты, являются митохондрии, а растительные организмы обладают еще и пластидами. Митохондрии и пластиды большей частью отделены от цитоплазмы клетки двумя мембранами. (Некоторые подробности строения см. на рис. 6.13). Митохондрии часто называют "силовыми станциями" эукариотических клеток, так как они играют
большую роль в образовании и превращении энергии в клетке. Пластиды для растений не менее важны: хлоропласта, которые являют собой основной тип пластид, заключают в себе механизм фотосинтеза, который осуществляет превращение солнечного света в химическую энергию.
Так как прокариоты устроены значительно проще, чем эукариоты, то по канонам эволюционной модели считается, что прокариотические живые существа возникли раньше. Этим объясняется употребление приставки "про" (в смысле "до того"). Более нейтральным названием было бы, вероятно, "акариоты" ("а" = "не"). В ходе дальнейшей эволюции одноклеточные живые существа должны были, вероятно, когда-то совершить переход от про- к эукариотам. Один из важных частичных аспектов этого шага пытаются объяснить так называемой эндосимбиотической гипотезой (ЭСТ). В своем первоначальном виде она была выдвинута еще в 1883 году шимпером. Она являлась не единственной попыткой объяснения, но считалась на тот момент наиболее вероятной. Согласно этой теории, митохондрии происходят от аэробных (дышащих кислородом) бактерий, а хлоропласты - от фотосинтезирующих сине-зеленых водорослей, которые внедрились в "хозяйскую клетку" (в предка-прокариота) и в ходе эволюции превратились там из симбионтов (эндосимбионтов, точнее цитосимбионтов = клеточных симбионтов) в клеточные органоиды. Некоторые биологи предполагают (см. рис. 6.14), что жгутиково-центриольная система эукариотов произошла от ранее самостоятельных прокариотов (типа спирохет). Следующие факты рассматриваются в качестве наиболее важных для поддержки ЭСГ:
Митохондрии и пластиды происходят путем деления им подобных. Клетка не может образовать вновь эти органы, если они утеряны.
Обладание двойной мембраной создает впечатление, что речь идет о "внедренной клетке", чья мембрана при внедрении оказалась окруженной мембраной клетки-хозяина.
Внутренняя мембрана митохондрии содержит липид кардиолипин, который, кроме этого, встречается только в мембранах прокариотов. Внешняя мембрана, напротив, как другие мембраны эуцитов (так называются клетки эукариотов) , содержит холестерин, которого нет ни во внутренних мембранах, ни у бактерий.
Митохондрии и пластиды содержат ДНК, которые, как и у прокариотов, "голые", что означает "не соединенные с протеинами", и часто имеют кольцеобразную форму. Они обладают также своим собственным механизмом синтеза протеинов, составные части которого (рибосомы, т-РНК и РНК-полимеразы) соответствуют составным частям прокариотов.
Рибосомная РНК пластид или, соответственно, митохондрий имеет большое сходство с РНК прокариотических рибосом.
Митохондрии реагируют на некоторые (не на все) направленные против бактерий антибиотики.
Среди существующих ныне организмов встречаются случаи симбиоза между одноклеточными жгутиковыми, не имеющими пластид, и клетками водорослей, которые могли бы служить моделью определенной ступени филогенетического процесса эндосимбиоза.
Амеба Pelomyxa palustris не имеет ми

Лекция № 6.

Количество часов: 2

МИТОХОНДРИИ И ПЛАСТИДЫ

1.

2. Пластиды, строение, разновидности, функции

3.

Митохондрии и пластиды – двухмембранные органоиды эукариотических клеток. Митохондрии встречаются во всех клетках животных и растений. Пластиды характерны для клеток растений, осуществляющих фотосинтетические процессы. Эти органоиды имеют сходный план строения и некоторые общие свойства. Однако по основным метаболическим процессам они существенно отличаются друг от друга.

1. Митохондрии, строение, функциональное значение

Общая характеристика митохондрий. Митохондрии (греч. “митос” - нить, “хондрион” - зерно, гранула) – округлые, овальные или палочковидные двухмембранные органоиды диаметром около 0,2-1 мкм и длиной до 7-10 мкм. Эти органоиды можно обнаружить с помощью световой микроскопии, поскольку они обладают достаточной величиной и высокой плотностью. Особенности внутреннего строения их можно изучить только с помощью электронного микроскопа. Митохондрии были открыты в 1894 г. Р. Альтманом, который дал им название «биобласты». Термин "митохондрия" был введен К. Бенда в 1897 г. Митохондрии имеются практически во всех эукариотических клетках. У анаэробных организмов (кишечные амебы и др.) митохондрии отсутствуют. Число митохондрий в клетке колеблется от 1 до 100 тыс. и зависит от типа, функциональной активности и возраста клетки. Так в растительных клетках митохондрий меньше, чем в животных; а в молодых клетках больше, чем в старых. Жизненный цикл митохондрий составляет несколько дней. В клетке митохондрии обычно скапливаются вблизи участков цитоплазмы, где возникает потребность в АТФ. Например, в сердечной мышце митохондрии находятся вблизи миофибрилл, а в спермиях образуют спиральный футляр вокруг оси жгутика.

Ультрамикроскопическое строение митохондрий. Митохондрии ограничены двумя мембранами, каждая из которых имеет толщину около 7 нм. Внешнюю мембрану от внутренней отделяет межмембранное пространство шириной около 10-20 нм. Внешняя мембрана гладкая, а внутренняя образует складки – кристы (лат. “криста” – гребень, вырост), увеличивающие ее поверхность. Число крист неодинаково в митохондриях разных клеток. Их может быть от нескольких десятков до нескольких сотен. Особенно много крист в митохондриях активно функционирующих клеток, например мышечных. В кристах располагаются цепи переноса электронов и сопряженного с ним фосфорилирования АДФ (окислительное фосфорилирование). Внутреннее пространство митохондрий заполнено гомогенным веществом, называемым матриксом. Митохондриальные кристы обычно полностью не перегораживают полость митохондрии. Поэтому матрикс на всем протяжении является непрерывным. В матриксе содержатся кольцевые молекулы ДНК, митохондриальные рибосомы, встречаются отложения солей кальция и магния. На митохондриальной ДНК происходит синтез молекул РНК различных типов, рибосомы участвуют в синтезе ряда митохондриальных белков. Малые размеры ДНК митохондрий не позволяют кодировать синтез всех митохондриальных белков. Поэтому синтез большинства белков митохондрий находится под ядерным контролем и осуществляется в цитоплазме клетки. Без этих белков рост и функционирование митохондрий невозможно. Митохондриальная ДНК кодирует структурные белки, ответственные за правильную интеграцию в митохондриальных мембранах отдельных функциональных компонентов.

Размножение митохондрий. Митохондрии размножаются путем деления перетяжкой или фрагментацией крупных митохондрий на более мелкие. Образовавшиеся таким путем митохондрии могут расти и снова делиться.

Функции митохондрий. Основная функция митохондрий заключается в синтезе АТФ. Этот процесс происходит в результате окисления органических субстратов и фосфорилирования АДФ. Первый этап этого процесса происходит в цитоплазме в анаэробных условиях. Поскольку основным субстратом является глюкоза, то процесс носит название гликолиза. На данном этапе субстрат подвергается ферментативному расщеплению до пировиноградной кислоты с одновременным синтезом небольшого количества АТФ. Второй этап происходит в митохондриях и требует присутствия кислорода. На этом этапе происходит дальнейшее окисление пировиноградной кислоты с выделением СО 2 и переносом электронов на акцепторы. Эти реакции осуществляются с помощью ряда ферментов цикла трикарбоновых кислот, которые локализованы в матриксе митохондрии. Освободившиеся в процессе окисления в цикле Кребса электроны переносятся в дыхательную цепь (цепь переноса электронов). В дыхательной цепи они соединяются с молекулярным кислородом, образуя молекулы воды. В результате этого небольшими порциями выделяется энергия, которая запасается в виде АТФ. Полное окисление одной молекулы глюкозы с образованием диоксида углерода и воды обеспечивает энергией перезарядку 38 молекул АТФ (2 молекулы в цитоплазме и 36 в митохондриях).

Аналоги митохондрий у бактерий. У бактерий митохондрий нет. Вместо них у них имеются цепи переноса электронов, локализованные в мембране клетки.

2. Пластиды, строение, разновидности, функции. Проблема происхождения пластид

Пластиды (от. греч. plastides – создающие, образующие) – это двухмембранные органоиды, характерные для фотосинтезирующих эукариотных организмов. Различают три основных типа пластид: хлоропласты, хромопласты и лейкопласты. Совокупность пластид в клетке называют пластидомом. Пластиды связаны между собой единым происхождением в онтогенезе от пропластид меристематических клеток. Каждый их этих типов при определенных условиях может переходить один в другой. Как и митохондрии, пластиды содержат собственные молекулы ДНК. Поэтому они также способны размножаться независимо от деления клетки.

Хлоропласты (от греч. « chloros » – зеленый, « plastos » - вылепленный) – это пластиды, в которых осуществляется фотосинтез.

Общая характеристика хлоропластов. Хлоропласты представляют собой органоиды зеленого цвета длиной 5-10 мкм и шириной 2-4 мкм. У зеленых водорослей встречаются гигантские хлоропласты (хроматофоры), достигающие длины 50 мкм. У высших растений хлоропласты имеют двояковыпуклую или эллипсоидную форму. Количество хлоропластов в клетке может варьировать от одного (некоторые зеленые водоросли) до тысячи (махорка). В клетке высших растений в среднем находится 15-50 хлоропластов. Обычно хлоропласты равномерно распределены по цитоплазме клетки, но иногда они группируются около ядра или клеточной оболочки. По-видимому, это зависит от внешних воздействий (интенсивность освещения).

Ультрамикроскопическое строение хлоропластов. От цитоплазмы хлоропласты отделены двумя мембранами, каждая из которых имеет толщину около 7 нм. Между мембранами находится межмембранное пространство диаметром около 20-30 нм. Наружная мембрана гладкая, внутренняя имеет складчатую структуру. Между складками располагаются тилакоиды , имеющие вид дисков. Тилакоиды образуют стопки наподобие столбика монет, называемые гранами. М ежду собой граны соединены другими тилакоидами (ламелы, фреты ). Число тилакоидов в одной гране варьирует от нескольких штук до 50 и более. В свою очередь в хлоропласте высших растений находится около 50 гран (40-60), расположенных в шахматном порядке. Такое расположение обеспечивает максимальную освещенность каждой граны. В центре граны находится хлорофилл, окруженный слоем белка; затем располагается слой липоидов, снова белок и хлорофилл. Хлорофилл имеет сложное химическое строение и существует в нескольких модификациях ( a , b , c , d ). У высших растений и водорослей в качестве основного пигмента содержится х лорофилл а с формулой С 55 Н 72 О 5 N 4 М g . В качестве дополнительных содержатся хлорофилл b (высшие растения, зеленые водоросли), хлорофилл с (бурые и диатомовые водоросли), хлорофилл d (красные водоросли). Образование хлорофилла происходит только при наличии света и железа, играющего роль катализатора. Матрикс хлоропласта представляет собой бесцветное гомогенное вещество, заполняющее пространство между тилакоидами. В матриксе находятся ферменты "темновой фазы" фотосинтеза, ДНК, РНК, рибосомы. Кроме этого, в матриксе происходит первичное отложение крахмала в виде крахмальных зерен.

Свойства хлоропластов:

· полуавтономность (имеют собственный белоксинтезирующий аппарат, однако большая часть генетической информации находится в ядре);

· способность к самостоятельному движению (уходят от прямых солнечных лучей);

· способность к самостоятельному размножению.

Размножение хлоропластов. Хлоропласты развиваются из пропластид, которые способны реплицироваться путем деления. У высших растений также встречается деление зрелых хлоропластов, но крайне редко. При старении листьев и стеблей, созревании плодов хлоропласты утрачивают зеленую окраску, превращаясь в хромопласты.

Функции хлоропластов. Основная функция хлоропластов – фотосинтез. Кроме фотосинтеза хлоропласты осуществляют синтез АТФ из АДФ (фосфорилирование), синтез липидов, крахмала, белков. В хлоропластах также синтезируются ферменты, обеспечивающие световую фазу фотосинтеза.

Хромопласты (от греч. chromatos – цвет, краска и « plastos » – вылепленный) – это окрашенные пластиды. Цвет их обусловлен наличием следующих пигментов: каротина (оранжево-желтый), ликопина (красный) и ксантофилла (желтый). Хромопластов особенно много в клетках лепестков цветков и оболочек плодов. Больше всего хромопластов в плодах и увядающих цветках и листьях. Хромопласты могут развиваться из хлоропластов, которые при этом теряют хлорофилл и накапливают каротиноиды. Это происходит при созревании многих фруктов: налившись спелым соком, они желтеют, розовеют или краснеют. Основная функция хромопластов заключается в обеспечении окраски цветов, плодов, семян.

В отличие от лейкопластов и особенно хлоропластов внутренняя мембрана хлоропластов не образует тилакоидов (или образует одиночные). Хромопласты – это конечный итог развития пластид (в хромопласты превращаются хлоропласты и пластиды).

Лейкопласты (от греч. leucos – белый, plastos – вылепленный, созданный) . Это бесцветные пластиды округлой, яйцевидной, веретенообразной формы. Находятся в подземных частях растений, семенах, эпидермисе, сердцевине стебля. Особенно богаты лейкопластами клубни картофеля. Внутренняя оболочка образует немногочисленные тилакоиды. На свету из хлоропластов образуются хлоропласты. Лейкопласты, в которых синтезируется и накапливается вторичный крахмал называют амилопластами , масла – эйлалопластами , белки – протеопластами. Основная функция лейкопластов – это аккумуляция питательных веществ.

3. Проблема происхождения митохондрий и пластид. Относительная автономия

Существует две основные теории происхождения митохондрий и пластид. Это теории прямой филиации и последовательных эндосимбиозов. Согласно теории прямой филиации митохондрии и пластиды образовались путем компартизации самой клетки. Фотосинтезирующие эукариоты произошли от фотосинтезирующих прокариот. У образовавшихся автотрофных эукариотических клеток путем внутриклеточной дифференцировки образовались митохондрии. В результате утраты пластид от автотрофов произошли животные и грибы.

Наиболее обоснованной является теория последовательных эндосимбиозов. Согласно этой теории возникновение эукариотической клетки прошло через несколько этапов симбиоза с другими клетками. На первой стадии клетки типа анаэробных гетеротрофных бактерий включили в себя свободноживущие аэробные бактерии, превратившиеся в митохондрии. Параллельно этому в клетке-хозяине прокариотической генофор формируется в обособленное от цитоплазмы ядро. Таким путем возникла первая эукариотическая клетка, которая была гетеротрофной. Возникшие эукариотические клетки путем повторных симбиозов включили в себя синезеленые водоросли, что привело к появлению в них структур типа хлоропластов. Таким образом, митохондрии уже были у гетеротрофных эукариотических клеток, когда последние в результате симбиоза приобрели пластиды. В дальнейшем в результате естественного отбора митохондрии и хлоропласты утратили часть генетического материала и превратились в структуры с ограниченной автономией.

Доказательства эндосимбиотической теории:

1. Сходство структуры и энергетических процессов у бактерий и митохондрий, с одной стороны, и у синезеленых водорослей и хлоропластов, с другой стороны.

2. Митохондрии и пластиды имеют собственную специфическую систему синтеза белков (ДНК, РНК, рибосомы). Специфичность этой системы заключается в автономности и резком отличии от таковой в клетке.

3. ДНК митохондрий и пластид представляет собой небольшую циклическую или линейную молекулу, которая отличается от ДНК ядра и по своим характеристикам приближается к ДНК прокариотических клеток. Синтез ДНК митохондрий и пластид не зависит от синтеза ядерной ДНК.

4. В митохондриях и хлоропластах имеются и-РНК, т-РНК, р-РНК. Рибосомы и р-РНК этих органоидов резко отличаются от таковых в цитоплазме. В частности рибосомы митохондрий и хлоропластов, в отличие от цитоплазматических рибосом, чувствительны к антибиотику хлорамфениколу, подавляющему синтез белка у прокариотических клеток.

5. Увеличение числа митохондрий происходит путем роста и деления исходных митохондрий. Увеличение числа хлоропластов происходит через изменения пропластид, которые, в свою очередь, размножаются путем деления.

Эта теория хорошо объясняет сохранение у митохондрий и пластид остатков систем репликации и позволяет построить последовательную филогению от прокариот к эукариотам.

Относительная автономия хлоропластов и пластид. В некоторых отношениях митохондрии и хлоропласты ведут себя как автономные организмы. Например, эти структуры образуются только из исходных митохондрий и хлоропластов. Это было продемонстрировано в опытах на растительных клетках, у которых образование хлоропластов подавляли антибиотиком стрептомицином, и на клетках дрожжей, где образование митохондрий подавляли другими препаратами. После таких воздействий клетки уже никогда не восстанавливали отсутствующие органеллы. Причина в том, что митохондрии и хлоропласты содержат определенное количество собственного генетического материала (ДНК), который кодирует часть их структуры. Если эта ДНК утрачивается, что и происходит при подавлении образования органелл, то структура не может быть воссоздана. Оба типа органелл имеют свою собственную белок-синтезирующую систему (рибосомы и транспортные РНК), которая несколько отличается от основной белок-синтезирующей системы клетки; известно, например, что белок-синтезирующая система органелл может быть подавлена с помощью антибиотиков, тогда как на основную систему они не действуют. ДНК органелл ответственна за основную часть внехромосомной, или цитоплазматической, наследственности. Внехромосомная наследственность не подчиняется менделевским законам, так как при делении клетки ДНК органелл передается дочерним клеткам иным путем, нежели хромосомы. Изучение мутаций, которые происходят в ДНК органелл и ДНК хромосом, показало, что ДНК органелл отвечает лишь за малую часть структуры органелл; большинство их белков закодированы в генах, расположенных в хромосомах. Относительная автономия митохондрий и пластид рассматривается как одно из доказательств их симбиотического происхождения.



Понравилась статья? Поделитесь с друзьями!