Фазовые переходы определение схема и название процессов. Фазы и фазовые переходы


Фазовые переходы , переходы вещества из одной фазы в другую при изменении параметров состояния, характеризующих термодинамическое равновесие. Значение температуры, или какой-либо другой физической величины, при котором происходят фазовые переходы в одно-компонентной системе, называют точкой перехода. При фазовых переходах I рода свойства, выражаемые первыми производными G по давлению р, т-ре Т и другим параметрам, меняются скачком при непрерывном изменении этих параметров. При этом выделяется или поглощается теплота перехода. В однокомпонентной системе температура перехода T 1 связана с давлением р 1 Клапейрона-Клаузиуса уравнением dp 1 /dT 1 = = QIT 1 DV, где Q - теплота перехода, DV - скачок объема. Для фазовые переходы I рода характерны гистерезисные явления (например, перегрев или переохлаждение одной из фаз), необходимые для образования зародышей другой фазы и протекания фазовые переходы с конечной скоростью. В отсутствие устойчивых зародышей перегретая (переохлажденная) фаза находится в состоянии метастабильного равновесия. Одна и та же фаза может существовать (хотя и метастабильно) по обе стороны от точки перехода на (однако кристаллич. фазы нельзя перегреть выше температуры или сублимации). В точке F. p. I рода энергия Гиббса G как функция непрерывна, а обе фазы могут сосуществовать сколь угодно долго, то есть имеет место так называемое фазовое расслоение (например, сосуществование и ее или и при заданном полном объеме системы).

фазовые переходы I рода - широко распространенные в природе явления. К ним относятся и из газовой в жидкую фазу, плавление и затвердевание, и (десублимация) из газовой в твердую фазу, большинство полиморфных превращений, некоторые структурные переходы в твердых телах, например, образование мартенсита в - . В чистых достаточно сильное магнитное поле вызывает фазовые переходы I рода из сверхпроводящего в нормальное состояние.

При фазовые переходы II рода сама величина G и первые производные G по T, р и др. параметрам состояниям меняются непрерывно, а вторые производные (соответственно , коэффициент и термического расширения) при непрерывном изменении параметров меняются скачком либо сингулярны. Теплота не выделяется и не поглощается, явления гистерезиса и метастабильные состояния отсутствуют. К фазовым переходам II рода, наблюдаемым при изменении температуры, относятся, например, переходы из парамагнитного (неупорядоченного) состояния в магнитоупорядоченное (ферро- и ферримагнитное в . антиферромагнитное в Нееля точке) с появлением спонтанной намагниченности (соотв. во всей решетке или в каждой из магнитных подрешеток); переход - с появлением спонтанной . возникновение упорядоченного состояния в твердых телах (в упорядочивающихся сплавах); переход смектических жидких кристаллов в нематическую фазу, сопровождающийся аномальным ростом теплоемкости, а также переходы между различными смектическими фазами; l - переход в 4 He, сопровождающийся возникновением аномально высокой и сверхтекучести. Переход в сверхпроводящее состояние в отсутствие магнитного поля.

Фазовые переходы могут быть связаны с изменением давления. Многие вещества при малых давлениях кристаллизуются в неплотноупакованные структуры. Например, структура представляет собой ряд далеко отстоящих друг от друга слоев . При достаточно высоких давлениях таким рыхлым структурам соответствуют большие значения энергии Гиббса, а меньшим значениям отвечают равновесные плотноупакованные фазы. Поэтому при больших давлениях графит переходит в алмаз. Квантовые 4 He и 3 He при нормальном давлении остаются жидкими вплоть до самых низких из достигнутых температур вблизи абсолютного нуля. Причина этого - в слабом взаимодействии и большой амплитуде их "нулевых колебаний" (высокой вероятности квантового туннелирования из одного фиксированного положения в другое). Однако повышение приводит к затвердеванию жидкого гелия; например, 4 He при 2,5 МПа образует гексаген, плотноупакованную решетку.

Общая трактовка фазовых переходов II рода предложена Л. Д. Ландау в 1937. Выше точки перехода система, как правило, обладает более высокой симметрией, чем ниже точки перехода, поэтому фазовые переходы II рода трактуется как точка изменения симметрии. Например, в ферромагнетике выше точки Кюри направления спиновых магнитных моментов частиц распределены хаотически, поэтому одновременное вращение всех спинов вокруг одной и той же оси на одинаковый угол не меняет физ. свойств системы. Ниже точки перехода спины имеют преимущественную ориентацию, и совместный их поворот в указанном выше смысле изменяет направление магнитного момента системы. В двухкомпонентном сплаве, атомы которого А и В расположены в узлах простой кубической кристаллической решетки, неупорядоченное состояние характеризуется хаотическим распределением А и В по узлам решетки, так что сдвиг решетки на один период не меняет свойств. Ниже точки перехода атомы сплава располагаются упорядочено: ...ABAB... Сдвиг такой решетки на период приводит к замене всех А на В и наоборот. Tаким образом, симметрия решетки уменьшается, так как подрешетки, образуемые атомами А и В, становятся неэквивалентными.

Симметрия появляется и исчезает скачком; при этом нарушение симметрии можно охарактеризовать физ. величиной, которая при фазовые переходы II рода изменяется непрерывно и наз. параметром порядка. Для чистых жидкостей таким параметром является плотность, для растворов - состав, для ферро- и ферримагнетиков - спонтанная намагниченность, для сегнетоэлектриков - спонтанная электрическая поляризация, для сплавов - доля упорядочившихся для смектических жидких кристаллов - амплитуда волны плотности и т. п. Во всех перечисленных случаях при температурах выше точки фазовые переходы II рода параметр порядка равен нулю, ниже этой точки начинается его аномальный рост, приводящий к макс. значению при T = O.

Отсутствие теплоты перехода, скачков плотности, и концентраций, характерное для фазовых переходов II рода, наблюдается и в критической точке на кривых фазовых переходов I рода. Сходство оказывается очень глубоким. Состояние вещества около критической точки также можно охарактеризовать величиной, играющей роль параметра порядка. Например, в случае равновесия жидкость - пар таким параметром служит отклонение плотности вещества от критического значения: при движении по критической изохоре со стороны высоких температур газ однороден и отклонение плотности от критического значения равно нулю, а ниже критической температуры вещество расслаивается на две фазы, в каждой из которых отклонение плотности от критической не равно нулю.

Поскольку вблизи точки фазовых переходов II рода фазы мало отличаются друг от друга, возможно существование флуктуации параметра порядка, точно так же, как вблизи критической точки. С этим связаны критические явления в точках фазовые переходы II рода: аномальный рост магнитной восприимчивости ферромагнетиков и диэлектрической восприимчивости сегнетоэлектриков (аналогом является рост вблизи критической точки перехода жидкость - пар); резкий рост теплоемкости; аномальное рассеяние световых волн в системе жидкость - пар (так называемая критическая опалесценция), рентгеновских лучей в твердых телах, нейтронов в ферромагнетиках. Существенно меняются и динамические процессы, что связано с очень медленным рассасыванием образовавшихся флуктуации. Например, вблизи критической точки жидкость-пар сужается линия рэлеевского рассеяния света, вблизи точек Кюри и Нееля соответственно в ферромагнетиках и антиферромагнетиках замедляется спиновая диффузия (происходящее по законам диффузии распространение избыточной намагниченности). Средний размер флуктуации (корреляционный радиус) растет по мере приближения к точке фазовые переходы II рода и становится в этой точке аномально большим. Это означает, что любая часть вещества в точке перехода "чувствует" изменения, произошедшие в остальных частях. Наоборот, вдали от точки перехода II рода флуктуации статистически независимы и случайные изменения состояния в данной части системы не сказываются на свойствах других ее частей.

Переход вещества из одного состояния в другое - очень частое явление в природе. Кипение воды в чайнике, замерзание рек зимой, плавление металла, сжижение газов, размагничивание ферритов при нагревании и т.д. относятся именно к таким явлениям, называемым фазовыми переходами. Обнаруживают фазовые переходы по резкому изменению свойств и особенностям (аномалиям) характеристик вещества в момент фазового перехода: по выделению или поглощению скрытой теплоты; скачку объема или скачку теплоемкости и коэффициента теплового расширения; изменению электросопротивления; возникновению магнитных, сегнетоэлектрических, пьезомагнитных свойств, изменению картины рентгеновской дифракции и т.д. Какая из фаз вещества устойчива при тех или иных условиях, определяется одним из термодинамических потенциалов. При заданных в термостате температуре и объеме это свободная энергия Гельмгольца , при заданных температуре и давлении - потенциал Гиббса .

Напомню, что потенциал Гельмгольца F (свободная энергия)- это разность между внутренней энергией вещества Е и его энтропией S, умноженной на абсолютную температуру Т:

И энергия, и энтропия в (1) являются функциями внешних условий (давления p и температуры Т), а фаза, которая реализуется при определенных внешних условиях, обладает наименьшим из всех возможных фаз потенциалом Гиббса. В рамках термодинамики это принцип. При изменении внешних условий может оказаться, что свободная энергия другой фазы стала меньше. Изменение внешних условий всегда происходит непрерывно, и поэтому его можно описать некоторой зависимостью объема системы от температуры . Учитывая это согласование в значениях Т и V, можно сказать, что смена стабильности фаз и переход вещества из одной фазы в другую происходят при определенной температуре на термодинамическом пути , а значения для обеих фаз являются функциями температуры вблизи этой точки Рассмотрим более подробно, как происходит изменение знака . Вблизи зависимость для одной и для другой фазы можно аппроксимировать некоторыми полиномами, которые зависят от :

Разность между свободными энергиями двух фаз принимает вид

Пока разность достаточно мала, можно ограничиться только первым слагаемым и утверждать, что если , то при низких температурах стабильна фаза I, при высоких температурах - фаза II. В самой точке перехода первая производная свободной энергии по температуре естественно испытывает скачок: при , а при . Как мы знаем, есть, по сути, энтропия вещенста. Следовательно, при фазовом переходе энтропия испытывает скачок, определяя скрытую теплоту перехода , так как . Описанные переходы называются переходами первого рода, и они широко известны, изучаются в школе. Все мы знаем о скрытой теплоте парообразования или плавления. Это и есть .

Описывая переход в рамках приведенных термодинамических соображений, мы не рассмотрели только одну, с первого взгляда маловероятную, возможность: может случиться, что при равны не только свободные энергии, но и их производные по температуре, то есть . Из (2) следует, что такая температура, по крайней мере с точки зрения равновесных свойств вещества, не должна быть выделенной. Действительно, при и в первом приближении по отношению к имеем

и, по крайней мере в этой точке, никакого фазового перехода произойти не должно: тот потенциал Гиббса, который был меньше при , будет меньше и при .

В природе, конечно же, не все так однозначно. Иногда есть глубокие причины для того, чтобы при одновременно выполнялись два равенства и . Более того, фаза I становится абсолютно неустойчивой относительно сколь угодно малых флуктуаций внутренних степеней свободы при , а фаза II - при . В этом случае и происходят те переходы, которые по известной классификации Эренфеста получили название переходов второго рода. Название это связано с тем, что при переходах второго рода происходит скачок только второй производной потенциала Гиббса по температуре. Как мы знаем, вторая производная свободной энергии по температуре определяет теплоемкость вещества

Таким образом, при переходах второго рода должен наблюдаться скачок теплоемкости вещества, но не должно быть скрытой теплоты. Поскольку при фаза II абсолютно неустойчива относительно малых флуктуаций и то же относится к фазе I при , то при переходах второго рода не должны наблюдаться ни перегрев, ни переохлаждение, то есть отсутствует температурный гистерезис точки фазового перехода. Есть еще и другие замечательные признаки, характеризующие эти переходы

В чем же глубинные причины термодинамически необходимых условий перехода второго рода? Дело в том, что и при и при существует одно и то же вещество. Взаимодействия между элементами, его составляющими, не изменяются скачком, это и есть физическая природа того, что термодинамические потенциалы для обеих фаз не могут быть совсем независимыми. Как возникает связь между и , и и т.д., можно проследить на простых моделях фазовых переходов, вычисляя термодинамические потенциалы при разных внешних условиях методами статистической механики. Наиболее просто вычислять свободную энергию .

ВИКИПЕДИЯ

Фа́зовый перехо́д (фазовое превращение) в термодинамике - переход вещества из однойтермодинамической фазы в другую при изменении внешних условий. С точки зрения движения системы по фазовой диаграмме при изменении её интенсивных параметров (температуры, давления и т. п.), фазовый переход происходит, когда система пересекает линию, разделяющую две фазы. Поскольку разные термодинамические фазы описываются различными уравнениями состояния, всегда можно найти величину, которая скачкообразно меняется при фазовом переходе.

Поскольку разделение на термодинамические фазы - более мелкая классификация состояний, чем разделение по агрегатным состояниям вещества, то далеко не каждый фазовый переход сопровождается сменой агрегатного состояния. Однако любая смена агрегатного состояния есть фазовый переход.

Наиболее часто рассматриваются фазовые переходы при изменении температуры, но при постоянном давлении (как правило равном 1 атмосфере). Именно поэтому часто употребляют термины «точка» (а не линия) фазового перехода, температура плавления и т. д. Разумеется, фазовый переход может происходить и при изменении давления, и при постоянных температуре и давлении, но и при изменении концентрации компонентов (например, появление кристалликов соли в растворе, который достиг насыщения).

При фазовом переходе первого рода скачкообразно изменяются самые главные, первичные экстенсивные параметры:удельный объём, количество запасённой внутренней энергии, концентрация компонентов и т. п. Подчеркнём: имеется в виду скачкообразное изменение этих величин при изменении температуры, давления и т. п., а не скачкообразное изменение во времени (насчёт последнего см. ниже раздел Динамика фазовых переходов ).

Наиболее распространённые примеры фазовых переходов первого рода :

· плавление и кристаллизация

· испарение и конденсация

· сублимация и десублимация

При фазовом переходе второго рода плотность и внутренняя энергия не меняются, так что невооружённым глазом такой фазовый переход может быть незаметен. Скачок же испытывают их производные по температуре и давлению: теплоёмкость, коэффициент теплового расширения, различные восприимчивости и т. д.

Фазовые переходы второго рода происходят в тех случаях, когда меняется симметрия строения вещества (симметрия может полностью исчезнуть или понизиться). Описание фазового перехода второго рода как следствие изменения симметрии даётся теорией Ландау. В настоящее время принято говорить не об изменении симметрии, но о появлении в точке перехода параметра порядка , равного нулю в менее упорядоченной фазе и изменяющегося от нуля (в точке перехода) до ненулевых значений в более упорядоченной фазе.

Наиболее распространённые примеры фазовых переходов второго рода:

· прохождение системы через критическую точку

· переход парамагнетик-ферромагнетик или парамагнетик-антиферромагнетик (параметр порядка - намагниченность)

· переход металлов и сплавов в состояние сверхпроводимости (параметр порядка - плотность сверхпроводящего конденсата)

· переход жидкого гелия в сверхтекучее состояние (п.п. - плотность сверхтекучей компоненты)

· переход аморфных материалов в стеклообразное состояние

Современная физика исследует также системы, обладающие фазовыми переходами третьего или более высокого рода.

В последнее время широкое распространение получило понятие квантовый фазовый переход, т.е. фазовый переход, управляемый не классическими тепловыми флуктуациями, а квантовыми, которые существуют даже при абсолютном нуле температур, где классический фазовый переход не может реализоваться вследствие теоремы Нернста.


©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-02-12

Введение.

Фазами называют однородные различные части физико-химических систем. Однородным является вещество, когда все параметры состояния вещества одинаковы во всех его объемах, размеры которых велики по сравнению с межатомными состояниями. Смеси различных газов всегда составляют одну фазу, если во всем объеме они находятся в одинаковых концентрациях.

Одно и то же вещество в зависимости от внешних условий может быть в одном из трех агрегатных состояний - жидком, твердом или газообразном. В зависимости от внешних условий может находиться в одной фазе, либо сразу в нескольких фазах. В окружающей нас природе мы особенно часто наблюдаем фазовые переходы воды. Например: испарение, конденсация. Существуют такие условия давления и температуры, при которых вещество находится в равновесии в различных фазах. Например, при сжижении газа в состоянии равновесия фаз объем, может быть каким угодно, а температура перехода связана с давлением насыщенного пара. Температуры, при которых происходят переходы из одной фазы в другую, называются температурами перехода. Они зависят от давления, хотя и в различной степени: температура плавления - слабее, температура парообразования и сублимации - сильнее. При нормальном и постоянном давлении переход происходит при определенном значении температуры, и здесь имеют место точки плавления, кипения и сублимации (или возгонки.). Сублимация - это переход вещества из твердого состояния в газообразное можно наблюдать, например, в оболочках кометных хвостов. Когда комета находится далеко от солнца, почти вся ее масса сосредоточена в ее ядре, имеющем размеры 10-12 километров. Ядро, окруженное небольшой оболочкой газа - это так называемая голова кометы. При приближении к Солнцу ядро и оболочки кометы начинают нагреваться, вероятность сублимации растет, а десублимации - уменьшается. Вырывающиеся из ядра кометы газы увлекают за собой и твердые частицы, голова кометы увеличивается в объеме и становится газопылевой по составу.

Фазовые переходы первого и второго рода.

Фазовые переходы бывают нескольких родов. Изменения агрегатных состояний вещества называют фазовыми переходами первого рода, если:

1)Температура постоянна во время всего перехода.

2)Меняется объем системы.

3) Меняется энтропия системы.

Чтобы произошел такой фазовый переход, нужно данной массе вещества пообшить определенное количество тепла, соответствующего скрытой теплоте превращения. В самом деле, при переходе конденсированной фазы в фазу с меньшей плотностью нужно сообщить некоторое количество энергии в форме теплоты, которое пойдет на разрушение кристаллической решетки (при плавлении) или на удаление молекул жидкости друг об друга (при парообразовании). Во время преобразования скрытая теплота пойдет на преобразование сил сцепления, интенсивность теплового движения не изменится, в результате температура останется постоянной. При таком переходе степень беспорядка, следовательно, и энтропия, возрастает. Если процесс идет в обратном направлении, то скрытая теплота выделяется. К фазовым переходам первого рода относятся: превращение твердого тела в жидкое (плавления) и обратный процесс (кристаллизация), жидкого - в пар (испарение, кипение). Одной кристаллической модификации - в другую (полиморфные превращения). К фазовым переходам второго рода относится: переход нормального проводника в сверхпроводящее состояние, гелий-1 в сверхтекучий гелий-2, ферромагнетика - в парамагнетик. Такие металлы, как железо, кобальт, никель и гадолиний, выделяются своей способностью сильно намагничиваются и долго сохранять состояние намагниченности. Их называют ферромагнетиками. Большинство металлов (щелочные и щелочноземельные металлы и значительная часть переходных металлов) слабо намагничиваются и не сохраняют это состояние вне магнитного поля - это парамагнетики. Фазовые переходы второго, третьего и так далее родов связаны с порядком тех производных термодинамического потенциала?ф, которые испытывают конечные измерения в точке перехода, Такая классификация фазовых превращений связана с работами физика - теоретика Пауля Эрнеста (1880 -1933). Так, в случае фазового перехода второго рода в точке перехода испытывают скачки производные второго порядка: теплоемкость при постоянном давлении Cp=-T(?ф 2 /?T 2), сжимаемость в=-(1/V 0)(? 2 ф/?p 2), коэффициент теплового расширения б=(1/V 0)(? 2 ф/?Tp), тогда как первые производные остаются непрерывными. Это означает отсутствие выделения (поглощения) тепла и изменения удельного объема (ф - термодинамический потенциал).

Состояние фазового равновесия характеризуется определенной связью между температурой фазового превращения и давлением. Численно эта зависимость для фазовых переходов даётся уравнением Клапейрона-Клаузиуса: p/T=q/TV. Исследования при низких температурах - очень важный раздел физики. Дело в том, что таким образом можно избавиться от помех связанных с хаотическим тепловым движением и изучать явления в “чистом” виде. Особенно важно это при исследовании квантовых закономерностей. Обычно из-за хаотического теплового движения происходит усреднение физической величины по большому числу её различных значений и квантовые скачки “смазываются”.

Низкие температуры (криогенные температуры), в физике и криогенной технике диапазон температур ниже 120°К (0°с=273°К); работы Карно (работал над тепловым двигателем) и Клаузиуса положили начало исследованиям свойств газов и паров, или технической термодинамике. В 1850 году Клаузиус заметил, что насыщенный водяной пар при расширении частично конденсируется, а при сжатии переходит в перегретое состояние. Особый вклад в развитие этой научной дисциплины внес Реню. Собственный объем молекул газа при комнатной температуре составляет примерно одну тысячную объема, занимаемого газом. Кроме того, молекулы притягиваются друг к другу на расстояниях, превышающих те, с которых начинается их отталкивание.

переходы в-ва из одной фазы в другую при изменении параметров состояния, характеризующих термодинамич. равновесие. Значение т-ры, давления или к.-л. др. физ. величины, при к-ром происходят Ф. п. в одно-компонентной системе, наз. точкой перехода. При Ф. п. I рода св-ва, выражаемые первыми производными энергии Гиббса G по давлению р, т-ре Т и др. параметрам, меняются скачком при непрерывном изменении этих параметров. При этом выделяется или поглощается теплота перехода. В однокомпонентной системе т-ра перехода 1 связана с давлением р 1 Клапейрона - Клаузиуса уравнением dp 1 /dT 1 = = QIT 1 DV, где Q - теплота перехода, DV - скачок объема. Для Ф. п. I рода характерны гистерезисные явления (напр., перегрев или переохлаждение одной из фаз), необходимые для образования зародышей другой фазы и протекания Ф. п. с конечной скоростью. В отсутствие устойчивых зародышей перегретая (переохлажденная) фаза находится в состоянии метастабильного равновесия (см. Зарождение новой фазы). Одна и та же фаза может существовать (хотя и метастабильно) по обе стороны от точки перехода на диаграмме состояния (однако кристаллич. фазы нельзя перегреть выше т-ры плавления или сублимации). В точке F. p. I рода энергия Гиббса G как ф-ция параметров состояния непрерывна (см. рис. в ст. Диаграмма состояния), а обе фазы могут сосуществовать сколь угодно долго, т. е. имеет место т. наз. фазовое расслоение (напр., сосуществование жидкости и ее пара или твердого тела и расплава при заданном полном объеме системы).

Ф. п. I рода - широко распространенные в природе явления. К ним относятся испарение и конденсация из газовой в жидкую фазу, плавление и затвердевание, сублимация и конденсация (десублимация) из газовой в твердую фазу, большинство полиморфных превращений, нек-рые структурные переходы в твердых телах, напр, образование мартенсита в сплаве железо - углерод. В чистых сверхпроводниках достаточно сильное магн. поле вызывает Ф. п. I рода из сверхпроводящего в нормальное состояние.

При Ф. п. II рода сама величина G и первые производные G по T, р и др. параметрам состояниям меняются непрерывно, а вторые производные (соотв. теплоемкость, коэф. сжимаемости и термич. расширения) при непрерывном изменении параметров меняются скачком либо сингулярны. Теплота не выделяется и не поглощается, явления гистерезиса и метаста-бильные состояния отсутствуют. К F.п. II рода, наблюдаемым при изменении т-ры, относятся, напр., переходы из парамагнитного (неупорядоченного) состояния в магнитоупо-рядоченное (ферро- и ферримагнитное в Кюри точке, антиферромагнитное в Нееля точке) с появлением спонтанной намагниченности (соотв. во всей решетке или в каждой из магн. подрешеток); переход диэлектрик - сегнетоэлектрик с появлением спонтанной поляризации; возникновение упорядоченного состояния в твердых телах (в упорядочивающихся сплавах); переход смектич. жидких кристаллов в нематич. фазу, сопровождающийся аномальным ростом теплоемкости, а также переходы между разл. смектич. фазами; l-переход в 4 He, сопровождающийся возникновением аномально высокой теплопроводности и сверхтекучести (см. Гелий); переход металлов в сверхпроводящее состояние в отсутствие магн. поля.

F. п. могут быть связаны с изменением давления. Многие в-ва при малых давлениях кристаллизуются в неплотноупако-ванные структуры. Напр., структура графита представляет собой ряд далеко отстоящих друг от друга слоев атомов углерода. При достаточно высоких давлениях таким рыхлым структурам соответствуют большие значения энергии Гиббса, а меньшим значениям отвечают равновесные плотноупако-ванные фазы. Поэтому при больших давлениях графит переходит в алмаз. Квантовые жидкости 4 He и 3 He при нормальном давлении остаются жидкими вплоть до самых низких из достигнутых т-р вблизи абс. нуля. Причина этого - в слабом взаимод. атомов и большой амплитуде их "нулевых колебаний" (высокой вероятности квантового туннелирования из одного фиксированного положения в другое). Однако повышение давления приводит к затвердеванию жидкого гелия; напр., 4 He при 2,5 МПа образует гексаген, плотноупакован-ную решетку.

Общая трактовка F. п. II рода предложена Л. Д. Ландау в 1937. Выше точки перехода система, как правило, обладает более высокой симметрией, чем ниже точки перехода, поэтому F. p. П рода трактуется как точка изменения симметрии. Напр., в ферромагнетике выше точки Кюри направления спиновых магн. моментов частиц распределены хаотически, поэтому одновременное вращение всех спинов вокруг одной и той же оси на одинаковый угол не меняет физ. св-в системы. Ниже точки перехода спины имеют преимуществ. ориентацию, и совместный их поворот в указанном выше смысле изменяет направление магн. момента системы. В двухкомпо-нентном сплаве, атомы к-рого А и В расположены в узлах простой кубич. кристаллич. решетки, неупорядоченное состояние характеризуется хаотич. распределением А и В по узлам решетки, так что сдвиг решетки на один период не меняет св-в. Ниже точки перехода атомы сплава располагаются упорядочено: ...ABAB... Сдвиг такой решетки на период приводит к замене всех атомов А на В и наоборот. T. обр., симметрия решетки уменьшается, т. к. подрешетки, образуемые атомами А и В, становятся неэквивалентными.

Симметрия появляется и исчезает скачком; при этом нарушение симметрии можно охарактеризовать физ. величиной, к-рая при Ф. п. II рода изменяется непрерывно и наз. параметром порядка. Для чистых жидкостей таким параметром является плотность, для р-ров - состав, для ферро- и ферримагнетиков - спонтанная намагниченность, для сегне-тоэлектриков - спонтанная электрич. поляризация, для сплавов - доля упорядочившихся атомов для смектич. жидких кристаллов - амплитуда волны плотности и т. п. Во всех перечисленных случаях при т-рах выше точки Ф. п. II рода параметр порядка равен нулю, ниже этой точки начинается его аномальный рост, приводящий к макс. значению при T = O.

Отсутствие теплоты перехода, скачков плотности, и концентраций, характерное для Ф. п. II рода, наблюдается и в критич. точке на кривых Ф. п. I рода (см. Критические явления). Сходство оказывается очень глубоким. Состояние в-ва около критич. точки также можно охарактеризовать величиной, играющей роль параметра порядка. Напр., в случае равновесия жидкость - пар таким параметром служит отклонение плотности в-ва от критич. значения: при движении по критич. изохоре со стороны высоких т-р газ однороден и отклонение плотности от критич. значения равно нулю, а ниже критич. т-ры в-во расслаивается на две фазы, в каждой из к-рых отклонение плотности от критической не равно нулю.

Поскольку вблизи точки Ф. п. II рода фазы мало отличаются друг от друга, возможно существование флуктуации параметра порядка, точно так же, как вблизи критич. точки. С этим связаны критич. явления в точках Ф. п. II рода: аномальный рост магн. восприимчивости ферромагнетиков и диэлектрич. восприимчивости сегнетоэлектриков (аналогом является рост сжимаемости вблизи критич. точки перехода жидкость - пар); резкий рост теплоемкости; аномальное рассеяние световых волн в системе жидкость - пар (т. наз. критич. опалесценция), рентгеновских лучей в твердых телах, нейтронов в ферромагнетиках. Существенно меняются и динамич. процессы, что связано с очень медленным рассасыванием образовавшихся флуктуации. Напр., вблизи критич. точки жидкость - пар сужается линия рэлеевского рассеяния света, вблизи точек Кюри и Нееля соотв. в ферромагнетиках и антиферромагнетиках замедляется спиновая диффузия (происходящее по законам диффузии распространение избыточной намагниченности). Средний размер флуктуации (корреляционный радиус) растет по мере приближения к точке Ф. п. II рода и становится в этой точке аномально большим. Это означает, что любая часть в-ва в точке перехода "чувствует" изменения, произошедшие в остальных частях. Наоборот, вдали от точки перехода II рода флуктуации статистически независимы и случайные изменения состояния в данной части системы не сказываются на св-вах других ее частей.

Деление Ф. п. на два рода несколько условно, т. к. бывают Ф. п. I рода с малыми скачками параметра порядка и малыми теплотами перехода при сильно развитых флуктуациях. Это наиб, характерно для переходов между жидкокристаллич. фазами. Чаще всего это Ф. п. I рода, очень близкие к Ф. п. П рода. Поэтому они, как правило, сопровождаются критич. явлениями. Природа многих Ф. п. в жидких кристаллах определяется взаимод. неск. параметров порядка, связанных с разл. типами симметрии. В нек-рых орг. соед. наблюдаются т. наз. возвратные жидкокристаллич. фазы, появляющиеся при охлаждении ниже т-р существования первичных нема-тич., холестерич. и смектич. фаз.

Особая точка на фазовой диаграмме, в к-рой линия переходов I рода превращается в линию переходов П рода, наз. трикритич. точкой. Трикритич. точки обнаружены на линиях Ф. п. в сверхтекучее состояние в р-рах 4 He - 3 He, на линиях ориентационных переходов в галогенидах аммония, на линии переходов нематич. жидкий кристалл - смектич. жидкий кристалл и в др. системах.

Лит.: Бrаут Р., Фазовые переходы, пер. с англ., M., 1967; Ландау Л. Д., Лифшиц E.M., Статистическая физика, ч. 1, 3 изд., M., 1976; Пикин С. А., Структурные превращения в жидких кристаллах, M., 1981; Паташинский А. 3., Покровский В. Л., Флуктуационная теория фазовых переходов, 2 изд., M., 1982; Анисимов M. А., Критические явления в жидкостях и жидких кристаллах, M., 1987. М. А. Анисимов.

  • - - особый класс магнитных фазовых переходов, при к-рыхменяется ориентация осей лёгкого намагничивания магнетиков при изменениивнеш. параметров...

    Физическая энциклопедия

  • - в ускорителях - совокупность взаимосвязанных колебаний фаз, радиусов орбит и энергий заряж. частиц вблизи их равновесных значений. Для практич...

    Физическая энциклопедия

  • - искажения формы сигнала, обусловленные нарушением фазовых соотношений в его частотном спектре...

    Физическая энциклопедия

  • Химическая энциклопедия

  • - скачкообразные переходы квантовой системы из одного возможного состояния в другое. Квантовые переходы могут быть излучательными и безызлучательными...

    Современная энциклопедия

  • Естествознание. Энциклопедический словарь

  • - - сооружаются на опорах при пересечении водных и др. преград, при прокладке трубопроводов на заболоченных, обводнённых, многолетнемёрзлых грунтах...

    Геологическая энциклопедия

  • - напряжения, возникающие при фазовых превращениях металлов и сплавов в твердом состоянии вследствие различий в удельных объемах образующейся и исходной фаз. Смотри также: - Напряжения - термические...

    Энциклопедический словарь по металлургии

  • - см. Мышцы, электрические свойства...

    Энциклопедический словарь Брокгауза и Евфрона

  • - в квантовой теории, переходы физической микросистемы из одного состояния в другое, связанные с рождением или уничтожением виртуальных частиц, т. е. частиц, существующих лишь в промежуточных, имеющих...
  • - скачкообразные переходы квантовой системы из одного состояния в другое...

    Большая Советская энциклопедия

  • - см. Квантовые переходы...

    Большая Советская энциклопедия

  • - переходы вещества из одной фазы в другую, происходящие при изменении температуры, давления или под действием каких-либо других внешних факторов...

    Современная энциклопедия

  • - скачкообразные переходы квантовой системы из одного возможного состояния в другое...

    Большой энциклопедический словарь

  • - Глаголы, обозначающие какую-либо фазу действия...

    Словарь лингвистических терминов

  • - ФА́ЗА, -ы,...

    Толковый словарь Ожегова

"ФАЗОВЫЕ ПЕРЕХОДЫ" в книгах

Переходы

Из книги Выступление без подготовки. Что и как говорить, если вас застали врасплох автора Седнев Андрей

Переходы Выступая без подготовки, вы сначала говорите о том, что первым пришло вам в голову, затем переходите ко второй идее, после этого – к третьей, а при необходимости – еще дальше. Чтобы речь звучала красиво и непринужденно, используйте специальные

Переходы

Из книги Зрелость. Ответственность быть самим собой автора Раджниш Бхагван Шри

Переходы От Нет К ДА Сознание приносит свободу. Свобода не подразумевает только свободу поступать правильно; если бы это было смыслом свободы, что это была бы за свобода? Если ты свободен только поступать правильно, тогда ты вообще не свободен. Свобода подразумевает обе

Переходы

Из книги Славянская кармическая нумерология. Улучши матрицу своей судьбы автора Маслова Наталья Николаевна

Переходы Вкратце расскажу, как человек может себе организовать переход. Подробнее – в части «Что делать?».Например, восьмерка – это клановость. То есть для ее трансформации в единицы нам нужно оторваться от клана. Нам нужно уехать из дома. Перестать каким-либо образом

Фазовые эксперименты

Из книги Фаза. Взламывая иллюзию реальности автора Радуга Михаил

12. Переходы

Из книги Руководство Proshow Producer Version 4.5 автора Corporation Photodex

12. Переходы Искусство перехода от слайда к слайду

2. Переходы в CSS

Из книги CSS3 для веб-дизайнеров автора Сидерхолм Дэн

2. Переходы в CSS Шел 1997 год; я сидел в плохонькой квартирке в красивом Оллстоне, в Массачусетсе. Обычная ночь просмотра исходников и изучения HTML, которой предшествовал день упаковывания компакт-дисков на местной звукозаписывающей студии, – практически бесплатно

7.2. Переходы

Из книги Самоучитель UML автора Леоненков Александр

7.2. Переходы Переход как элемент языка UML был рассмотрен в главе 6. При построении диаграммы деятельности используются только нетриггерные переходы, т. е. такие, которые срабатывают сразу после завершения деятельности или выполнения соответствующего действия. Этот

Фазовые соотношения в усилителе с общим эмиттером

Из книги OrCAD PSpice. Анализ электрических цепей автора Кеоун Дж.

Фазовые соотношения в усилителе с общим эмиттером Когда в усилителе с ОЭ для стабилизации параметров смещения используется эмиттерный резистор RЕ, он шунтируется конденсатором СЕ с такой емкостью, чтобы на частоте входного сигнала эмиттер можно было бы считать

Переходы

Из книги Искусство беллетристики [Руководство для писателей и читателей.] автора Рэнд Айн

Переходы Трудная проблема, о которой обычно не думают, пока не столкнутся с ней напрямую, как перейти от одного пункта к другому - например, как вывести человека из комнаты на улицу, или как заставить его пересечь комнату, чтобы поднять что-то. На сцене об этих

Переходы

Из книги Лошадь в выездке автора Больдт Харри

Переходы Переходы от одного аллюра к другому и от одного ритма к другому должны быть отчетливо наглядны, но выполняться плавно, а не рывком. При выполнении программы нужно сконцентрировать внимание на том, чтобы делать переходы в точно предписываемом месте. Вплоть до

Фазовые эксперименты

Из книги Сверхвозможности человеческого мозга. Путешествие в подсознание автора Радуга Михаил

Фазовые эксперименты В этом разделе акцент делается не на самом факте достижения фазы, а на дальнейших внутренних действиях в ней: перемещение в пространстве, управление им, нахождение объектов и экспериментах.Практики время от времени пытаются направить свои опыты на

§ 4.18 Фазовые переходы 1-го и 2-го рода

Из книги Баллистическая теория Ритца и картина мироздания автора Семиков Сергей Александрович

§ 4.18 Фазовые переходы 1-го и 2-го рода Я полагаю, что следует ввести в физику понятия симметрии, столь привычные для кристаллографов. П. Кюри, "О симметрии физических явлений", 1894 г. Эти исследования, если бы они были продолжены П. Кюри, могли бы, вероятно, иметь для развития

7. Фазовые переходы I и II рода

автора Буслаева Елена Михайловна

7. Фазовые переходы I и II рода Компоненты в жидком состоянии (компоненты А) растворимы неограниченно, компоненты в твердом состоянии (компоненты В) не образуют химических соединений и нерастворимы.Диаграммы состояния представляют график в координатах сплава –

12. Фазовые превращения в твердом состоянии

Из книги Материаловедение. Шпаргалка автора Буслаева Елена Михайловна

12. Фазовые превращения в твердом состоянии Фаза – это однородная часть системы, которая отделена от другой части системы (фазы) поверхностью раздела, при переходе через которую химический состав или структура изменяются скачком.При кристаллизации чистого металла в

27. Строение и свойства железа; метастабильная и стабильная фазовые диаграммы железо-углерод. Формирование структуры углеродистых сталей. Определение содержания углерода в стали по структуре

Из книги Материаловедение. Шпаргалка автора Буслаева Елена Михайловна

27. Строение и свойства железа; метастабильная и стабильная фазовые диаграммы железо-углерод. Формирование структуры углеродистых сталей. Определение содержания углерода в стали по структуре Сплавы железа с углеродом являются самыми распространенными металлическими

Фазой называется совокупность частей системы одинаковых по всем физическим, химическим свойствам и структурному составу. Например, существует твердая, жидкая и газообразная фазы (называемые агрегатными состояниями).

Фазовый переход (фазовое превращение), в широком смысле – переход вещества из одной фазы в другую при изменении внешних условий (Т, Р , магнитных и электрических полей и т.д.); в узком смысле – скачкообразное изменение физических свойств при непрерывном изменении внешних параметров. Будем далее рассматривать фазовые переходы в узком смысле.

Различают фазовые переходы I рода и II рода. Фазовый переход I рода – широко распространенное в природе явление. К ним относятся: испарение и конденсация, плавление и затвердевание, сублимация или возгонка (переход вещества из кристаллического состояния непосредственно, без плавления, в газообразное, например, сухой лед) и конденсация в твердую фазу и др. Фазовые переходы I рода сопровождаются выделением или поглощением теплоты (теплоты фазового перехода q), при этом скачком изменяются плотность, концентрация компонентов, молярный объем и т.д.

Фазовый переход II рода не сопровождается выделением или поглощением теплоты, плотность изменяется непрерывно, а скачком изменяется, например, молярная теплоемкость, удельная электрическая проводимость, вязкость и др. Примерами фазовых переходов II рода могут служить переход магнитного вещества из ферромагнитного состояния (m>> 1) в парамагнитное ( 1) при нагреве до определенной температуры, называемой точкой Кюри; переход некоторых металлов и сплавов при низких температурах из нормального состояния в сверхпроводящее и др.

Конец работы -

Эта тема принадлежит разделу:

Приборостроения и информатики

Министерство образования РФ.. московская государственная академия.. приборостроения и информатики..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Теплоемкость
Удельная теплоемкость вещества – величина, равная количеству теплоты, необходимому для нагревания 1 кг вещества на 1 К:

Изохорический процесс
Для него V=const. Диаграмма этого процесса (изохора) изображе

Изобарический процесс
Для него P=const. Диаграмма этого процесса (изобара) изображе

Изотермический процесс
Для него Т-const. Например, процессы кипения, конденсации, плавления и кристаллизации химически чистых веществ происходят при постоянной температуре, если внешнее давление постоянно.

Адиабатический процесс
Это процесс, при котором отсутствует теплообмен () между системой и окружающей средой. К адиабатическ

Круговые процессы (циклы)
Процесс, при котором система, пройдя через ряд состояний, возвращается в исходное состояние называется круговым процессом или циклом. На диаграмме процессов цикл изображается замкнутой криво

Цикл Карно
В 1824 г. французский физик и инженер Н. Карно (1796-1832) опубликовал единственную работу, в которой теоретически проанализировал обратимый наиболее экономичный цикл, состоящий из двух изотерм и д

Энтропия
4.10.1. Энтропия в термодинамике При изучении ПНТ () отмечалось, что dU является пол

Второе начало термодинамики (ВНТ)
Выражая всеобщий закон сохранения и превращения энергии, первое начало термодинамики (ПНТ) не позволяет определить направление протекания процессов. Действительно, процесс самопроизвольной передачи

Силы и потенциальная энергия межмолекулярных взаимодействий
В лекциях 1-2 изучались идеальные газы, молекулы которых имеют пренебрежимо малый собственный объем и не взаимодействуют друг с другом на расстоянии. Свойства реальных газов при высоких давлениях и

Уравнение Ван-дер-Ваальса (ВдВ)
В научной литературе существуют более 150 отличающихся друг от друга уравнений состояния реального газа. Среди них нет ни одного действительно верного и универсального. Остановимся на урав

Изотермы Ван-дер-Ваальса
Для фиксированных значений Р и Т уравнение (2) есть уравнение третьей степени относительно объема газа V и, следовательно, оно может иметь либо три вещественных корня (V

Фазовые диаграммы. Тройная точка
Разные фазы одного и того же вещества могут находиться в равновесии, соприкасаясь друг с другом. Такое равновесие наблюдается лишь в ограниченном интервале температур, причем каждому значению темпе

Кристаллическая решетка. Виды связей между частицами решетки
Основной особенностью кристаллов, отличающих их от жидкостей и аморфных твердых тел, является периодичность пространственного расположения частиц (атомов, молекул или ионов), из которых состоит кри

Элементы квантовой статистики
Дуализм (двойственность) волн и частиц относится к числу фундаментальных концепций современной физики. В кристаллах имеется много полей, которые проявляют оба эти аспекта - и волновой, и корпускуля

Фермионы и бозоны. Распределение Ферми-Дирака и Бозе-Эйнштейна
Согласно современной квантовой теории все элементарные и сложные частицы, а также квазичастицы разделяются на два класса - фермионы и бозоны. К фермионам относятся электроны, прото

Понятие о вырождении системы частиц
Система частиц называется вырожденной, если её свойства за счёт квантовых эффектов отличаются от свойств классических систем. Найдём критерии вырождения частиц. Распределения Ферми-Дирака и Бозе-Эй

Понятие о квантовой теории электропроводности металлов
Согласно квантовой теории электрон в металле не имеет точной траектории, его можно представить волновым пакетом с групповой скоростью, равной скорости электрона. Квантовая теория учитывает движение

Элементы зонной теории кристаллов
В прошлом семестре рассматривались энергетические уровни электрона в атоме водорода [см. конспект лекций, ч. III, формула (11. 14)]. Там было показано, что значения энергии, которые может и

Деление кристаллов на диэлектрики, металлы и полупроводники
Все кристаллы разделяются на диэлектрики, металлы и полупроводники. Рассмотр

Собственная проводимость полупроводников
Электропроводность химически чистого полупроводника (например, чистого Ge или чистого Si

Примесные полупроводники
9.6.1. Донорная примесь, полупроводники n-типа Введение в полупроводник примесей сильно влияет на его электрические свойства. Рассмотрим, например, что произойдет, если в решетке ге

P-n-переход
Во многих областях современной электроники большую роль играет контакт двух полупроводников с n- и p- типам

Строение атомных ядер
Ядро – центральная часть атома, в которой сосредоточена практически вся масса атома и его положительный заряд. Размер атома составляет единицы ангстрем (1А=10-10м), а ядра ~ 10

Дефект массы и энергия связи ядра
При образовании ядра происходит уменьшение его массы: масса ядра Мя меньше, чем сумма масс составляющих его нуклонов на Dm – дефект массы ядра: Dm=Zmp

Ядерные силы и их свойства
В состав ядра кроме нейтронов входят положительно заряженные протоны и они должны бы отталкиваться друг от друга, т.е. ядро атома должно бы разрушиться, но это не происходит. Оказывается, на малых

Радиоактивность
Радиоактивность есть самопроизвольное изменение состава ядра, происходящее за время, существенно большее характерного ядерного времени (10-22с). Условились считать, что изм

Закон радиоактивного распада
Радиоактивный распад – явление статистическое, поэтому все предсказания носят вероятностный характер. Самопроизвольный распад большого числа ядер атомов подчиняется закону радиоактивного распада

Ядерные реакции
Ядерными реакциями называют процессы превращения атомных ядер, вызванные их взаимодействием друг с другом или с элементарными частицами. Как правило, в ядерных реакциях участвуют два ядра

Элементарные частицы и современная физическая картина мира
При введении понятия элементарных частиц первоначально предполагалось, что есть первичные, далее неделимые частицы, из которых состоит вся материя. Таковыми вплоть до начала 20 века с

Взаимопревращаемость частиц
Характерной особенностью элементарных частиц является их способность к взаимным превращениям. Всего вместе с античастицами открыто более 350 элементарных частиц, и число их продолжает расти. Больши

Античастицы
В микромире каждой частице соответствует античастица. Например первая античастица – позитрон (антиэлектрон) была обнаружена в 1935 г., его заряд равен +е. В вакууме позитрон столь ж



Понравилась статья? Поделитесь с друзьями!