Электроскоп. Электрометр

  • Электроскоп. Проводники и диэлектрики.

  • Ознакомить учащихся с устройством электроскопа. Сформировать представления учащихся об электрическом поле и его свойствах.
  • Развивать умения применять знание в конкретных ситуациях. Умение логически мыслить, развивать творческую активность.
  • Воспитывать добросовестное отношение к учёбе, стремление к познанию нового и положительной мотивации к учению.

  • Какие два типа зарядов существуют в природе, как их называют?
  • Как взаимодействуют между собой тела, имеющие одноименные заряды? Примеры.
  • Как взаимодействуют между собой
  • тела,имеющие разноименные заряды? Примеры.
  • Правильно ли выражение: «При трении создаются заряды»? Почему?



ЭЛЕКТРОСʘОП, простейший демонстрационный прибор для обнаружения и измерения электрического заряда

Электроскоп состоит из металлического стержня (обычно с шариком на конце) , к которому снизу прикреплены один или два легких металлических листочка. Стержень вставлен внутрь стеклянного сосуда и закреплен с помощью пробки из изолирующего материала. Индикатором заряда являются легкие бумажные или очень тонкие алюминиевые листочки, прикрепленные к стержню.


ЭЛЕКТИОМЕТР (от электричество и греч. metron - мера, metreo - измеряю)

Чувствительный электроизмерительный прибор для измерения малых значений напряжения, а также для обнаружения и измерения электрического заряда. Электрометр представляет собой металлический цилиндрический корпус, передняя и задняя стенки которого стеклянные. Корпус закреплен на подставке. Через изолирующую втулку внутрь корпуса сверху проходит металлическая трубка, заканчивающаяся стержнем с установленной на нем легкоподвижной стрелкой, отклонение которой определяется величиной заряда




Для чего нужны электроскоп и электрометр?

Самый простой прибор для определения наэлектризованности – электроскоп. Принцип действия его очень прост. Если дотронуться до электроскопа телом, обладающим каким-либо зарядом, то этот заряд передастся металлическому стержню с лепестками внутри электроскопа. Лепестки приобретут заряд одного знака и разойдутся, отталкиваемые одноименным зарядом друг от друга. По шкале можно будет увидеть размер заряда в кулонах. Есть еще разновидность электроскопа – электрометр. Вместо лепестков на металлическом стержне в нем укреплена стрелка. Но принцип действия тот же – стержень и стрелка заряжаются и отталкиваются друг от друга. Величина отклонения стрелки показывает на шкале уровень заряда.


  • Проводники (металлы, почва, графит,
  • тело человека)
  • Непроводники или диэлектрики (янтарь, эбонит, резина, шёлк,капрон,масло)
  • Полупроводники (оксиды и сульфиды металлов, некоторые органические вещества)

  • Почему заряженный электроскоп разряжается, если его шарика коснутся рукой?
  • Почему стержень электроскопа изготавливают из металла?
  • Правильно ли утверждение, что два заряда, равные по модулю, но противоположные по знаку, уничтожаются, если их поместить на один и тот же проводник?
  • Как можно определить электрический заряд?

Домашнее задание

рабочая тетрадь п.26

прибор, служащий для измерения электрического потенциала. Приборы этого рода могут служить для двоякой цели: менее точные, электроскопы, обнаруживают только присутствие заряда на теле и дают возможность судить о потенциале тела весьма грубо; более точные - электрометры, позволяют определить потенциал в принятых единицах.

Первый электроскоп был устроен Вольта: прибор состоял из металлического стержня, пропущенного через каучуковую пробку, которая закрывала стеклянную бутылку. Верхний конец металлического стержня оканчивался металлическим шариком, а к низшему концу, находящемуся внутри бутылки, привешивались 2 соломинки. При соединении прибора с наэлектризованным телом соломинки, как тела наэлектризованные одноименно, отталкивались, и таким образом можно было судить, заряжено данное тело или нет. Дальнейшее усовершенствование приборов этого рода состояло в том, что вместо соломинок стали привешивать листки из тонкой бумаги или же тонкие золотые листочки, вследствие чего получилась возможность обнаруживать слабые заряды на телах.

В настоящее время наиболее употребительными и удобными из приборов этого рода являются электроскопы Б. Ю. Кольбе, которые поэтому здесь и описываются. Менее чувствительный Э. Кольбе состоит из широкогорлой склянки с отрезанным дном, которое заменено металлической пластинкой с загнутыми краями (см. фиг. 1).

Для приблизительного определения потенциала употребляется электроскоп более чувствительный, в котором два бумажных листочка заменены одним тонким листочком из алюминия, подвешенным так же, как и бумажный. В плоскости отклонения листочка помещена шкала из слюды, разделенная на градусы. Листочек помещен в металлической оправе, передняя и задняя стенки которой сделаны из стекла для того, чтобы листок возможно было проектировать при помощи фонаря. Винт s (см. фиг. 3) позволяет установить листочек вертикально, клемма k служит для соединения оправы Э. с землей. Заменяя шар, находящийся наверху стержня, маленьким конденсатором, возможно чувствительность прибора увеличить в 200 раз и таким образом заметить малый потенциал (до 1 / 2 V).

Для точного измерения потенциала употребляются Э., из которых можно указать на абсолютный Э. и квадрантный Э. Томсона. Абсолютный Э. Томсона позволяет вычислять разность потенциалов в абсолютных электростатических единицах. Устройство его основано на теории плоского конденсатора (см. Конденсатор). Сила электрического притяжения Р , действующая на поверхность S конденсатора со стороны противолежащей конденсирующей поверхности в воздухе, выражается формулой

P = (S/8πD 2 ) (V 1 -V 2) 2 ,

где V 1 -V 2 разность потенциалов на двух поверхностях конденсатора, а D - расстояние поверхностей конденсатора. Так как устройство этого прибора очень сложно и на страницах словаря невозможно дать полностью описания этого прибора, то здесь приводится описание наиболее простого прибора, которое дает понятие о принципе устройства абсолютного Э. и о манипуляциях с ним для определения разности потенциалов в абсолютных единицах. На коромысле точных весов с одной стороны подвешена чашка s , с другой стороны находится укороченный подвес, на котором привешена круглая металлическая пластинка С (см. фиг. 4).

Пластинка С помещается в середине отверстия, вырезанного в металлическом диске B , имеющем одинаковую с ней толщину и радиус весьма большой в сравнении с радиусом пластинки С . Посредством особого приспособления H , устроенного на привесе, можно точно установить пластинку С в плоскости металлического диска В и поместить ее в середине этого диска, так что между диском и пластинкой будет узкая щель, а нижняя поверхность пластинки С будет совпадать с нижней поверхностью диска В. Диск В поддерживается изолированной подставкой P , которая находится в металлическом сообщении с коромыслом весов и пластинкой С , так что возможно постоянно поддерживать пластинку С и диск В при одном и том же потенциале. Диск В называется охранным кольцом и служит для установления по всей поверхности пластинки С одинаковой плотности электричества. Под диском В находится одинаковая по размерам с ним металлическая пластинка А, которая помещена параллельно ему и может посредством микрометрического винта подниматься и опускаться. Пластинка А помещена на изолирующей подставке и сообщается посредством зажима Р" с телом, потенциал которого хотят определить. Зацепы M и N предохраняют коромысло от сильных размахов.

Сообщим пластинке С и охранному кольцу потенциал V 1 , а пластинке А потенциал V 2 , причем потенциалы будут различных знаков, тогда пластинка С будет притягиваться пластинкой А. Накладывая на чашку весов s гири, мы можем нижнюю поверхность пластинки С удержать в плоскости нижней поверхности охранного кольца В. Пусть для этого пришлось на чашку s положить N граммов, тогда сила Р = Ng, где P будет выражено в динах, и g есть ускорение силы тяжести. По приведенной выше формуле

V 1 -V 2 = D √(8πNg)/S,

где S - поверхность пластинки С, расстояние между пластинками С и A , которое обозначено в формуле буквой D , непосредственно весьма трудно определить, поэтому поступают следующим образом: охранное кольцо В и пластинку С соединяют с постоянным источником электричества (напр., со внутренней обкладкой лейденской банки, у которой наружная обкладка отведена к земле), потенциал которого - V 0 ; сообщают нижней пластинке А потенциал V 1 . Когда пластинка С уравновешена, то имеем

V 1 -V 2 = D√(8 πNg)/S , (1)

Не изменяя потенциала V 0 сообщенного охранному кольцу В и пластинке C , сообщаем пластинке А потенциал V 2 , и посредством микрометрического винта передвигаем пластинку А до тех пор, пока пластинка С будет уравновешена, тогда, обозначая расстояние между С и А через D", имеем

V 1 -V 2 = D"√(8πNg)/S . (2)

Вычитая (1) из (2), имеем

V 1 -V 2 = (D"-D)√(8πNg)/S.

Разность расстояний во втором и первом наблюдении D" - D может быть измерена микрометрическим винтом. Чтобы V 1 -V 2 было выражено в абсолютных единицах (CGS) для этого необходимо, чтобы N было выражено в граммах, g в см/сек. -2, D" - D в см и S в кв. см.

На металлической подставке (см. фиг. 5), снабженной тремя винтами, помещается стеклянная банка (из флинтгласа, хорошо изолирующего), на которой наклеены четыре широкие оловянные полоски. Эти оловянные полоски служат внешней обкладкой лейденской банки, внутреннюю обкладку которой составляет налитая в эту банку почти до половины её серная кислота (серная кислота служит вместе с тем для уничтожения влажности внутри прибора). Покрышкой для банки служит металлическая пластинка, посреди которой укреплена металлическая коробка с двумя круглыми отверстиями, закрытыми стеклами и находящимися друг к другу под прямым углом. Продолжением металлической коробки служит длинная стеклянная трубка, на верхнем конце которой устроено особое приспособление с крючком для подвешивания нити. Коконовая нить перекинута чрез крючок и к двум концам её привешено круглое зеркальце k (см. фиг. 6).

К бисквиту прикреплена платиновая проволочка, которая служит продолжением стеклянного стержня и на нижнем конце которой прикреплена платиновая пластинка, вся погруженная в серную кислоту. Бисквит помещен посреди круглой металлической коробки, разрезанной на 4 равные части (квадранты), и установлен как раз посреди одного из разрезов, разделяющих квадранты (см. фиг. 7).

Квадранты, посредством изолированных металлических стержней f , g, h, i (фиг. 6), прикреплены к крышке лейденской банки, причем противолежащие друг другу квадранты соединены между собой (g и h , f и i) проводниками и, таким образом, образуют две пары. Каждая пара квадрантов на крышке лейденской банки имеет свой зажим, изолированный от крышки банки. Один из таких зажимов обозначен на фигурах буквой с. Зеркало k устанавливается так, чтобы плоскость его составляла с плоскостями стекол, помещенных в вырезах металлической коробки, угол в 45°. При такой установке пучок света, направленный в одно из стекол, после отражения от зеркала выходит в другое и может быть таким образом отброшен на шкалу, где получается след в виде светлого пятна (зайчик). Если сообщить алюминиевой стрелке (бисквиту) некоторый постоянный потенциал, а двум парам квадрантов потенциалы различных знаков, то бисквит будет отталкиваться парой квадрантов, имеющих заряд одноименный с его зарядом, и притягиваться другой парой квадрантов, имеющих заряд противоположного знака: бисквит повернется на некоторый угол, а с ним вместе повернется и зеркало, вследствие чего зайчик будет перемещаться по шкале. Из теория квадрантного Э. следует, что угол отклонения бисквита

θ = γ (V 1 -V 2 ) [V 0 - ½(V 1 + V 2)],

где V 0 - потенциала бисквита, V 1 и V 2 - потенциалы, сообщенные квадрантам. Из формулы видно, что угол отклонения бисквита не пропорционален разности потенциалов квадрантов. Если V 0 потенциал бисквита очень велик в сравнении с V 1 и V 2 - потенциалами квадрантов, то, пренебрегая членом ½ (V 1 + V 2) получаем θ = γ (V 1 -V 2)V 0 , где γ - постоянное для данного прибора при данном расположения нитей. Следовательно, при значительном V 0 и малых V 1 и V 2 угол отклонения бисквита пропорционален разности потенциалов, сообщенных квадрантам. Для сообщения заряда бисквиту служит в описываемом приборе проволока e , соединенная с серной кислотой и изолированная от подставки прибора. Посредством стеклянной палочки, потертой о кожу, через проволоку е сообщается заряд серной кислоте, находящейся в металлическом соединении с бисквитом и образующей внутреннюю обкладку лейденской банки; наружная обкладка этой банки отведена к земле при помощи зажима a . Особый приборчик - репленишер (см. Репленишер) позволяет увеличить или уменьшить заряд, сообщенный серной кислоте и бисквиту. На фигуре виден стержень d , вращением которого в одну сторону заряд серной кислоты и бисквита увеличивается, вращением в другую сторону - уменьшается. Перед производством наблюдения Э. устанавливается так, чтобы стеклянный стерженек, соединяющий бисквит с зеркалом, проходил через центр коробки, составленной из квадрантов; затем бисквит устанавливается в середине коробки, что достигается подниманием или опусканием нитей при помощи верхнего винта головки (см; фиг. 8), находящейся на верхнем конце стеклянной трубки.

Нижний винт головки позволяет раздвигать или сдвигать нити и таким образом уменьшать или увеличивать чувствительность прибора. Перед наблюдением необходимо определить чувствительность Э., что легко сделать, присоединяя квадранты к полюсам "нормального" элемента.

В настоящее время самым чувствительным из квадрантных Э. является Э. Долежалека, который позволяет отсчитывать весьма малые доли вольта (в опытах Patterson"a до 6 х 10 -6) и, кроме того, благодаря прекрасной изоляции хорошо держит заряд. Главное усовершенствование этого Э. состоит в том, что бисквит его очень легок (сделан из бумаги, покрытой тонким слоем серебра) и вместо подвеса из коконовых нитей сделан подвес из тонкой кварцевой нити. Кварцевая нить имеет то преимущество, что, во-первых, она не обладает упругим последействием (см. Упругое последействие), а, во-вторых, может быть сделана весьма тонкой, чем достигается весьма большая чувствительность прибора. Заряд листочку сообщается присоединением головки Э. к постоянному источнику электричества (напр., к одному полюсу батарея аккумуляторов, когда другой полюс этой батареи отведен в землю). Так как кварц - непроводник, то для сообщения проводимости кварцевой нити ее предварительно опускают в раствор хлористого кальция; после высушивания нить является покрытой тонким слоем хлористого кальция; хлористый кальций, поглощая из окружающего воздуха влагу, образует на нити поверхность, проводящую электричество. Квадранты электрометра изолированы от подставки при помощи наилучших изоляторов, кварца или янтаря; чувствительность Э. может быть изменяема употреблением нитей разной толщины. На прилагаемом рисунке Э. изображен со снятой оправой, которая изображена отдельно (М). Между квадрантами θ виден бисквит N, выше которого находится зеркало A , привешенное на кварцевой нити к нижнему концу винта т. Посредством винта т можно бисквит электрометра поместить в середине коробки, образованной квадрантами. Вращением головки Т бисквит устанавливается симметрично относительно квадрантов. Винт S служит для закрепления головки Т. Квадранты θ соединены с зажимами К 1 и К 2 . При помощи стерженька R возможно отодвинуть половину коробки квадрантов и таким образом бисквит N снять с нитки, что бывает необходимо сделать при перемене нитей (на рисунке половина коробки квадрантов изображена отодвинутой). Отпуская винт S 2 возможно весь Э. вращать вокруг оси. Уравнительные винты служат для установки подставки Э. горизонтально.

Литература. И. Боргман "Основания учения об электрических и магнитных явлениях" (т. I.); Б. Ю. Кольбе, "Введение в учение об электричества", (часть I); A. Weinhold, "Physikalische Demonstrationen" (переводится на русский язык: Н. С. Лукьянов, "Физический кабинет"); Müller-Pouillet, "Lehrbuch der Physik" (т. III); "Zeitschrift für Instrumentenkande"

Удалив металлический корпус электрометра или заменив его стеклянным колпаком, мы получим простой электроскоп (§ 1). При этом линии электрического поля, исходящие от зарядов, будут, проходя через стекло, оканчиваться на окружающих предметах, и роль корпуса будут играть стены и потолок комнаты, тело экспериментатора и т. п. (рис. 47). В этом случае расположение эквипотенциальных поверхностей вокруг листков, а значит, и электрическое поле будут зависеть от положения этих предметов и при одной и той же разности потенциалов могут быть весьма различными. Отклонение листков будет зависеть от случайного расположения окружающих тел, и поэтому электроскоп не пригоден для точного суждения о разности потенциалов. Жесткий (не меняющий формы) металлический корпус является принципиально необходимой частью электрометра, отличающей его от электроскопа.

Рис. 47. Опыт с заряженным электроскопом: а) линии электрического поля вокруг заряженного электроскопа в закрытом помещении; б) при заземлении электроскопа электрическое поле вокруг него исчезает. Для наглядности стеклянный баллон электроскопа не изображен

26.1. При поднесении к заряженному электроскопу незаряженного стекла отклонение листков уменьшается. Объясните это.

Мы видим, что отклонение листков электроскопа в сущности зависит, так же как и у электрометра, от разности потенциалов (между листками и окружающими их предметами). Между тем во всех предыдущих опытах мы употребляли электроскоп для суждения о заряде. Однако в этом нет никакого противоречия, так как указанная разность потенциалов зависит от заряда, сообщенного листкам. Чем больше этот заряд, тем больше будет и разность потенциалов между листками и окружающими проводниками, тем сильнее разойдутся листки. Поэтому, переводя на электроскоп заряд с какого-либо тела, например помещая это тело в металлический стакан, скрепленный с электроскопом (рис. 9), мы можем по отклонению листков судить о заряде этого тела. То же самое, очевидно, относится и к электрометру. Каждый данный электрометр можно проградуировать не только на разность потенциалов, но и на заряд, выраженный в кулонах.

На данном уроке мы рассмотрим приборы, позволяющие зафиксировать и оценить электрический заряд - электроскоп и электрометр. Кроме того, мы узнаем о том, что вещества могут хорошо и не очень пропускать электрический заряд. Таким образом, существуют проводники, полупроводники и диэлектрики (изоляторы). Мы рассмотрим устройство и принцип работы электрометра и электроскопа, а также проведём эксперименты, подтверждающие различную проводимость материалами электрического заряда.

Тема: Электрические явления

Урок: Электроскоп. Проводники и непроводники электричества

На данном уроке мы продолжим знакомиться с темой «Электрические явления», и рассмотрим вопросы, касающиеся проводимости и непроводимости материалами электрического заряда, а также познакомимся с первыми простейшими приборами для измерения и регистрации зарядов - электрометром и электроскопом.

На предыдущем уроке мы выяснили, что электрические явления существуют, что их можно пронаблюдать и что связаны они со взаимодействием различных зарядов. Также мы выяснили, что эти взаимодействия определяются по действию силы, и, соответственно, величина взаимодействия определяется величиной электрического заряда. Мы также узнали, что одноимённые заряды отталкиваются, а разноимённые заряды, наоборот, притягиваются.

Теперь нам предстоит познакомиться с тем, как эти электрические заряды могут двигаться и переходить от одного тела к другому.

Первые систематические исследования электрических явлений относятся к XVII веку и связаны с именем немецкого учёного Отто фон Герике (Рис. 1).

Отто фон Герике провёл огромное количество экспериментов и определил, что электричество может быть «двух родов». Одно он назвал «стеклянным» , а другое - «смоляным» . Разница, как мы понимаем, состоит в знаке приобретаемого материалом заряда. Как уже было рассмотрено на предыдущем уроке, если мы потрём стеклянную палочку о бумагу, то получим на палочке положительный заряд. Если же потереть о мех эбонитовую палочку или янтарь, то получим отрицательный заряд. И Отто фон Герике первым установил, как эти заряды между собой взаимодействуют: одноимённые заряды отталкиваются, а разноимённые притягиваются.

Следующий шаг в исследовании электрических явлений сделал американский учёный Франклин (Рис. 2).

Рис. 2. Бенджамин Франклин ()

Франклин ввёл понятие электрического заряда и первым определил действие электричества, то есть электрическую силу.

Но прежде, чем говорить об электрической силе (взаимодействии зарядов), конечно, необходимо было научиться каким-то образом фиксировать и измерять величину заряда. Для этого необходимы были соответствующие приборы.

Самым первым прибором, который послужил людям для того, чтобы зафиксировать наличие электрического заряда и каким-то образом оценить величину электрического заряда, был прибор, который называется электроскоп («электро» - электрический, «скопио» - наблюдаю) . С небольшими изменениями электроскоп дошёл и до наших дней.

Электроскоп представляет собой очень несложную конструкцию. Как правило, это стеклянная банка, внутри которой через стеклянную или пластмассовую пробку продевается стержень, а на конце стержня укрепляются два лёгких бумажных лепестка (Рис. 3).

Если мы прикоснёмся к стержню наэлектризованной палочкой (стеклянной или эбонитовой), то лепестки, получая одноимённый заряд, отталкиваются, и тем самым мы видим наличие этих зарядов в электроскопе.

Рис. 3. Электроскоп ()

В XVIII веке также появился несколько усовершенствованный прибор, созданием которого занимался Михайло Васильевич Ломоносов (Рис. 4). Этот прибор называется электрометр («электро» - электрический, «метриум» - измеряю) .

Рис. 4. М. В. Ломоносов ()

На рис. 5. изображены электрометры.

Рис. 5. Электрометры ()

Как же устроен электрометр? Практически так же, как и электроскоп.

В верхней части электроскопа располагается шар (специально делается таким образом, чтобы можно было на нём разместить как можно большее количество зарядов). Металлический стержень проходит через пластмассовую пробку внутри металлического корпуса, который с двух сторон защищён стёклами. В нижней части стержня укреплена стрелка.

Стрелка, получая заряд от металлического стержня, знак которого совпадает с зарядом стержня, отталкивается, и по отклонению этой стрелки от вертикали можно судить о величине электрического заряда. Как видно на рисунке, в электрометре есть некая шкала, которая позволяет по углу отклонения стрелки судить о величине электрического заряда.

Рассмотрим действие электрометра.

Возьмём стеклянную палочку, потрём её о бумагу, чтобы в результате трения она стала наэлектризованной. Поднесём теперь палочку к шару электрометра, в результате заряд палочки передаётся шару электрометра, от которого получает заряд металлический стержень и стрелка электрометра. Поскольку стержень и стрелка обладают одноимённым зарядом, то стрелка отклоняется от стержня, тем самым демонстрируя нам наличие электрического заряда (Рис. 6).

Рис. 6. Принцип работы электрометра ()

Итак, мы рассмотрели устройство электрометра и электроскопа - простейшие приборы, которые можно использовать для регистрации и оценки величины электрического заряда. Обратите внимание, что по отклонению стрелки можно судить о величине электрического заряда. Грубо говоря, электрометр - это электроскоп со шкалой. Именно благодаря этому усовершенствованию Ломоносов и использовал электрометр для изучения электрических явлений.

Рассмотрим теперь способность материалов пропускать электрический заряд.

Когда мы говорили о тепловых явлениях, то обсуждали этот вопрос: есть вещества, которые очень быстро и хорошо передают тепло, а есть вещества, которые очень плохо передают тепло.

То же самое можно сказать об электрических свойствах. Есть вещества, которые пропускают электрические заряды достаточно хорошо, и такие вещества называются проводниками . Как правило, к этим веществам относятся растворы, расплавы, жидкости, и, конечно же, металлы. Металлы считаются наиболее хорошими проводниками электрического заряда.

Вместе с тем, есть вещества, которые достаточно плохо проводят электрические заряды. Это, в первую очередь, газы, которые проводят электрические заряды очень плохо. А также различные пластмассы, смолы, стекло. Хотя надо отметить, что свойство проводимости, которое мы сейчас обсуждаем, во многом зависит от состояния окружающей среды.

Вещества, которые плохо пропускают электрические заряды, называются диэлектриками , или изоляторами (от итальянского «изоляре») .

Кроме того, как вы, наверное, знаете, существуют вещества, у которых меняются свойства по пропусканию электрических зарядов; такие вещества называют полупроводниками , и более детально мы их будем рассматривать в старших классах.

Все перечисленные вещества применяются в технике для решения различных технических задач. К примеру, все электрические провода в доме выполнены из металла (чаще всего медь или алюминий). А, например, облицовка этих проводов или вилка, которая включается в розетку, обязательно должна быть очень хорошо изолирована, поэтому ее выполняют из различных полимеров, которые являются изоляторами и не пропускают электрические заряды.

Рассмотрим три опыта, которые продемонстрируют нам то, как различные вещества могут по-разному пропускать электрические заряды.

Первый эксперимент

Возьмём два электрометра. Один из них зарядим, а второй, наоборот, разрядим. Разрядить электрометр с небольшим зарядом просто - достаточно прикоснуться к нему рукой: наша кожа является неплохим проводником, поэтому заряд с шара электрометра перейдёт к нам. Однако будьте ОСТОРОЖНЫ! Благодаря тому, что кожа является хорошим проводником, человек подвержен опасности при контакте с носителями большого электрического заряда.

Теперь возьмём провод на изолированной пластмассовой ручке (изолирует руку от металлической проволоки) - и прикоснёмся к шарам этих электрометров. При этом стрелка второго электрометра практически моментально отклонится от вертикального положения. Обратим внимание на то, как быстро произошло протекание заряда от одного электрометра к другому. Это говорит о том, что металлы - очень хорошие проводники. Необходимо отметить тот факт, что металлы тоже обладают разной проводимостью. Наиболее хорошо проводят электрические заряды такие металлы, как серебро, медь и алюминий.

Второй эксперимент

Сообщим дополнительный заряд первому электрометру и разрядим второй электрометр.

Теперь возьмём деревянную линейку и положим её на два электрометра. Что при этом произойдёт? Для чистоты эксперимента изолируем линейку от руки с помощью, к примеру, листа бумаги.

Мы видим, что стрелка второго электрометра отклоняется не так резко, как в первом эксперименте, а постепенно. Это означает, что электрические заряды по дереву тоже проходят, то есть дерево можно считать проводником. Но, естественно, его свойства проводимости отличаются от свойств металлов. Следовательно, можно говорить о том, что такие вещества, как дерево и металл, существенно отличаются своей проводимостью.

Третий эксперимент

В третьем эксперименте мы пронаблюдаем за тем, как ведут себя диэлектрики.

Для этого повторим эксперимент следующим образом: разрядим второй электрометр и сообщим дополнительный заряд первому электрометру.

Затем возьмём стеклянную палочку и потрём её о бумагу. В результате взаимодействия происходит разделение электрического заряда, то есть электризация. При этом само стекло не является проводником, то есть стекло плохо пропускает электрический заряд. Теперь приложим палочку к обоим электрометрам.

В данном случае мы наблюдаем следующее: после прикосновения палочки к шарам электрометров совершенно ничего не происходит. То есть второй электрометр остаётся незаряженным. Это означает, что стекло у нас не пропускает электрические заряды.

Немаловажным является тот факт, что важное значение для проводимости некоторых веществ имеет состояние окружающей среды. Например, если повышается влажность воздуха (о которой мы говорили в предыдущей теме), то в этом случае многие вещества будут вести себя, как проводники.

Наглядной демонстрацией этого может служить молния. Ведь молния обычно наблюдается тогда, когда идёт дождь, то есть влажность максимальна. Соответственно, во влажном воздухе начинает проходить электрический заряд, то есть электрический заряд идёт по воздуху (газу). Хотя в обычной ситуации воздух не проводит электрический заряд. То есть воздух становится проводником именно в том случае, когда изменилась влажность. Можно и привести и другие примеры, подтверждающие влияние влажности на проводимость материалов.

На следующем уроке мы познакомимся с вопросами, связанными с зарядами: какие заряды существуют и существует ли минимальный электрический заряд.

Список литературы

  1. Генденштейн Л. Э, Кайдалов А. Б., Кожевников В. Б. Физика 8 / Под ред. Орлова В. А., Ройзена И. И. - М.: Мнемозина.
  2. Перышкин А. В. Физика 8. - М.: Дрофа, 2010.
  3. Фадеева А. А., Засов А. В., Киселев Д. Ф. Физика 8. - М.: Просвещение.
  1. Фестиваль педагогических идей «открытый урок» ().
  2. Интернет-портал Works.tarefer.ru ().
  3. Уроки ().

Домашнее задание

  1. П. 27, вопросы 1-4. Перышкин А. В. Физика 8. - М.: Дрофа, 2010.
  2. Каким свойством должны обладать нити, на которых подвешиваются заряженные тела при экспериментах по электричеству?
  3. Почему стрелка электроскопа отклоняется, когда электроскоп заряжают? Зависит ли отклонение от знака заряда?
  4. Как можно опытным путём отличить проводник от диэлектрика?

Электроскоп. Электрометр. Проводники и изоляторы - страница №1/1

Электроскоп. Электрометр. Проводники и изоляторы.

Если вы походили в одежде из синтетической ткани, то очень вероятно, что вскоре вы ощутите не очень приятные последствия от такого занятия. Ваше тело наэлектризуется и, здороваясь с другом или дотрагиваясь до дверной ручки, вы ощутите острый укол тока.

Это не смертельно и не опасно, но не очень-то приятно. Каждый хотя бы раз в жизни сталкивался с подобным явлением. Но частенько мы узнаем, что наэлектризовались, уже по последствиям. Можно ли узнать, что тело наэлектризовано каким-нибудь более приятным способом, чем укол тока?

Самый простой прибор для определения наэлектризованности – электроскоп. Электрический заряд можно передать от одного тела к другому. Для этого нужно коснуться наэлектризованным телом другого тела, и тогда часть электрического заряда перейдет на него. Значит, если коснуться заряженным телом специального прибора– электроскопа, он должен показать нам наличие электрического заряда.

В электроскопе через пластмассовую пробку, вставленную в металлическую оправу, пропущен металлический стержень, на конце которого подвешены два листочка, например, из легкой тонкой фольги. Оправа с обеих сторон закрыта стеклами.

Если дотронуться до электроскопа телом, обладающим каким-либо зарядом, то этот заряд передастся металлическому стержню с лепестками. Лепестки приобретут заряд одного знака и разойдутся, отталкиваемые одноименным зарядом друг от друга.

По шкале можно будет увидеть размер заряда в кулонах.

Проведем наэлектризованной палочкой по стержню электроскопа. Листочки получат заряды одинакового знака (того, что был на палочке) и разойдутся (рис. 8, б). Угол расхождения листочков зависит от заряда, который был им сообщен. Чем больше этот заряд, тем сильнее они будут отталкиваться друг от друга и потому тем на больший угол они разойдутся. И наоборот, уменьшение угла расхождения листочков свидетельствует об уменьшении электрического заряда.

Есть еще разновидность электроскопа – электрометр (рис. 9). Вместо листочков внутри его находится стрелка. При сообщении стержню А (или металлическому шару, надетому на этот стержень) заряда часть его (того же знака) переходит на стрелку В. Отталкиваясь от стержня, стрелка поворачивается на некоторый угол. По изменению этого угла можно судить об увеличении или уменьшении электрического заряда.
КАК ИЗОБРЕТАЛИ ЭЛЕКТРОСКОП?

Как известно, самая первая приемлемая конструкция электроскопа была предложена Г.В.Рихманом, который измерял электрический заряд по отклонению от заряженной стойки льняной нити.
К нижнему концу шеста прикрепляли железную линейку, к верхней части которой приклеивали шелковую нить. При приближении грозы металлический шест и линейка с нитью заряжались, и нить, отталкиваясь от нее, отклонялась на некоторый угол. При близкой и сильной грозе из линейки извлекали искры.

Если коснуться заряженного предмета (например, шара электрометра) рукой, то этот предмет разрядится. Через руку электрический заряд уйдет в наше тело и распределится по его поверхности. То же самое произойдет и в том случае, если мы дотронемся до шара электрометра не рукой, а металлической линейкой.


Тела, через которые способны проходить электрические заряды, называют проводниками электричества. Тело человека, металлы, а также растворы солей и кислот в воде и почва являются хорошими проводниками.

И наоборот, такие вещества , как янтарь, стекло, резина, фарфор, эбонит, пластмасса, шелк, капрон, керосин, воздух, при обычных условиях не проводят электричества и потому называются непроводниками или диэлектриками. Абсолютно непроводящая жидкость – дистиллированная, т.е. очищенная вода,(любая другая вода (водопроводная или морская) содержит какое-то количество примесей и является проводником)

Из диэлектриков изготавливают изоляторы.

II уровень.


  1. Почему стрелка электроскопа отклоняется, когда электроскоп заряжают? Зависит ли отклонение стрелки от знака заряда?

  2. При окраске автомобиля корпус заряжают положительно. Как должны быть заряжены частицы краски? Почему окрашивание при этом равномерно и прочно? Какую роль играет в этом случае электризация?

  3. При копировании бумага при трении получает через специальное устройство заряд «–» причем в тех местах, куда попал луч света. А что же дальше..? Объясните принцип действия копировальной техники. Обратите внимание, что принцип работы лазерного, струйного принтеров и копировального аппарата отличаются.

  4. Может ли одно и тоже тело, например эбонитовая палочка, при трении электризоваться то отрицательно, то положительно?

  5. Если вынуть один капроновый чулок из другого и держать каждый в руке на воздухе, то они расширяются. Почему?

  1. На рисунке представлены четыре частицы. Какие из этих частиц отталкиваются?
А) только 1 и 2; Б) только 3 и 4;

В) 1 и 2, 2 и 3; Г) 1 и 2, 3 и 4.


  1. Каким зарядом обладают шарики?


  1. Почему заряженный шарик при приближении к нему электроскопов отклонился вправо, а не влево (рис., а, б)?

  2. Как можно при помощи электроскопа, стеклянной палочки и шелкового лоскута ткани определить, зарядом какого знака заряжено тело?

  3. Зачем стержень электроскопа всегда делают металлическим?

  4. Из материалов, перечисленных ниже, укажите, что относится к проводникам, а что к изоляторам:
серебро, бронза, медный купорос, уголь, стекло, сталь, графит, пластмасса, водный раствор соли, песок, бетон, воск, алюминий, медь, бензин, шелк, сахар, раствор сахара, воздух, вода, водный раствор медного купороса

  1. Почему рекомендуется в опытах по электростатике различные наэлектризованные тела подвешивать не на простых, а на шелковых нитях? Оборудование следует держать сухим.. Эксперимент.

Можно вместо картона, взять пластмассовую крышку от банки.

А фольгу лучше взять от шоколадки или конфетки.


Фотографируй, как ставишь опыты:

Заряди свой электроскоп используя наэлектризованное тело, знак заряда которого известен, например стекло и бумага. Затем наэлектризуйте другие тела (пластмассовую ручку, расческу, стеклянный стакан и т. п.) и, поднося их к электроскопу, определите знак заряда этих тел. Проиллюстрируйте свою работу в презентации. Не забудьте сделать вывод, о том какие заряды приобретает то или иное заряженное тело.

Жду до 28.01. Всем сделавшим с удовольствием ставлю «5»!



Понравилась статья? Поделитесь с друзьями!