Единицей измерения электрического момента диполя является. Электрические свойства молекул и дипольный момент

Сист.зарядов:

Q=q 1 +q 2 +…+q n =Σq i

Дип.момент сист.зар.

→ → → → → → → n→ →

p=r 1 q 1 +r 2 q 2 +…+r n q n =Σr i q i

26. Теорема Гаусса для вектора e.

Рассмотрим поле точечного заряда q и вычислим поток вектора Е через замкнутую поверхность S, заключающую в себе заряд (рис.). Количество линий вектора Е, начинающихся на точечном заряде +q или заканчивающихся на заряде –q, численно равно q/ε0.

Согласно формуле Ф[a] (=)N[нач] – N[оканч] поток вектора Е через любую замкнутую поверхность равен числу линий, выходящих наружу, т.е. начинающихся на заряде, если он положителен, и числу линий, входящих внутрь, т.е. оканчивающихся на заряде, если он отрицателен. Учтя, что количество начинающихся или оканчивающихся на точечном заряде линий численно равно q/ε0, можно написать, что Ф[E] = q/ε0.

Знак потока совпадает со знаком заряда q. Размерность обеих частей этого равенства одинакова.

Теперь допустим, что внутри замкнутой поверхности находятся N точечных зарядов q1, q2,...,q[N]. В силу принципа суперпозиции напряженность Е поля, создаваемая всеми зарядами, равна сумме напряженностей Е[i], создаваемых каждым зарядом в отдельности: Е = ∑E[i].

Поэтому Ф[E] = ∫ EdS= ∫ (∑E[i])=∑ ∫ E[i]dS. Каждый из интегралов, стоящих под знаком суммы, равен q[i]/ε0. следовательно,

Ф[E]= ∫ EdS=1/ε0∑ q[i].

Доказанное утверждение носит название теоремы Гаусса. Эта теорема гласит, что поток вектора напряженности электрического поля через замкнутую поверхность равен алгебраической сумме заключенных внутри этой поверхности зарядов, деленной на ε0.

27. Объемная, поверхностная и линейная плотность зарядов. Поле одной и двух заряженных плоскостей. Поле заряженных цилиндрических и сферических поверхностей. Поле заряженного шара.

1.Объемной плотностью непрерывного распределения зарядов называется отношение заряда к объему:

где ℮וֹ - элементарные заряды в объеме ∆Vф (с учетом их знака); ∆Q - полный заряд, заключенный в ∆Vф. Объем ∆Vф является малым, но не бесконечно малым в математическом смысле. ∆Vф зависит от конкретных условий.

2.Лине́йная плотность электрического заряда - предел отношения электрического заряда, находящегося в элементе линии, к длине этого элемента линии, который содержит данный заряд, когда длина этого элемента стремится к нулю.

3.Поверхностная плотность заряда

{ σ = 1/(∆Sф∑[∆Sф] ℮1)=dQ/dS}

где dS - бесконечно малый участок поверхности.

Поле бесконечной однородно заряженной плоскости. Пусть поверхностная плотность заряда во всех точках плоскости одинакова и равна σ ; для определенности будем считать заряд положительным. Из соображений симметрии вытекает, что напряженность поля в любой точке имеет направление перпендикулярное к плоскости. Действительно, поскольку плоскость бесконечна и заряжена однородно, нет никаких оснований к тому, чтобы вектор Е отклонялся в какую-либо сторону от нормали к плоскости. Далее очевидно, что в симметричных относительно плоскости точках напряженность поля одинакова по модулю и противоположна по направлению. Из теоремы Гаусса следует что на любых расстояниях от плоскости напряженность поля одинакова

Энергия системы точечных зарядов. Энергия заряженного проводника.

Даже у отдельного точечного заряда q имеется какая-то электростатическая энергия. Поле в этом случае дается выражением так что плотность энергии на расстоянии r от заряда равна

За элемент объема можно принять сферический слой толщиной dr, по площади равный 4πr 2 . Полная энергия будет

Энергия заряженного конденсатора. Пусть потенциал обкладки конденсатора, на которой находится заряд +q , равен, а потенциал обкладки, на которой находится заряд -q , равен. Энергия такой системы

Энергию заряженного конденсатора можно представить в виде

Электрический диполь - идеализированная электронейтральная система, состоящая из точечных и равных по абсолютной величине положительного и отрицательного электрических зарядов.

Другими словами, электрический диполь представляет собой совокупность двух равных по абсолютной величине разноимённых точечных зарядов, находящихся на некотором расстоянии друг от друга.

Слева силовые линии диполя, справа - пример диполя (молекула воды).

Дипольный момент - векторная физическая величина, характеризующая электрические свойства системы заряженных частиц (распределения зарядов) в смысле создаваемого ею поля и действия на нее внешних полей.

Простейшая система зарядов, имеющая ненулевой дипольный момент - это диполь (две точечные частицы с одинаковыми по величине разноимёнными зарядами). Электрический дипольный момент такой системы по модулю равен произведению величины положительного заряда н а расстояние между зарядами и направлен от отрицательного заряда к положительному, или:

Где - величина положительного заряда, - вектор с началом в отрицательном заряде и концом в положительном.

Во внешнем электрическом поле на электрический диполь действует момент сил который стремится повернуть его так, чтобы дипольный момент развернулся вдоль направления поля.

Диэлектрики и их классификация. Определение вектора поляризации и диэлектрической восприимчивости. Поляризация полярных и неполярных диэлектриков.

Диэлектрик (изолятор) - вещество, плохо проводящее электрический ток.

Основное свойство диэлектрика - способность поляризоваться во внешнем электрическом поле.

Поляризация диэлектриков - явление, связанное с ограниченным смещением связанных зарядов в диэлектрике или поворотом электрических диполей под воздействием внешнего электрического поля, других внешних сил или спонтанно.

Поляризацию диэлектриков характеризует вектор поляризации . Физический смысл вектора электрической поляризации - это дипольный момент, отнесенный к единице объема диэлектрика. Иногда вектор поляризации называют просто поляризацией.



Диэлектрическая восприимчивость (поляризуемость) вещества - физическая величина, мера способности вещества поляризоваться под действием электрического поля. Диэлектрическая восприимчивость χ ε - коэффициент линейной связи между поляризацией диэлектрика P и внешним электрическим полем E в достаточно малых полях:

, где ε 0 - электрическая постоянная; произведение ε 0 χ ε называется абсолютной диэлектрической восприимчивостью .

В случае вакуума χ ε = 0 .

У диэлектриков, как правило, она положительна. Диэлектрическая восприимчивость измеряется в ничём (безразмерная величина).

Ряд диэлектриков проявляют особые физические свойства. К ним относятся пьезоэлектрики (которые могут либо под действием деформации индуцировать электрический заряд на своей поверхности, или наоборот), пироэлектрики (поляризация в отсутствие внешних воздействий), сегнетоэлектрики (обладающие в определённом интервале температур собственным дипольным моментом), и.т.д.

Рассмотрим, применительно к электродинамике, что такое дипольный момент. Элементарные носители заряда, протекающие по прямолинейному участку системы проводников, формируют прямой ток. Соответственно, присутствует токовый заряд указанного тока (I*L, где I - значение тока, L - длина участка). В свою очередь, рассматривает два параллельно расположенных токовых заряда при L, стремящейся к бесконечности. В замкнутом контуре две его половины обладают противоположным по формируя токовый диполь. Вокруг каждого такого диполя создается вихревое поле, для которого характерен свой собственный дипольный заряд тока, ориентированный перпендикулярно плоскости, в которой располагается контур. Он называется дипольный момент. Но так как мы рассматривает лишь токовую составляющую, то для перехода к электромагнетизму этот же термин называют иначе. Другое название - магнитный дипольный момент (Pm, иногда просто m).

Он представляет собой одну из ключевых характеристик любого вещества. Считается, что дипольный момент возникает благодаря токам (как в микромире, так и в макросистемах). Под микромиром в данном случае понимается атом: движущиеся по круговым орбитам могут рассматриваться как электрический ток. Так как вещество состоит из элементарных частиц, то каждая из них также обладает своим моментом. Обращаем внимание, что под элементарными частицами нужно понимать не только молекулы и атомы, но также протоны, нейтроны, электроны и, возможно, еще более мелкие составляющие. С точки зрения их магнитный дипольный момент обуславливается собственным механическим вращением - спином. Однако данное предположение в последнее время все чаще ставится под сомнение в свете новейшей полевой теории частиц. К примеру, общепризнано существование так называемого аномального диполя, значение которого отличается от расчетов уравнения в квантовой теории. А вот с полевой точки зрения, в которой магнитное поле любой элементарной частицы генерируется не спиновым вращением носителей заряда, а представляет собой одну из постоянных составляющих электромагнитного поля, аномальный диполь легко объясним. Величину определяют как определенный набор с корректирующей составляющей спина. Таким образом, магнитный момент для нейтрона зависит от генерирующего его электрического тока и энергии изменяющегося электромагнитного поля.

При расчете его значения для целого контура используют метод интегрального сложения дипольных моментов простейших диполей тока, создающих замкнутый круговой контур.

Дипольный момент в электродинамике определяют по формуле:

где I - значение протекающего тока; S - площадь замкнутого контура (круговой); n - вектор, направленный перпендикулярно плоскости, в которой располагается контур. Хотя вышеуказанная формула этого не показывает, величина Pm также векторная, направленность которой может быть определена известным в классической электротехнике (правого винта): если вращение воображаемого винта сопоставить с направлением протекающего тока, то движение тела винта совпадет с искомым вектором.

Электрическое поле диполя отличается от поля точечного заряда, прежде всего, конфигурацией силовых линий. Так как с точки зрения физики подобный диполь является уравновешенной системой двух модули которых равны, а полярность противоположна (+ и -), то соответствующие линии напряженности начинаются у одного заряда, а заканчиваются у другого. В случае же лишь одного точечного носителя заряда линии расходятся во все стороны, подобно свету лампы.

Диполь есть система, состоящая из двух равных по модулю и противоположных по знаку зарядов. Вектор I, проведенный от отрицательного к положительному заряду, называется плечом диполя.

Электрический момент диполя

где – заряд диполя.

Электрический дипольный момент молекулы принято выражать в единицах атомного масштаба – дебай (D) = 3,33∙10 -30 Кл∙м.

Диполь называется точечным, если расстояние rот центра диполя до точки, в которой рассматривается действие диполя, много больше плеча диполя.

Напряженность поля точечного диполя:

а) на оси диполя

, или
;

б) на перпендикуляре к оси диполя

, или
;

в) в общем случае

, или
,

где
─ угол между радиусом-векторомrи электрическим дипольным моментомр (рис. 2.1).

Потенциал поля диполя

.

Потенциальная энергия диполя в электростатическом поле

Механический момент, действующий на диполь с электрическим дипольным моментом , помещенный в однородное электрическое поле с напряженностью,

или
,

где
– угол между направлением векторови.

Сила F, действующая на диполь в неоднородном электростатическом поле, обладающем осевой (вдоль осих) симметрией,

,

где ─ величина, характеризующая степень неоднородности электростатического поля вдоль оси х;– угол между векторамии.

Примеры решения задач

Пример 1. Диполь с электрическим моментом

. Вектор электрического моментасоставляет угол
с направлением силовых линий поля. Определить работуA внешних сил, совершенную при повороте диполя на угол
.

Решение . Из исходного положения (рис. 2.2, а ) диполь можно повернуть на угол
, вращая его по часовой стрелкедо угла (рис. 2.2, б ), или против часовой стрелки до угла (рис. 2.2,в ).

В первом случае диполь будет поворачиваться под действием сил поля. Следовательно, работа внешних сил при этом отрицательна. Во втором случае поворот может быть произведен только под действием внешних сил и работа внешних сил при этом положительна.

Работу, совершаемую при повороте диполя, можно вычислить двумя способами: 1) непосредственно интегрированием выражения элементарной работы; 2) с помощью соотношения между работой и изменением потенциальной энергии диполя в электрическом поле.

а б в

1-й способ . Элементарная работа при повороте диполя на угол
:

а полная работа при повороте на угол от до
:

.

Произведя интегрирование, получим

Работа внешних сил при повороте диполя по часовой стрелке

против часовой стрелки

2-й способ . Работа А внешних сил связана с изменением потенциальной энергии
соотношением

,

где
─ потенциальные энергии системы соответственно в начальном и конечном состояниях. Так как потенциальная энергия диполя в электрическом поле выражается формулой
,то

что совпадает с формулой (2.1), полученной первым способом.

Пример 2. Три точечных заряда ,
,
, образуют электрически нейтральную систему, причем
. Заряды расположены в вершинах равностороннего треугольника. Определить максимальные значения напряженности
и потенциала
поля, создаваемого этой системой зарядов, на расстоянии
от центра треугольника, длина стороны которого
.

Решение. Нейтральную систему, состоящую из трех точечных зарядов, можно представить в виде диполя. Действительно, «центр тяжести» зарядов и
лежит на середине отрезка прямой, соединяющей эти заряды (рис. 2.3). В этой точке можно считать сосредоточенным заряд
. А так как система зарядов нейтральная (
), то

Так как расстояние между зарядами Q 3 и Q много меньше расстояния r (рис. 2.4), то систему этих двух зарядов можно считать диполем с электрическим моментом
,где
─ плечо диполя. Электрическиймомент диполя

.

Тот же результат можно получить другим способом. Систему из трех зарядов представим как два диполя с электрическими моментами (рис. 2.5), равными по модулю:
;
. Электрический момент системы зарядов найдем как векторную суммуи, и
.Как это следует из рис. 2.5, имеем
.Так как

,то

,

что совпадает с найденным ранее значением.

Напряженность и потенциалполя диполя выражаются формулами

;
,

где
─ угол между радиусом-вектороми электрическим дипольным моментом (рис. 2.1).

Напряженность и потенциал будут иметь максимальные значения при
= 0, следовательно,

;
.

Так как
,то

;
.

Вычисления дают следующие значения:

;
.

Задачи

201. Вычислить электрический момент р диполя, если его заряд
,
. (Ответ:50 нКл∙м).

202. Расстояние между зарядами
и
диполя равно 12 см. Найти напряженность Е и потенциалполя, созданного диполем в точке, удаленной на
как от первого, так и от второго заряда.(Ответ:
;
).

203. Диполь с электрическим моментом
образован двумя точечными зарядами
и
. Найти напряженностьE и потенциал электрического поля в точкеA (рис. 2.6), находящейся на расстоянии
от центра диполя. (Ответ:
;
).

204. Электрический момент диполя
поля, созданного в точкеA (рис. 2.6), находящейся на расстоянии
от центра диполя. (Ответ:
;
).

205. Определить напряженность E и потенциал
на расстоянии

с вектором электрического момента.(Ответ:
;
).

206. Диполь с электрическим моментом
равномерно вращается с частотой
относительно оси, проходящей через центр диполя и перпендикулярной его плечу. Точка С находится на расстоянии
от центра диполя и лежит в плоскости вращения диполя. Вывести закон изменения потенциала как функцию времени в точке С. Принять, что в начальный момент времени потенциал в точке С
. Построить график зависимости
. (Ответ:
;
;
).

207. Диполь с электрическим моментом

относительно оси, проходящей через центр диполя и перпендикулярной его плечу. Определить среднюю потенциальную энергию
заряда
, находящегося на расстоянии
и лежащего в плоскости вращения, завремя, равное полупериоду (от
до
). В начальный момент времени считать
. (Ответ:).

208. Два диполя с электрическими моментами
и
находятся на расстоянии
друг от друга. Найти силу их взаимодействия, если оси диполей лежат на одной прямой. (Ответ:
).

209. Два диполя с электрическими моментами
и
находятся на расстоянии
друг от друга, так что оси диполей лежат на одной прямой. Вычислить взаимную потенциальную энергию диполей, соответствующую их устойчивому равновесию. (Ответ:
).

210. Диполь с электрическим моментом
прикреплен к упругой нити (рис. 2.7). Когда в пространстве, где находится диполь, было создано электрическое поле напряженностью
, перпендикулярно плечу диполя и нити, диполь повернулся на угол
. Определить момент силы М, который вызывает закручивание нити на 1 рад. (Ответ:
).

211. Диполь с электрическим моментом
прикреплен к упругой нити (рис. 2.7). Когда в пространстве, где находится диполь, было создано электрическое поленапряженностью
, перпендикулярно плечу диполя и нити, диполь повернулся на малый угол
. Определить момент силы М, который вызывает закручивание нити на 1 рад. (Ответ: ).

212. Диполь с электрическим моментом
находится в однородном электрическом поле напряженностью
. Вектор электрического момента составляет угол
с линиями поля. Какова потенциальная энергия П поля? Считать
, когда вектор электрического момента диполя перпендикулярен линиям поля. (Ответ: ).

213. Диполь с электрическим моментом
свободно устанавливается в однородном электрическом поле напряженностью

. (Ответ: ).

214. Диполь с электрическим моментом



. (Ответ: ).

215. Перпендикулярно плечу диполя с электрическим моментом
возбуждено однородное электрическое поле напряженностью
. Под действием сил поля диполь начинает поворачиваться относительно оси, проходящей через его центр. Найти угловую скорость
диполя в момент прохождения им положения равновесия. Момент инерции диполя относительно оси, перпендикулярной плечу ипроходящей через его центр. (Ответ:
;
).

216. Диполь с электрическим моментом
свободно установился в однородном электрическом поле напряженностью
. Диполь повернули на малый угол и предоставили самому себе. Определить частоту собственных колебаний диполя в электрическом поле. Момент инерции диполя относительно оси, проходящей через его центр
. (Ответ:
).

217. Диполь с электрическим моментом
находится в неоднородном электрическом поле. Степень неоднородности поля характеризуется величиной
, взятой в направлении оси диполя. Вычислить силуF, действующую на диполь в этом направлении. (Ответ: ).

218. Диполь с электрическим моментом
установился вдоль силовой линии в поле точечного заряда
на расстоянии
от него. Определить для этой точки величину
, характеризующую степень неоднородности поля в направлении силовой линии и силуF, действующую на диполь. (Ответ:
;
).

219. Диполь с электрическим моментом
установился вдоль силовой линии в поле, созданном бесконечной прямой нитью, заряженной бесконечной прямой нитью, заряженной с линейной плотностью
на расстоянии
от нее. Определить в этой точке величину
, характеризующую степень неоднородности поля в направлении силовой линии и силуF, действующую на диполь.(Ответ:
;
).

220. Диполь с электрическим моментом
образован двумя точечными зарядами
и
. Найти напряженность Е и потенциалэлектрического поля в точке В (рис. 2.6), находящихся на расстоянии
от центра диполя. (Ответ:
;
).

221. Электрический момент диполя
. Определить напряженность Е и потенциалполя, созданного в точке В (рис. 3.6), находящейся на расстоянии
от центра диполя. (Ответ:
;
).

222. Определить напряженность Е и потенциал поля, создаваемого диполем с электрическим моментом
на расстоянии
от центра диполя, в направлении, составляющем угол
с вектором электрического момента. (Ответ:
;
).

223. Диполь с электрическим моментом
равномерно вращается с угловой скоростью
относительно оси, проходящей через центр диполя и перпендикулярной его плечу. Определить среднюю потенциальную энергию
заряда
, находящегося на расстоянии
и лежащего в плоскости вращения, в течение времени
.В начальный момент времени считать
. (Ответ:
).

224. Диполь с электрическим моментом
свободно устанавливается в однородном электрическом поле напряженностью
. Вычислить работу А, необходимую для того, чтобы повернуть диполь на угол
. (Ответ:
).

225. Диполь с электрическим моментом
свободно установился в однородном электрическом поле напряженностью
. Определить изменение потенциальной энергии
диполя при повороте его на угол
. (Ответ: ).

226. Молекула HF обладает электрическим моментом
. Межъядерное расстояние
. Найти заряд такого диполя и объяснить, почему найденное значениесущественно отличается от значения элементарного заряда
. (Ответ:
).

227. Точечный заряд
находится на расстоянии

. Определить потенциальную энергию П и силуF их взаимодействия в случае, когда точечный заряд находится на оси диполя. (Ответ:
;
).

228. Точечный заряд
находится на расстоянии
от точечного диполя с электрическим моментом
. Определить потенциальную энергию П и силуF их взаимодействия в случае, когда точечный заряд находится на перпендикуляре к оси диполя. (Ответ:
;
).

229. Два диполя (рис. 2.8) с электрическими моментами
находятся на расстоянии
друг от друга (
─ плечо диполя). Определить потенциальную энергию П взаимодействия диполей. (Ответ:
).

230. Два одинаково ориентированных диполя (рис. 2.9) с электрическими моментами
находятся на расстоянии
друг от друга (
─ плечо диполя). Определить потенциальную энергию П и силуF взаимодействия диполей. (Ответ:
;
).

До сих пор предполагалось, что заряды и их поля находятся в вакууме. В последующих параграфах мы рассмотрим, какое влияние на электрическое поле и на взаимодействие электрических зарядов оказывает вещественная среда - проводники и диэлектрики.

Электрический диполь это система, состоящая из двух одинаковых по значению, но разных по знаку точечных заряда (+q,- q), расстояние ℓ между которыми (плечо диполя) значительно меньше расстояния до рассматриваемых точек поля (рис.12.16).

Основной характеристикой диполя является его электрический, или дипольный момент.

Дипольный момент –это вектор, направленный по оси диполя (прямой, проходящей через оба заряда) от отрицательного заряда к положительному и равный произведению заряда │q│ на плечо ℓ.

(12.35)

Единица электрического момента диполя – кулон-метр (Кл۰м).

Если диполь поместить в однородное электростатическое поле напряжён-ностью Е (рис.12.17), то на каждый из его зарядов действует сила: на положительныйF + = +qE, на отрицательный F - = - qE. Эти силы равны по модулю, но противоположны по направлению. Они образуют пару сил, плечо которой ℓsinα, и создают момент пары сил М. Вектор
направлен перпендикулярно векторами(см.рис. – на нас). Модуль
определяется соотношениемM=qEℓsinα, где α – угол между векторами и.

M=qEℓsinα=рЕsinα

или в векторной форме

(12.36)

Таким образом, на диполь в однородном электрическом поле действует вращающий момент, зависящий от электрического момента, ориентации диполя в поле и напряжённость поля.

В однородном поле момент пары сил стремится повернуть диполь так, чтобы векторы ии были параллельны.

§ 12.6 Поле диполя

Определим напряжённость электростатического поля в точке, лежащей посередине на оси диполя (рис.12.18). Напряжённость поля в точке О равна векторной сумме напряжённостейи, создаваемых положительным и отрицательным зарядом в отдельности.

На оси диполя между зарядами -q и +q векторы напряжённости инаправлены в одну сторону, поэтому результирующая напряжённость по модулю равна их сумме.

Если же находить напряжённость поле в точке А, лежащей на продолжении оси диполя (рис.12.18), то векторы ибудут направлены в разные стороны и результирующая напряжённость по модулю равна их разности:

(r - расстояние между средней точкой диполя и точкой, лежащей на оси диполя, в которой определяется напряжённость поля).

Пренебрегая в знаменателе величиной , так какr >>ℓ получим

(р- электрический момент диполя).

Напряжённость поля в точке С, лежащей на перпендикуляре, восстановленном из средней точки диполя (рис.12.19). Так как расстояние от зарядов +q и - q до точки В одинаковое r 1 = r 2 , то

Вектор результирующей напряжённости в точке В по модулю равен

Из рисунка видно, что
, тогда

Напряжённость поля диполя в произвольной точке определяется по формуле

(12.39)

(р- электрический момент диполя, r - расстояние от центра диполя до точки, в которой определяется напряжённость поля, α - угол между радиус-вектором r и плечом диполя ℓ).



Понравилась статья? Поделитесь с друзьями!