Дифракционные методы. Дифракционные методы исследования

ДИФРАКЦИОННЫЕ МЕТОДЫ исследования структуры в-ва, основаны на изучении углового распределения интенсивности рассеяния исследуемым в-вом излучения - рентгеновского (в т. ч. синхротронного), потока или и мёссбауэровского g -излучения. Соотв. различают , и мёссбауэрографию (см. ниже). Во всех случаях первичный, чаще всего монохроматич., пучок направляют на исследуемый объект и анализируют картину рассеяния. Рассеянное излучение регистрируется фотографически (рис. 1) или с помощью счетчиков. Поскольку длина волны излучения составляет обычно не более 0,2 нм, т. е. соизмерима с расстояниями между в в-ве (0,1-0,4 нм), то рассеяние падающей волны представляет собой дифракцию на . По дифракц. картине можно в принципе восстановить атомную структуру в-ва. Теория, описывающая связь картины упругого рассеяния с пространств. расположением рассеивающих центров, для всех излучений одинакова. Однако, поскольку взаимод. разного рода излучений с в-вом имеет разную физ. природу, конкретный вид и особенности дифракц. картины определяются разными характеристиками .

Поэтому различные дифракционные методы дают сведения, дополняющие друг друга.
Основы теории дифракции. Плоскую монохроматич. волну с длиной волны l и волновым k 0 , где |k 0 | = 2 p / l , можно рассматривать как пучок частиц с импульсом р , где |р | = h/ l ; h - . Амплитуда F волны (с волновым k ), рассеянной совокупностью из п , определяется ур-нием:

где s = (k - k 0)/2 p , s = 2sin q / l , 2 q - угол рассеяния, f j (s) - атомный фактор, или фактор атомного рассеяния, т. е. ф-ция, определяющая амплитуду рассеяния изолированным j-м (или ); r j - его радиус-вектор. Аналогичное выражение можно записать, если считать, что объект объемом V обладает непрерывной рассеивающей плотностью r (r ):

По такой же ф-ле рассчитывают и атомный фактор f(s); при этом r (r ) описывает распределение рассеивающей плотности внутри . Значения атомного фактора специфичны для каждого вида излучения. Рентгеновские лучи рассеиваются электронными оболочками . Соответствующий атомный фактор f р при q = 0 численно равен числу Z в , если f р выражен в т. наз. электронных единицах, т. е. в относит. единицах амплитуды рассеяния рентгеновского излучения одним своб. . С увеличением угла рассеяния f р уменьшается (рис. 2). Рассеяние определяется электростатич. потенциалом j (r ) (r - расстояние от центра ). Атомный фактор для f э связан с f р соотношением:

где е - заряд , m - его масса. Абс. значения f э (~10 - 8 см) значительно больше, чем f р (~10 - 11 см), т. е. рассеивает сильнее, чем рентгеновские лучи; f э уменьшается с ростом sin q/l более резко, чем f р, но зависимость f э от Z слабее (рис. 3). рассеиваются ядрами (фактор f н), а также благодаря взаимодействию магн. моментов с отличными от нуля магн. моментами (фактор f нм). Радиус действия ядерных сил очень мал (~10 - 6 нм), поэтому величины f н практически не зависят от q . Кроме того, факторы f н не зависят монотонно от ат. н. Z и, в отличие от f р и f э, могут принимать отрицат. значения.


Рис. 2. Зависимость абсолютных значений атомных факторов рентгеновских лучей (1), (2) и (3) от угла рассеяния q (для Рb).

По абс. величине f н ~10 - 12 см. При точных расчетах рассматривают отклонения распределения или потенциала от сферич. и т. наз. атомно-температурный фактор, учитывающий влияние тепловых колебаний на рассеяние. Для мёссбауэровского g -излучения помимо рассеяния на электронных оболочках существ. роль может играть резонансное рассеяние на ядрах (напр., 57 Fe), для к-рых наблюдается эффект Мёссбауэра, что и используется в . Фактор рассеяния f м зависит от волновых и падающей и рассеянной волн. Интенсивность I(s) рассеяния объектом пропорциональна квадрату модуля амплитуды: I(s)~|F(s)| 2 . Экспериментально можно определить лишь модули |F(s)|, а для построения ф-ции рассеивающей плотности r (r) необходимо знать также фазы j (s) для каждого s. Тем не менее теория дифракционных методов позволяет по измеренным I(s) получить ф-цию r (r), т. е. определить структуру в-в. При этом лучшие результаты получают при исследовании .
. представляет собой строго упорядоченную систему, поэтому при дифракции образуются лишь дискретные рассеянные пучки, для к-рых рассеяния s равен т. наз. обратной решетки Н hkl ;

Н hkl =ha* + kb* + lс*,

где a* = / W , b* = [сa]/ W , с* = / W ; a,b и с - параметры ячейки ; W - ее объем, W = (a). Распределение рассеивающей плотности в элементарной ячейке представляется в виде ряда Фурье:

где h, k, l - т. наз. миллеровские индексы отражающей плоскости, F hkl = |F hkl |exp - соответствующая структурная амплитуда рассеянного излучения, j hkl - ее фаза. Для построения ф-ции r (х, у, z)по экспериментально определяемым величинам |F hkl | применяют метод и ошибок, построение и анализ ф-ции межатомных расстояний, метод изоморфных замещений, прямые методы определения фаз (см. ). Обработка эксперим. данных на ЭВМ позволяет восстанавливать структуру в виде карт распределения рассеивающей плотности (рис. 4). Структуры изучают гл. обр. с помощью . Этим методом определено более 100 тыс. структур неорг. и орг. . Для неорг. с применением разл. методов уточнения (учет поправок на поглощение, атомно-температурного фактора и т. д.) удается восстановить ф-цию r (r) с разрешением до 0,05 нм и определять расстояния между с точностью ~10 - 4 нм.

Рис. 4. Проекция ядерной плотности кристаллической структуры дейтерированного C 2 N 4 D 4 . Пунктиром соединены , связанные .

Это позволяет определять тепловых колебаний , особенности распределения , обусловленные хим. связью, и т. д. С помощью рентгеноструктурного анализа удается расшифровывать атомные структуры , к-рых содержат тысячи . Дифракция рентгеновских лучей используется также для изучения в (в рентгеновской топографии), исследования приповерхностных слоев (в рентгеновской спектрометрии), качеств. и количеств. определения фазового состава поликристаллич. материалов (в ) и др. как метод изучения структуры имеет след. особенности: 1) взаимод. в-ва с намного сильнее, чем с рентгеновскими лучами, поэтому дифракция происходит в тонких слоях в-ва толщиной 1-100 нм; 2) f э зависит от слабее, чем f р, что позволяет проще определять положение легких в присут. тяжелых; 3) благодаря тому что длина волны обычно используемых быстрых с энергией 50-100 кэВ составляет ок. 5 . 10 - 3 нм, геом. интерпретация электронограмм существенно проще. Структурная широко применяется для исследования тонкодисперсных объектов, а также для изучения разного рода текстур (глинистые , пленки и т. п.). Дифракция низких энергий (10-300 эВ, l 0,1-0,4 нм) - эффективный метод исследования пов-стей : расположения , характера их тепловых колебаний и т. д. восстанавливает изображение объекта по дифракц. картине и позволяет изучать структуру с разрешением 0,2-0,5 нм. Источниками для служат ядерные реакторы на быстрых , а также импульсные реакторы. Спектр пучка , выходящих из канала реактора, непрерывен вследствие максвелловского распределения по скоростям (его максимум при 100°С соответствует длине волны 0,13 нм). Монохроматизацию пучка осуществляют разными способами - с помощью кристаллов-монохроматоров и др. используется, как правило, для уточнения и дополнения рентгеноструктурных данных. Отсутствие монотонной зависимости f и от позволяет достаточно точно определять положение легких . Кроме того, одного в того же элемента могут иметь сильно различающиеся значения f и (так, f и у 3,74 . 10 - 13 см, у 6,67 . 10 - 13 см). Это дает возможность изучать расположение и получать дополнит. сведения о структуре путем изотопного замещения (рис. 4). Исследование магн. взаимод. с магн. моментами дает информацию о магн. . Мёссбауэровское g -излучение отличается чрезвычайно малой шириной линии - ок. 10 - 8 эВ (тогда как ширина линии характеристич. излучения рентгеновских трубок ок. 1 эВ). Это обусловливает высокую временную и пространств. согласованность резонансного ядерного рассеяния, что позволяет, в частности, изучать магн. поле и градиент электрич. поля на ядрах. Ограничения метода - слабая мощность мёссбауэровских источников и обязательное присутствие в исследуемом ядер, для к-рых наблюдается эффект Мёссбауэра.

Дифракционные методы- совокупность методов исследования атомного
строения вещества, использующих дифракцию пучка
фотонов, электронов или нейтронов, рассеиваемого
исследуемым объектом
Рентгеноструктурный анализ позволяет определять
координаты атомов в трёхмерном пространстве
кристаллических веществ
Газовая электронография определяют геометрию
свободных молекул в газах
Нейтронография, в основе которой лежит рассеяние
нейтронов на ядрах атомов, в отличие от первых двух
методов, где используется рассеяние на электронных
оболочках,
Прочие методы
2

Рентгеноструктурный анализ

- один из дифракционных методов исследования
структуры вещества.
Основа: явление дифракции рентгеновских лучей на
трёхмерной кристаллической решётке
Метод позволяет определять атомную структуру
вещества, включающую в себя пространственную
группу элементарной ячейки, её размеры и форму, а
также определить группу симметрии кристалла.
3

Рентгеновское излучение (РИ)
РИ (X-Rays) – электромагнитное излучение с длиной
волны 5*10-2 - 102 A. (E = 250 кэВ – 100 эВ).
4

Рентгеновское излучение
Энергия связи электронов на низшей (К) оболочке
атомов:
H: 13.6 эВ, Be: 115.6 эВ, Cu: 8.983 кэВ
Например, для Cu K-серии:
Выводы:
1. РИ – коротковолновое (0.05 – 100 A) ЭМ излучение.
2. РИ возникает при переходах во внутренних
оболочках атомов (характеристическое РИ)
5

Источники РИ
Источники РИ:
рентгеновская трубка,
синхротрон,
изотопы, ...
Рентгеновская трубка
(Cu - анод)
6

Дифракция РИ на
поликристаллической пробе
7

Дифракция РИ на
поликристаллической пробе
1D проекция
3D картины
Порошковая рентгенограмма
Дифракционный угол 20;
Интенсивность (имп., имп./сек, отн.ед. и пр.
8

Рентгенография

Взаимодействие рентгеновских лучей с
кристаллами, частицами металлов,
молекулами ведет к их рассеиванию. Из
начального пучка лучей с длиной волны X ~
0,5-5 Å возникают вторичные лучи с той же
длиной волны, направление и интенсивность
которых связаны со строением рассеивающего
объекта.
Интенсивность дифрагированного луча зависит
также от размеров и формы объекта.
9

Рентгенография

Рентгенография наноструктурных
материалов позволяет по уширению
рентгеновских пиков достаточно надежно
определить размеры зерен при величинах
2- 100 нм.
Уменьшение размера зерен и увеличение
микродеформаций приводят к уширению
рентгеновских пиков.
Степень уширения оценивается по
полуширине пика или с помощью отношения
интегральной интенсивности рентгеновского
пика к его высоте (интегральная ширина).
10

Порошковая рентгенограмма
Интенсивность пика:
- кристаллическая структура
- количественный анализ
Ширина пика:
микроструктура
(размер ОКР)
Положение пика:
метрика решетки
(параметры ЭЯ)
11

Определение размеров ОКР
Размер областей когерентного рассеяния (ОКР)
можно рассчитать с помощью уравнения DebyeScherrer по формуле: D ср = k · / (β*cos),
где Dср - усредненный по
объему размер кристаллитов,
K - безразмерный коэф-нт
формы частиц (постоянная
Шеррера) 0,9 для сферы;
∆1/2 - полуширина
физического профиля
рефлекса,
- длина волны излучения,
- угол дифракции.
12

Дифракционная картина LaMnO3, полученного золь-гель технологией, прокаленного при Т= 900С.

Дифракционная картина LaMnO3,
полученного золь-гель технологией,
прокаленного при Т= 900 С.
PowderCell 2.2
2492
LA2900.4.x_y
1246
0
20
25
30
35
40
45
50
55
13
60

Определение размеров ОКР
D ср = k · / (β*cos),
Границы применимости уравнения Debye-Scherrer:
неприменима для кристаллов, размеры которых
больше 100 нм.
Факторы, влияющие на уширение пиков на
дифрактограммах:
1. инструментальное уширение
2. уширение из-за размеров кристаллитов
3. другие (искажения и дефекты кристаллической
решетки, дислокации, дефекты упаковки,
микронапряжения, границы зерен, химическая
разнородность и пр.)
14

Рентгенограммы материалов диоксида титана, полученных осаждением (1, 2) и золь-гель метом (3, 4), прокаленных при 500 ⁰C (3), 600 ⁰C (2,4).

Средние размеры кристаллитов полученных материалов,
вычисленные по уравнению Debye-Scherrer, составляют
15
22, 14, 22 нм для материалов 2, 3 и 4 соответственно.

Наночастицы платины на углеродном носителе, размер – 4,2 нм

LM Pt 11_02
3500
3300
3100
2900
2700
2500
2300
2100
1900
1700
1500
35 35 36 36 37 37 38 38 39 39 40 40 41 41 42 42 43 43 44 44 45 45 46 46 47 47 48 48 49 49 50
,5
,5
,5
,5
,5
,5
,5 ,5
,5
,5
,5
,5
,5
,5 16,5


это значит?
17

Вопрос: на рентгенограмме нет пиков – что
это значит?
общий термин
“рентгеноаморфный образец”
Две возможности:
1) образец – аморфный (нет дальнего
порядка)
2) “эффективный размер частиц” очень
мал (~3 нм и меньше)
18

Рентгенография тонких пленок
Особенности пленок
Не «бесконечно поглощающие слои»
Значительное текстурирование (эпитаксиальные пленки)
Аморфизация пленок
влияние подложки
19

Рентгенография тонких пленок
20

Рентгенография тонких пленок
Особенности пленок:
текстурирование
Рентгенограммы порошка нитрида
титана TiN (а) и пленок TiN,
полученных химическим
осаждением
TiCl4 + NH3 + 1/2H2 = TiN↓ + 4HCl
при соотношении исходных
компонентов M(TiCl4)/M(NH3) = 0,87
(6, в), 0,17 (г) и температуре
осаждения Т = 1100 (б), 1200 (в),
1400 (г) °С
21

Рентгенография тонких пленок
22

Дифракционные методы исследований
1. Дифракционные методы применимы к
исследованию практически любых объектов в
конденсированном состоянии.
2. Тонкие пленки обычно изучают при малых углах
падения первичного пучка: при больших углах
рассеяния это позволяет увеличить интенсивность,
при малых – исследовать эффекты полного
внешнего отражения и дифракции на сверхрешетках.
3. Для дисперсных систем рассеяние в области
малых углов несет в себе информацию о размерах,
форме и упорядочении частиц.
23

Нейтронография

Нейтрон - частица, подходящая по своим
свойствам для анализа различных материалов.
Ядерные реакторы дают тепловые нейтроны с
максимальной энергией 0,06 эВ, которой
соответствует волна де Бройля, соизмеримая с
величинами межатомных расстояний. На этом и
основан метод структурной нейтронографии.
Соизмеримость энергии тепловых нейтронов с
тепловыми колебаниями атомов и групп молекул
используют для анализа в нейтронной
спектроскопии, а наличие магнитного момента
является основой магнитной нейтронографии.
24

Методы исследования строения молекул

1.3 Дифракционные методы

Дифракционные методы исследования структуры вещества, основаны на изучении углового распределения интенсивности рассеяния исследуемым веществом излучении рентгеновского (в т. ч. синхротронного), потока электронов или нейтронов. Различают рентгенографию, электронографию, нейтронографию. Во всех случаях первичный, чаще всего монохроматический, пучок направляют на исследуемый объект и анализируют картину рассеяния. Рассеянное излучение регистрируется фотографически или с помощью счетчиков. Поскольку длина волны излучения составляет обычно не более 0.2 нм, т. е. соизмерима с расстояниями между атомами в веществе (0.1-0.4 нм), то рассеяние падающей волны представляет собой дифракцию на атомах. По дифракционной картине можно в принципе восстановить атомную структуру вещества. Теория, описывающая связь картины упругого рассеяния с пространств, расположением рассеивающих центров, для всех излучений одинакова. Однако, поскольку взаимодействия разного рода излучений с веществом имеет разную физ. природу, конкретный вид и особенности дифракционной. картины определяются разными характеристиками атомов. Поэтому различные дифракционные методы дают сведения, дополняющие друг друга.

Основы теории дифракции. Плоскую монохроматическую. волну с длиной волны и волновым вектором, где можно рассматривать как пучок частиц с импульсом, где Амплитуда волны, рассеянной совокупностью из атомов, определяется уравнением:

По такой же формуле рассчитывают и атомный фактор, при этом описывает распределение рассеивающей плотности внутри атома. Значения атомного фактора специфичны для каждого вида излучения. Рентгеновские лучи рассеиваются электронными оболочками атомов. Соответствующий атомный фактор численно равен числу электронов в атоме, если выражен в названии электронных единицах, т. е. в относительных единицах амплитуды рассеяния рентгеновского излучения одним свободном электроне. Рассеяние электронов определяется электростатическим потенциалом атома. Атомный фактор для электрона связан соотношением:

исследование молекула спектроскопия дифракционный квантовый

Рисунок 2- Зависимость абсолютных значений атомных факторов рентгеновских лучей (1), электронов (2) и нейтронов (3) от угла рассеяния

Рисунок 3- Относительная зависимость усредненных по углу атомных факторов рентгеновских лучей (сплошная линия), электронов (штриховая)и нейтронов от атомного номера Z

При точных расчетах рассматривают отклонения распределения электронной плотности или потенциала атомов от сферической симметрии и название атомно-температурный фактор, учитывающий влияние тепловых колебаний атомов на рассеяние. Для излучения помимо рассеяния на электронных оболочках атомов существует роль может играть резонансное рассеяние на ядрах. Фактор рассеяния f м зависит от волновых векторов и векторов поляризации падающей и рассеянной волн. Интенсивность I(s) рассеяния объектом пропорциональна квадрату модуля амплитуды: I(s)~|F(s)| 2 . Экспериментально можно определить лишь модули |F(s)|, а для построения функции рассеивающей плотности (r) необходимо знать также фазы (s) для каждого s. Тем не менее теория дифракционных методов позволяет по измеренным I(s) получить функцию (r), т. е. определить структуру веществ. При этом лучшие результаты получают при исследовании кристаллов. Структурный анализ. Монокристалл представляет собой строго упорядоченную систему, поэтому при дифракции образуются лишь дискретные рассеянные пучки, для которых вектор рассеяния равен вектору обратной решетки.

Для построения функции (х, у, z)по экспериментально определяемым величинам применяют метод проб и ошибок, построение и анализ функции межатомных расстояний, метод изоморфных замещений, прямые методы определения фаз. Обработка экспериментальных данных на ЭВМ позволяет восстанавливать структуру в виде карт распределения рассеивающей плотности. Структуры кристаллов изучают с помощью рентгеновского структурного анализа. Этим методом определено более 100 тысяч структур кристаллов.

Для неорганических кристаллов с применением различных методов уточнения (учет поправок на поглощение, анизотропию атомно-температурного фактора и т. д.) удается восстановить функцию с разрешением до 0.05

Рисунок 4- Проекция ядерной плотности кристаллической структуры

Это позволяет определять анизотерапию тепловых колебаний атомов, особенности распределения электронов, обусловленные химической связью, и т. д. С помощью рентгеноструктурного анализа удается расшифровывать атомные структуры кристаллов белков, молекулы которых содержат тысячи атомов. Дифракция рентгеновских лучей используется также для изучения дефектов в кристаллах (в рентгеновской топографии), исследования приповерхностных слоев (в рентгеновской спектрометрии), качественного и количественного определения фазового состава поликристаллических материалов. Электронография как метод изучения структуры кристаллов имеет след. особенности: 1) взаимодействие вещества с электронами намного сильнее, чем с рентгеновскими лучами, поэтому дифракция происходит в тонких слоях вещества толщиной 1 -100 нм; 2) f э зависит от атомного ядра слабее, чем f р, что позволяет проще определять положение легких атомов в присутствии тяжелых; Структурная электронография широко применяется для исследования тонкодисперсных объектов, а также для изучения разного рода текстур (глинистые минералы, пленки полупроводников и т. п.). Дифракция электронов низких энергий (10 -300 эВ, 0.1-0.4 нм) - эффективный метод исследования поверхностей кристаллов: расположения атомов, характера их тепловых колебаний и т. д. Электронная микроскопия восстанавливает изображение объекта по дифракционной картине и позволяет изучать структуру кристаллов с разрешением 0.2-0.5 нм. Источниками нейтронов для структурного анализа служат ядерные реакторы на быстрых нейтронах, а также импульсные реакторы. Спектр пучка нейтронов, выходящих из канала реактора, непрерывен вследствие максвелловского распределения нейтронов по скоростям (его максимум при 100°С соответствует длине волны 0.13 нм).

Монохроматизацию пучка осуществляют разными способами - с помощью кристаллов-монохроматоров и др. Нейтронографию используется, как правило, для уточнения и дополнения рентгеноструктурных данных. Отсутствие монотонной зависимости f и от атомного номера позволяет достаточно точно определять положение легких атомов. Кроме того, изотопы одного в того же элемента могут иметь сильно различающиеся значения f и (так, f и углеводорода 3.74.10 13 см, у дейтерия 6.67.10 13 см). Это дает возможность изучать расположение изотопов и получать дополнит. сведения о структуре путем изотопного замещения. Исследование магнитного взаимодействия. нейтронов с магнитнами моментами атомов дает информацию о спинах магнитного атомов. Мёссбауэровское -излучение отличается чрезвычайно малой шириной линии - 10 8 эВ (тогда как ширина линии характеристических излучения рентгеновских трубок. 1 эВ). Это обусловливает высокую временную и пространств. согласованность резонансного ядерного рассеяния, что позволяет, в частности, изучать магнитное поле и градиент электрического поля на ядрах. Ограничения метода - слабая мощность мёссбауэровских источников и обязательное присутствие в исследуемом кристалле ядер, для которых наблюдается эффект Мёссбауэра. Структурный анализ некристаллических веществ. Отдельные молекулы в газах, жидкостях и твердых аморфных телах по-разному ориентированы в пространстве, поэтому определить фазы рассеянных волн, как правило, невозможно. В этих случаях интенсивность рассеяния обычно представляют с помощью т. наз. межатомных векторов r jk , которые соединяют пары различных атомов (j и k) в молекулах: r jk = r j - r k . Картина рассеяния усредняется по всем ориентациям:

Полуэмпирические методы квантовой химии, методы расчета мол. характеристик или свойств вещества с привлечением экспериментальных данных...

Методы исследования строения молекул

Принципиально иное направление расчетной квантовой химии, сыгравшее огромную роль в современном развитии химии в целом, состоит в полном или частичном отказе от вычисления одноэлектронных (3.18) и двухэлектронных (3.19)-(3.20) интегралов...

В оптике решетками называют все пространственные периодические структуры (чаще всего такие структуры имеют вид параллельных штрихов), которые оказывают влияние на амплитуду и/или фазу оптического излучения...

Оптические приборы с дифракционной решеткой

Спектрограф. Так называется прибор для фотографической регистрации спектра. Простейшая схема спектрографа показана на рис. 3.1. Его основные элементы: щель S, диспергирующая система D, фокусирующая оптика L1 и L2 и кассета с фотослоем Р...

Обычно анализируемый образец состоит не из одного вещества, а из смеси веществ. Одни из них представляют интерес для исследователя, другие являются примесями, осложняющими анализ. И хотя существуют аналитические методики...

Физические принципы, заложенные в основу измерения концентрации вещества кондуктометрическим методом

Применяются для относительных измерений электропроводности, гл. обр. для высокочастотного титрования. Измерения проводят с применением емкостных (С-) или индуктивных (L-) ячеек, представляющих собой сосуды из диэлектрика...

Характеристики микромеханических реле на основе тонких слоистых исполнительных элементов

1. Оптическая микроскопия (оптический микроскоп Аксиоскоп (Axio Imager), производитель: «Карл Цейз» (Carl Zeiss) - для определения линейных размеров подвижных элементов. Прибор последовательно фокусируют на верхнюю и нижнюю горизонтальные поверхности...

Частотный датчик уровня

Электромеханические методы сочетают механическую систему передачи сигналов о перемещении поплавка с электрическим устройством съема сигналов и электрической системы дальнейшей передачи информации об этом перемещении...



Понравилась статья? Поделитесь с друзьями!