Физические опыты для детей в домашних условиях. Занимательные опыты по физике в домашних условиях

Добрый день, гости сайта НИИ «Эврика»! Вы согласны, что знания, подкреплённые практикой, гораздо эффективнее теории? Занимательные опыты по физике не только отлично развлекут, но и вызовут у ребёнка интерес к науке, а также останутся в памяти гораздо дольше, чем параграф учебника.

Чему опыты научат детей?

Мы предлагаем вашему вниманию 7 экспериментов с объяснением, которые обязательно вызовут вопрос у малыша «А почему?» В результате ребёнок узнает, что:

  • Смешивая 3 основных цвета: красный, жёлтый и синий, - можно получить дополнительные: зелёный, оранжевый и фиолетовый. Вы подумали о красках? Мы вам предлагаем другой, необычный способ удостовериться в этом.
  • Свет отражается от белой поверхности и превращается в тепло, если попадает на чёрный предмет. К чему это может привести? Давайте разберёмся.
  • Все предметы подвержены гравитации, то есть стремятся к состоянию покоя. На практике это выглядит фантастически.
  • У предметов есть центр массы. И что? Давайте научимся извлекать из этого пользу.
  • Магнит - невидимая, но мощная сила некоторых металлов, способная наделить вас способностями мага.
  • Статическое электричество может не только притягивать ваши волосы, но и сортировать мелкие частички.

Итак, давайте сделаем наших детей опытными!

1. Творим новый цвет

Этот эксперимент будет полезен для дошкольников и младших школьников. Для проведения опыта нам пригодятся:

  • фонарик;
  • красный, синий и жёлтый целлофан;
  • ленточка;
  • белая стена.

Опыт проводим около белой стены:

  • Берём фонарь, покрываем его сначала красным, а затем жёлтым целлофаном, после чего зажигаем свет. Смотрим на стену и видим оранжевое отражение.
  • Теперь убираем жёлтый целлофан и поверх красного надеваем синий пакет. Наша стена освещается фиолетовым цветом.
  • А если фонарь накрыть синим, а затем жёлтым целлофаном, то на стене мы увидим зелёное пятно.
  • Этот эксперимент можно продолжить и с другими цветами.
2. Чёрный цвет и солнечный луч: взрывоопасное сочетание

Для проведения эксперимента понадобятся:

  • 1 прозрачный и 1 чёрный воздушный шарик;
  • лупа;
  • солнечный лучик.

Для этого опыта потребуется сноровка, но вы справитесь.

  • Сначала нужно надуть прозрачный воздушный шар. Держите его крепко, но не завязывайте кончик.
  • Теперь при помощи тупого конца карандаша протолкните чёрный воздушный шарик внутрь прозрачного до половины.
  • Надуйте чёрный шар внутри прозрачного, пока он не займёт примерно половину объёма.
  • Завяжите кончик чёрного шарика и протолкните его в середину прозрачного шара.
  • Прозрачный шарик надуйте ещё немного и завяжите конец.
  • Расположите лупу так, чтобы солнечный луч попал на чёрный шарик.
  • Через несколько минут чёрный шар лопнет внутри прозрачного.

Расскажите малышу, что прозрачные материалы пропускают солнечный свет, поэтому мы видим улицу через окно. А чёрная поверхность, наоборот, поглощает световые лучи и превращает их в тепло. Именно поэтому в жару рекомендуют носить светлую одежду, чтобы избежать перегрева. Когда чёрный шарик нагрелся, он начал терять свою эластичность и под давлением внутреннего воздуха лопнул.

3. Ленивый мяч

Следующий опыт - настоящее шоу, но для его проведения нужно будет потренироваться. Школа даёт объяснение этому явлению в 7 классе, но на практике это можно сделать ещё в дошкольном возрасте. Подготовьте следующие предметы:

  • пластиковый стакан;
  • металлическое блюдо;
  • картонную втулку из-под туалетной бумаги;
  • теннисный мячик;
  • метр;
  • метла.

Как провести этот эксперимент?

  • Итак, установите стаканчик на краю стола.
  • Поставьте на стаканчик блюдо так, чтобы его край с одной стороны оказался над полом.
  • Основу рулона туалетной бумаги установите по центру блюда прямо над стаканом.
  • Сверху положите мяч.
  • Встаньте за полметра от конструкции с метлой в руке так, чтобы её прутья были загнуты к вашим стопам. Встаньте на них сверху.
  • Теперь оттяните метлу и резко отпустите.
  • Рукоятка ударит по блюду, и оно вместе с картонной втулкой улетит в сторону, а мячик упадёт в стакан.

Почему он не улетел вместе с остальными предметами?

Потому что, согласно закону инерции, предмет, на который не действуют другие силы, стремится остаться в покое. В нашем случае на мячик подействовала только сила притяжения к Земле, поэтому он и упал вниз.

4. Сырое или варёное?

Давайте познакомим ребёнка с центром массы. Для этого возьмём:

· остывшее яйцо, сваренное вкрутую;

· 2 сырых яйца;

Предложите компании детей отличить варёное яйцо от сырого. При этом разбивать яйца нельзя. Скажите, что вы можете это сделать безошибочно.

  1. Раскрутите оба яйца на столе.
  2. Яйцо, которое вращается быстрее и с равномерной скоростью, - варёное.
  3. В подтверждение своих слов разбейте другое яйцо в миску.
  4. Возьмите второе сырое яйцо и бумажную салфетку.
  5. Попросите кого-то из зрителей сделать так, чтобы яйцо стояло на тупом конце. Никто не сможет так сделать, кроме вас, так как только вы знаете секрет.
  6. Просто энергично потрясите яйцо вверх-вниз полминуты, после чего без проблем установите его на салфетку.

Почему яйца ведут себя по-разному?

У них, как и у любого другого предмета, есть центр масс. То есть разные участки предмета могут весить не одинаково, но есть точка, которая делит его массу на равные части. У варёного яйца из-за более равномерной плотности центр масс при вращении остаётся на одном и том же месте, а у сырого яйца оно смещается вместе с желтком, что затрудняет его движение. У сырого яйца, которое потрясли, желток опускается к тупому концу и центр масс оказывается там же, поэтому его можно поставить.

5. «Золотая» середина

Предложите детям найти середину палки без линейки, а просто на глаз. Оцените результат при помощи линейки и скажите, что он не совсем верный. Теперь проделайте это сами. Лучше всего подойдёт ручка от швабры.

  • Поднимите палку до уровня талии.
  • Уложите её на 2 указательных пальца, держа их на расстоянии 60 см.
  • Сдвигайте пальцы ближе друг к другу и следите, чтобы палка не теряла равновесие.
  • Когда ваши пальцы сойдутся и палка будет располагаться параллельно полу, вы дошли до цели.
  • Положите палку на стол, держа палец на нужной отметке. Убедитесь при помощи линейки, что вы точно справились с заданием.

Расскажите ребёнку, что вы нашли не просто середину палки, а её центр масс. Если предмет симметричный, то он совпадёт с его серединой.

6. Невесомость в банке

Давайте заставим иголки зависнуть в воздухе. Для этого возьмём:

  • 2 нити по 30 см;
  • 2 иголки;
  • прозрачный скотч;
  • литровую банку и крышку;
  • линейку;
  • небольшой магнит.

Как провести опыт?

  • Вденьте нитки в иголки и завяжите концы двумя узелками.
  • Прикрепите узлы скотчем на дно банки, чтобы до её края оставалось около 2,5 см.
  • Изнутри крышки приклейте скотч в виде петли, липкой стороной наружу.
  • Положите крышку на стол и приклейте к петле магнит. Переверните банку и закрутите крышку. Иголки будут свисать и тянуться к магниту.
  • Когда вы перевернёте банку крышкой вверх, иголки всё равно будут тянуться к магниту. Возможно, придётся удлинить нитки, если магнит не удерживает иголки в вертикальном положении.
  • Теперь открутите крышку и положите её на стол. Вы готовы провести опыт перед зрителями. Как только вы закрутите крышку, иголки со дна банки устремятся вверх.

Расскажите ребёнку, что магнит притягивает железо, кобальт и никель, поэтому железные иголки подвержены его воздействию.

7. «+» и «-»: полезное притяжение

Ваш ребёнок наверняка замечал, как волосы магнитятся к некоторым тканям или расчёске. А вы рассказывали ему, что всему виной статическое электричество. Давайте проделаем опыт из этой же серии и покажем, к чему ещё может привести «дружба» отрицательных и положительных зарядов. Нам понадобятся:

  • бумажное полотенце;
  • 1 ч. л. соли и 1 ч. л. перца;
  • ложка;
  • воздушный шар;
  • шерстяная вещь.

Этапы эксперимента:

  • Положите на пол бумажное полотенце, высыпьте на него смесь соли и перца.
  • Спросите у ребёнка: как же теперь отделить соль от перца?
  • Надутый шарик потрите о шерстяную вещь.
  • Поднесите его к соли и перцу.
  • Соль останется на месте, а перец примагнитится к шарику.

Шарик после трения о шерсть приобретает отрицательный заряд, который притягивает к себе положительные ионы перца. Электроны соли не столь подвижны, поэтому они не реагируют на приближение шарика.

Опыты дома - это ценный жизненный опыт

Признайтесь, вам и самим было интересно наблюдать за происходящим, а ребёнку и подавно. Проделывая удивительные фокусы с самыми простыми веществами, вы научите малыша:

  • доверять вам;
  • видеть удивительное в обыденности;
  • увлекательно познавать законы окружающего мира;
  • развиваться разносторонне;
  • учиться с интересом и желанием.

Мы ещё раз напоминаем вам, что развивать ребёнка - это просто и для этого не нужно иметь много денег и времени. До скорых встреч!

Откуда берутся настоящие ученые? Ведь кто-то совершает необыкновенные открытия, изобретает хитроумные приборы, которыми мы пользуемся. Некоторые даже получают мировое признание в виде престижных наград. Как утверждают педагоги, детство - начало пути к будущим открытиям и свершениям.

Нужна ли физика младшим школьникам

Большинство школьных программ предполагает изучение физики с пятого класса. Однако родители хорошо знают, какое множество вопросов возникает у любознательных ребят младшего школьного возраста и даже у дошколят. Открыть дорогу к чудесному миру знаний помогут опыты по физике. Для школьников 7-10 лет они, конечно, будут несложными. Несмотря на простоту опытов, но поняв основные физические принципы и законы, дети ощущают себя всемогущими волшебниками. Это прекрасно, ведь живой интерес к науке - залог успешной учебы.

Детские способности не всегда раскрываются самостоятельно. Часто требуется предложить детворе определенную научную деятельность, лишь потом проявляются склонности к тем или иным знаниям. Домашние опыты - легкий способ выяснить, интересуется ли чадо естественными науками. Маленькие открыватели мира редко остаются равнодушными к «чудесным» действиям. Даже если желание изучать физику ярко не проявится, заложить азы физических знаний все же стоит.

Простейшие опыты, проводимые дома, хороши тем, что даже стеснительные, сомневающиеся в себе дети с удовольствием занимаются домашними экспериментами. Достижение ожидаемого результата рождает уверенность в собственных силах. Ровесники восторженно принимают демонстрацию подобных «фокусов», что улучшает отношения между ребятами.

Требования к постановке опытов дома

Чтобы изучение законов физики в домашних условиях было безопасным, необходимо соблюдать меры предосторожности:

  1. Абсолютно все эксперименты проводятся с участием взрослых. Конечно, многие исследования безопасны. Беда в том, что ребята не всегда проводят четкую границу между безобидными и опасными манипуляциями.
  2. Необходимо быть особенно внимательными, если используются острые, колюще-режущие предметы, открытый огонь. Здесь присутствие старших обязательно.
  3. Использование ядовитых веществ запрещено.
  4. Ребенку нужно подробно описать порядок действий, которые следует произвести. Необходимо ясно сформулировать цель работы.
  5. Взрослые должны объяснять суть опытов, принципы действия законов физики.

Простейшие исследования

Начать знакомство с физикой можно, демонстрируя свойства веществ. Это должны быть самые простые опыты для детей.

Важно! Желательно предусмотреть возможные детские вопросы, чтобы ответить на них максимально подробно. Неприятно, когда мама или папа предлагают провести опыт, смутно понимая, что он подтверждает. Поэтому лучше подготовиться, проштудировав нужную литературу.

Разная плотность

Каждое вещество обладает плотностью, влияющей на его вес. Разные показатели этого параметра имеют интересные проявления в виде многослойной жидкости.

Даже дошкольники могут проводить такие простейшие опыты с жидкостями и наблюдать за их свойствами.
Для эксперимента понадобятся:

  • сахарный сироп;
  • растительное масло;
  • вода;
  • стеклянная банка;
  • несколько мелких предметов (например, монета, пластиковая бусина, кусочек пенопласта, булавка).

Банку нужно заполнить примерно на 1/3 сиропом, добавить такое же количество воды и масла. Жидкости не будут смешиваться, а образуют слои. Причина - плотность, вещество с меньшей плотностью легче. Затем поочередно в банку нужно опустить предметы. Они «зависнут» на разных уровнях. Все зависит от того, как соотносятся между собой плотности жидкостей и предметов. Если плотность материала меньше, чем жидкости, вещица не утонет.

Плавающее яйцо

Понадобятся:

  • 2 стакана;
  • столовая ложка;
  • соль;
  • вода;
  • 2 яйца.

Оба стакана нужно наполнить водой. В одном из них растворить 2 полные столовые ложки соли. Затем в стаканы следует опустить яйца. В обычной воде оно утонет, в соленой станет держаться на поверхности. Соль повышает плотность воды. Именно этим объясняется тот факт, что в морской воде плавать легче, чем в пресной.

Поверхностное натяжение воды

Детям следует объяснить, что молекулы на поверхности жидкости притягиваются, образуя тончайшую упругую пленку. Такое свойство воды называется поверхностным натяжением. Этим объясняется, например, способность водомерки скользить по водной глади пруда.

Непроливающаяся вода

Необходимо:

  • стеклянный стакан;
  • вода;
  • канцелярские скрепки.

Стакан до краев наполняется водой. Кажется, одной скрепки достаточно, чтобы жидкость пролилась. Необходимо осторожно погружать скрепки в стакан одну за другой. Опустив около десятка скрепок, можно увидеть, что вода не выливается, а образует на поверхности небольшой купол.

Плавающие спички

Необходимо:

  • миска;
  • вода;
  • 4 спички;
  • жидкое мыло.

В миску следует налить воду, опустить спички. Они будут практически неподвижны на поверхности. Если капнуть в центр моющее средство, спички мгновенно расплывутся к краям миски. Мыло уменьшает поверхностное натяжение воды.

Занимательные опыты

Очень зрелищной бывает для детей работа со светом и звуком. Педагоги утверждают, что занимательные опыты интересны ребятам разных возрастов. Например, предложенные здесь физические опыты подойдут и для дошкольников.

Светящаяся «лава»

Этот опыт не создает настоящий светильник, но красиво имитирует работу лампы с движущимися частицами.
Необходимо:

  • стеклянная банка;
  • вода;
  • растительное масло;
  • соль или любая шипучая таблетка;
  • пищевой краситель;
  • фонарик.

Банку нужно примерно на 2/3 наполнить окрашенной водой, затем почти до краев долить масла. Сверху следует посыпать немного соли. Затем отправиться в затемненную комнату, подсветить банку снизу фонариком. Крупинки соли станут опускаться на дно, увлекая за собой капельки жира. Позже, когда соль растворится, масло снова поднимется к поверхности.

Домашняя радуга

Солнечный свет можно разложить на составляющие спектр разноцветные лучи.

Необходимо:

  • яркий естественный свет;
  • стакан;
  • вода;
  • высокая коробка или стул;
  • большой лист белой бумаги.

В солнечный день перед окном, впускающим яркий свет, на пол нужно положить бумагу. Рядом установить коробку (стул), сверху поставить наполненный водой стакан. На полу появится радуга. Чтобы увидеть цвета полностью, достаточно подвигать бумагу и поймать ее. Прозрачная емкость с водой является призмой, раскладывающей луч на части спектра.

Стетоскоп доктора

Звук распространяется с помощью волн. Звуковые волны в пространстве можно перенаправлять, усиливать.
Понадобятся:

  • отрезок резиновой трубки (шланга);
  • 2 воронки;
  • пластилин.

В оба конца резиновой трубки нужно вставить воронку, закрепив ее пластилином. Теперь одну достаточно приставить к своему сердцу, а к другую - к уху. Ясно слышно биение сердца. Воронка «собирает» волны, внутренняя поверхность трубки не позволяет им рассеиваться в пространстве.

По этому принципу работает стетоскоп доктора. В старину примерно такое же устройство имели слуховые аппараты для слабослышащих людей.

Важно! Нельзя использовать источники громкого звука, так как это может повредить слуху.

Эксперименты

В чем разница между экспериментом и опытом? Это методы исследования. Обычно опыт проводится с заранее известным результатом, демонстрируя уже понятную аксиому. Эксперимент же призван подтвердить или опровергнуть гипотезу.

Для детей разница между этими понятиями практически неощутима, любое действие производится впервые, без научной базы.

Однако часто проснувшийся интерес толкает ребят на новые эксперименты, вытекающие из уже известных свойств материалов. Такую самостоятельность нужно поощрять.

Замораживание жидкостей

Материя меняет свойства с переменой температуры. Детей интересует изменение свойств всяческих жидкостей при обращении в лед. Различные вещества имеют отличную друг от друга температуру замерзания. Также при низкой температуре меняется их плотность.

Обратите внимание! Замораживая жидкости, следует применять только пластиковые контейнеры. Использовать стеклянные емкости нежелательно, так как они могут лопнуть. Причина в том, что жидкости, замерзая, меняют свою структуру. Молекулы образуют кристаллы, расстояние между ними увеличивается, увеличивается объем вещества.

  • Если наполнить разные формочки водой и апельсиновым соком, оставить в морозильной камере, что получится? Вода уже замерзнет, а сок частично останется жидким. Причина - температура замерзания жидкости. Подобные эксперименты можно проводить с разными веществами.
  • Налив в прозрачный контейнер воду и масло, можно увидеть уже привычное расслоение. Масло всплывает на поверхность воды, так как обладает меньшей плотностью. Что можно наблюдать при замораживании контейнера с содержимым? Вода и масло меняются местами. Сверху будет находиться лед, масло теперь окажется внизу. Замерзая, вода стала легче.

Работа с магнитом

Большой интерес у младших школьников вызывает проявление магнитных свойств различных веществ. Занимательная физика предлагает проверить эти свойства.

Варианты экспериментов (понадобятся магниты):

Проверка способности притягиваться различных предметов

Можно вести записи, указывая свойства материалов (пластик, дерево, железо, медь). Интересный материал - железная стружка, движение которой выглядит завораживающе.

Изучение способности магнита действовать сквозь другие материалы.

Например, металлический предмет подвергается воздействию магнита через стекло, картон, деревянную поверхность.

Рассмотрение способности магнитов притягиваться и отталкиваться.

Изучение магнитных полюсов (одноименные отталкиваются, разноименные притягиваются). Зрелищный вариант - прикрепление магнитов к плавающим игрушечным корабликам.

Намагниченная иголка - аналог компаса

В воде она указывает направление «север - юг». Намагниченная иголка притягивает другие мелкие предметы.

  1. Желательно не перегружать маленького исследователя информацией. Цель опытов - показать работу законов физики. Лучше подробно рассмотреть одно явление, чем ради зрелищности бесконечно менять направления.
  2. Перед каждым опытом доступно объяснить свойства и особенности предметов, участвующих в них. Затем вместе с ребенком подвести итог.
  3. Особенного внимания заслуживают правила безопасности. Начало каждого занятия сопровождается инструкциями.

Научные опыты - увлекательное дело! Возможно, оно окажется таковым и для родителей. Вместе открывать новые стороны обычных явлений интересно вдвойне. Стоит отбросить повседневные заботы, разделив детскую радость открытий.

Введение

Без сомнения, все наше знание начинается с опытов.
(Кант Эммануил. Немецкий философ г. г)

Физические опыты в занимательной форме знакомят учащихся с разнообразными применениями законов физики. Опыты можно использовать на уроках для привлечения внимания учащихся к изучаемому явлению, при повторении и закреплении учебного материала, на физических вечерах. Занимательные опыты углубляют и расширяют знания учащихся, способствуют развитию логического мышления, прививают интерес к предмету.

Роль эксперимента в науке физике

О том, что физика наука молодая
Сказать определённо, здесь нельзя
И в древности науку познавая,
Стремились постигать её всегда.

Цель обучения физики конкретна,
Уметь на практике все знания применять.
И важно помнить – роль эксперимента
Должна на первом месте устоять.

Уметь планировать эксперимент и выполнять.
Анализировать и к жизни приобщать.
Строить модель, гипотезу выдвинуть,
Новых вершин стремиться достигнуть

Законы физики основаны на фактах, установленных опытным путем. Причем нередко истолкование одних и тех же фактов меняется в ходе исторического развития физики. Факты накапливаются в результате наблюдений. Но при этом только ими ограничиваться нельзя. Это только первый шаг к познанию. Дальше идет эксперимент, выработка понятий, допускающих качественные характеристики. Чтобы из наблюдений сделать общие выводы, выяснить причины явлений, надо установить количественные зависимости между величинами. Если такая зависимость получается, то найден физический закон. Если найден физический закон, то нет необходимости ставить в каждом отдельном случае опыт, достаточно выполнить соответствующие вычисления. Изучив экспериментально количественные связи между величинами, можно выявить закономерности. На основе этих закономерностей развивается общая теория явлений.

Следовательно, без эксперимента не может быть рационального обучения физике. Изучение физики предполагает широкое использование эксперимента, обсуждение особенностей его постановки и наблюдаемых результатов.

Занимательные опыты по физике

Описание опытов проводилось с использованием следующего алгоритма:

Название опыта Необходимые для опыта приборы и материалы Этапы проведения опыта Объяснение опыта

Опыт № 1 Четыре этажа

Приборы и материалы: бокал, бумага, ножницы, вода, соль, красное вино, подсолнечное масло, крашенный спирт.

Этапы проведения опыта

Попробуем налить в стакан четыре разных жидкости так, чтобы они не смешались и стояли одна над другой в пять этажей. Впрочем, нам удобнее будет взять не стакан, а узкий, расширяющийся к верху бокал.

Налить на дно бокала солёной подкрашенной воды. Свернуть из бумаги “Фунтик” и загнуть его конец под прямым углом; кончик его отрезать. Отверстие в “Фунтике” должно быть величиной с булавочную головку. Налить в этот рожок красного вина; тонкая струйка должна вытекать из него горизонтально, разбиваться о стенки бокала и по нему стекать на солёную воду.
Когда слой красного вина по высоте сравняется с высотой слоя подкрашенной воды, прекратить лить вино. Из второго рожка налей таким же образом в бокал подсолнечного масла. Из третьего рожка налить слой крашенного спирта.

https://pandia.ru/text/78/416/images/image002_161.gif" width="86 height=41" height="41">, самая маленькая у подкрашенного спирта .

Опыт № 2 Удивительный подсвечник

Приборы и материалы : свеча, гвоздь, стакан, спички, вода.

Этапы проведения опыта

Не правда ли, удивительный подсвечник – стакан воды? А этот подсвечник совсем не плох.

https://pandia.ru/text/78/416/images/image005_65.jpg" width="300" height="225 src=">

Рисунок 3

Объяснение опыта

Свеча гаснет потому, что бутылка воздухом “Обтекается”: струя воздуха разбивается бутылкой на два потока; один обтекает её справа, а другой – слева; а встречаются они примерно там, где стоит пламя свечи.

Опыт № 4 Вертящаяся змейка

Приборы и материалы : плотная бумага, свеча, ножницы.

Этапы проведения опыта

Из плотной бумаги вырезать спираль, растянуть её немного и посадить на конец изогнутой проволоки. Держать эту спираль над свечкой в восходящем потоке воздуха, змейка будет вращаться.

Объяснение опыта

Змейка вращается, т. к. происходит расширение воздуха под действием тепла и о превращении теплой энергии в движение.

https://pandia.ru/text/78/416/images/image007_56.jpg" width="300" height="225 src=">

Рисунок 5

Объяснение опыта

Вода имеет большую плотность, чем спирт; она постепенно будет входить в пузырёк, вытесняя оттуда тушь. Красная, синяя или черная жидкость тоненькой струйкой будет подниматься из пузырька кверху.

Опыт № 6 Пятнадцать спичек на одной

Приборы и материалы : 15 спичек.

Этапы проведения опыта

Положить одну спичку на стол, а на неё поперёк 14 спичек так, чтобы головки их торчали кверху, а концы касались стола. Как поднять первую спичку, держа её за один конец, и вместе с нею все остальные спички?

Объяснение опыта

Для этого нужно только поверх всех спичек, в ложбинку между ними, положить ещё одну, пятнадцатую спичку

https://pandia.ru/text/78/416/images/image009_55.jpg" width="300" height="283 src=">

Рисунок 7

https://pandia.ru/text/78/416/images/image011_48.jpg" width="300" height="267 src=">

Рисунок 9

Опыт № 8 Парафиновый мотор

Приборы и материалы: свеча, спица, 2 стакана, 2 тарелки, спички.

Этапы проведения опыта

Чтобы сделать это мотор, нам не нужно ни электричества, ни бензина. Нам нужно для этого только… свеча.

Раскалить спицу и воткнуть её их головками в свечку. Это будет ось нашего двигателя. Положить свечу спицей на края двух стаканов и уравновесить. Зажечь свечу с обоих концов.

Объяснение опыта

Капля парафина упадёт в одну из тарелок, подставленных под концы свечи. Равновесие нарушится, другой конец свечи перетянет и опустится; при этом с него стечёт несколько капель парафина, и он станет легче первого конца; он поднимается к верху, первый конец опустится, уронит каплю, станет легче, и наш мотор начнёт работать вовсю; постепенно колебания свечи будут увеличиваться всё больше и больше.

DIV_ADBLOCK307">

Приборы и материалы: тонкая рюмка, вода.

Этапы проведения опыта

Наполнить рюмку водой и вытереть края рюмки. Смоченным пальцем потереть в любом месте рюмки, она запоёт.

Диффузия" href="/text/category/diffuziya/" rel="bookmark">диффузию в жидкостях, газах и твёрдых телах

Демонстрационный эксперимент «Наблюдение диффузии»

Приборы и материалы: вата, нашатырный спирт, фенолфталеин, установка для наблюдения диффузии.

Этапы проведения эксперимента

Возьмём два кусочка ватки. Смочим один кусочек ватки фенолфталеином, другой – нашатырным спиртом. Приведём ветки в соприкосновение. Наблюдается окрашивание ваток в розовый цвет вследствие явления диффузии.

https://pandia.ru/text/78/416/images/image015_37.jpg" width="300" height="225 src=">

Рисунок 13

https://pandia.ru/text/78/416/images/image017_35.jpg" width="300" height="225 src=">

Рисунок 15

Докажем что явление диффузии зависит от температуры. Чем выше температура, тем быстрее протекает диффузия.

https://pandia.ru/text/78/416/images/image019_31.jpg" width="300" height="225 src=">

Рисунок 17

https://pandia.ru/text/78/416/images/image021_29.jpg" width="300" height="225 src=">

Рисунок 19

https://pandia.ru/text/78/416/images/image023_24.jpg" width="300" height="225 src=">

Рисунок 21

3.Шар Паскаля

Шар Паскаля – это прибор предназначен для демонстрации равномерной передачи давления, производимого на жидкость или газ в закрытом сосуде, а также подъёма жидкости за поршнем под влиянием атмосферного давления.

Для демонстрации равномерной передачи давления, производимого на жидкости в закрытом сосуде, необходимо, используя поршень, набрать в сосуд воды и плотно насадить на патрубок шар. Вдвигая поршень в сосуд, продемонстрировать истечение жидкости из отверстий в шаре, обратив внимание на равномерное истечение жидкости по всем направлениям.

Налейте воду в стакан, обязательно до самого края. Накройте листом плотной бумаги и аккуратно придерживая его, очень быстро переверните стакан кверху дном. На всякий случай, проделывайте все это над тазом или в ванной. Теперь уберите ладонь… Фокус! по-прежнему остается в стакане!

Дело в давлении атмосферного воздуха. Давление воздуха на бумагу снаружи больше давления на нее изнутри стакана и, соответственно, не позволяет бумаге выпустить воду из емкости.

Опыт Рене Декарта или пипетка-водолаз

Этому занимательному опыту около трехсот лет. Его приписывают французскому ученому Рене Декарту.

Вам понадобится пластиковая бутылка с пробкой, пипетка и вода. Наполните бутылку , оставив два-три миллиметра до края горлышка. Возьмите пипетку, наберите в нее немного воды и опустите в горлышко бутылки. Она должна своим верхним резиновым концом быть на уровне или чуть выше уровня в бутылке. При этом нужно добиться, чтобы от легкого толчка пальцем пипетка погружалась, а потом сама медленно всплывала. Теперь закройте пробку и сдавите бока бутылки. Пипетка пойдет на дно бутылки. Ослабьте давление на бутылку, и она снова всплывет.

Дело в том, что мы немного сжали воздух в горлышке бутылки и это давление передалось воде. проникла в пипетку — она стала тяжелее (так как вода тяжелее воздуха) и утонула. При прекращении давления сжатый воздух внутри пипетки удалил лишнюю , наш «водолаз» стал легче и всплыл. Если в начале опыта «водолаз» вас не слушается, значит, надо отрегулировать количество воды в пипетке. Когда пипетка находится на дне бутылки, легко проследить, как от усиления нажима на стенки бутылки входит в пипетку, а при ослаблении нажима выходит из нее.

Эксперимент – один из самых информативных способов познания. Благодаря ему удается получить разнообразные и обширные звания о исследуемом явлении или системе. Именно эксперимент играет фундаментальную роль в физических исследованиях. Красивые физические эксперименты надолго остаются в памяти последующих поколений, а также способствуют популяризации физических идей в массах. Приведем наиболее интересные физические эксперименты по мнению самих физиков из опроса Роберта Криза и Стони Бука.

1. Эксперимент Эратосфена Киренского

Этот эксперимент по праву считают одним из самых древних на сегодняшний день. В третьем веке до н.э. библиотекарь Александрийской библиотеки Эрастофен Киренский интересным способом измерил радиус Земли. в день летнего солнцестояния в Сиене солнце находилось в зените, в результате чего теней от предметов не наблюдалось. В 5000 стадиях к северу в Александрии в тоже время Солнце отклонилось от зенита на 7 градусов. Отсюда библиотекарь получил информацию, что окружность Земли 40 тысяч км., а её радиус равен 6300 км. Эрастофен получил показатели всего на 5% меньше сегодняшних, что для использованных им древних измерительных приборов просто поразительно.

2. Галилео Галилей и его самый первый эксперимент

В XVII веке Теория Аристотеля была главенствующей и беспрекословной. Согласно этой теории скорость падения тела непосредственно зависела от его веса. Примером служили перо и камень. Теория была ошибочной, так как в ней не учитывалось сопротивление воздуха.

Галилео Галилей в этой теории усомнился и решил провести серию экспериментов лично. Он взял большое пушечное ядро и запустил его с Пизанской башни, в паре с легкой пулей для мушкета. Учитывая их близкую обтекаемую форму можно было легко пренебречь сопротивлением воздуха и конечно же оба предмета приземлялись одновременно, опровергая теорию Аристотеля. считает, что нужно лично съездить в Пизу и выбросить что-нибудь похожее внешне и разное по весу с башни, дабы почувствовать себя великим ученым.

3. Второй эксперимент Галилео Галилея

Вторым утверждением Аристотеля было то, что тела под действием силы движутся с постоянной скоростью. Галилей запускал металлические шары по наклонной плоскости и фиксировал пройденное ими за определенное время расстояние. Затем он увеличил время в два раза, но шары за это время проходили в 4 раза большее расстояние. Таким образом зависимость была не линейная, то есть скорость не постоянная. Отсюда Галилей сделал вывод о ускоренном движении под действием силы.
Эти два эксперимента послужили основой для создания классической механики.

4. Эксперимент Генри Кавендиша

Ньютон является собственником формулировки закона всемирного тяготения, в которой присутствует гравитационная постоянная. Естественно возникла проблема нахождения её числового значения. Но для этого нужно было бы измерить силу взаимодействия между телами. Но проблема в том, что сила притяжения достаточно слабая, нужно было бы использовать или гигантские массы, или малые расстояния.

Джону Мичеллу далось придумать, а Кавендишу провести в 1798 году достаточно интересный эксперимент. В качестве измерительного прибора выступали крутильные весы. На них на коромысле были закреплены шарики на тонких веревочках. На шарики прикрепили зеркальца. Затем к маленьким шарикам подносили очень большие и тяжелые и фиксировали смещении по световым зайчикам. Результатом серии опытов стало определение значения гравитационной постоянной и массы Земли.

5. Эксперимент Жана Бернара Леона Фуко

Благодаря большущему (67 м) маятнику, который был установлен в парижском Пантеоне Фуко в 1851 году методом эксперимента довел факт вращения Земли вокруг оси. Плоскость вращения маятника остается неизменной по отношению к звездам, но наблюдатель вращается вместе с планетой. Таким образом можно увидеть как постепенно смещается в сторону плоскость вращения маятника. Это достаточно простой и безопасный эксперимент, в отличие от того, о котором мы писали в статье

6. Эксперимент Исаака Ньютона

И снова проверялось утверждение Аристотеля. Бытовало мнение, что различные цвета являются смесями в разной пропорции света и тьмы. Чем больше тьмы, тем ближе цвет к фиолетовому и наоборот.

Люди уже давно заметили, что большие монокристаллы разлагают свет на цвета. Серии опытов с призмами проделали чешский естествоиспытатель Марции английский Хариот. Новую серию начал Ньютон в 1672 году.
Ньютон ставил физические эксперименты в темной комнате, пропуская тонкий луч света через маленькую дырочку в плотных шторах. Этот луч попадал на призму и раскладывался на цвета радуги на экране. Явление было названо дисперсией и позже теоретически обосновано.

Но Ньютон пошел дальше, ведь его интересовала природа света и цветов. Он пропускал лучи через две призмы последовательно. На основании этих своих опытов, Ньютон сделал вывод о том, что цвет не является комбинацией света и тьмы, и тем более не есть атрибутом предмета. Белый свет состоит из всех цветов, которые можно увидеть при дисперсии.

7. Эксперимент Томаса Юнга

Вплоть до XIX века главенствовала корпускулярная теория света. Считалась, что свет как и материя состоит из частиц. Томас Юнг, английский врач и физик, в 1801 году провел свой эксперимент для проверки этого утверждения. Если предположить, что свет имеет волновую теорию, то должно наблюдаться такое же взаимодействующие волны, как и при броске двух камней на воду.

Для имитации камней Юнг использовал непрозрачный экран с двумя отверстиями и источникам света за ним. Свет проходил через отверстия и на экране образовывался рисунок из светлых и темных полос. Светлые полосы образовывались там, где волны усиливали друг друга, а темные там, где тушили.

8. Клаус Йонссон и его эксперимент

В 1961 году Немецкий физик Клаус Йонссон доказал, что элементарные частицы имеют корпускулярно-волновую природу. Он провел для этого эксперимент аналогичный эксперименту Юнга, только заменив лучи света пучками электронов. В результате все равно удалось получить интерференционную картину.

9. Эксперимент Роберта Милликена

Еще в начале девятнадцатого века возникло представление о наличии у каждого тела электрического заряда, который является дискретным и определяется неделимыми элементарными зарядами. К тому моменту было введено понятие электрона, как носителя этого самого заряда, но обнаружить экспериментально эту частицу и вычислить ее заряд не удавалось.
Американскому физику Роберт Милликен удалось разработать идеальный образчик изящества в экспериментальной физике. Он изолировал заряженные капли воды между пластинами конденсатора. Затем с помощью рентгеновских лучей ионизировал воздух между этими же пластинами и менял заряд капель.



Понравилась статья? Поделитесь с друзьями!