Формула проекции перемещения скорости. Сложение векторов, направленных вдоль одной прямой

Траектория - это линия, которую тело описывает при движении.

Траектория пчелы

Путь - это длина траектории. То есть длина той, возможно, кривой линии, по которой двигалось тело. Путь скалярная величина ! Перемещение - векторная величина ! Это вектор, который проведен из начальной точки отправления тела в конечную точку. Имеет численное значение, равное длине вектора. Путь и перемещение - это существенно разные физические величины.

Обозначения пути и перемещения вы можете встретить разное:

Сумма перемещений

Пусть в течение промежутка времени t 1 тело совершило перемещение s 1 , а в течение следующего промежутка времени t 2 - перемещение s 2 . Тогда за все время движения перемещение s 3 - это векторная сумма

Равномерное движение

Движение с постоянной по модулю и по направлению скоростью. Что это значит? Рассмотрим движение машины. Если она едет по прямой линии, на спидометре одно и то же значение скорости (модуль скорости), то это движение равномерное. Стоит машине изменить направление (повернуть), это будет означать, что вектор скорости изменил свое направление. Вектор скорости направлен туда же, куда едет машина. Такое движение нельзя считать равномерным, несмотря на то, что спидометр показывает одно и то же число.

Направление вектора скорости всегда совпадает с направлением движения тела

Можно ли движение на карусели считать равномерным (если не происходит ускорение или торможение)? Нельзя, постоянно изменяется направление движения, а значит и вектор скорости. Из рассуждений можно сделать вывод, что равномерное движение - это всегда движение по прямой линии! А значит при равномерном движении путь и перемещение одинаковы (поясни почему).

Нетрудно представить, что при равномерном движении за любые равные промежутки времени тело будет перемещаться на одинаковое расстояние.

Страница 8 из 12

§ 7. Перемещение при равноускоренном
прямолинейном движении

1. Используя график зависимости скорости от времени, можно получить формулу перемещения тела при равномерном прямолинейном движении.

На рисунке 30 приведен график зависимости проекции скорости равномерного движения на ось X от времени. Если восставить перпендикуляр к оси времени в некоторой точке C , то получим прямоугольник OABC . Площадь этого прямоугольника равна произведению сторон OA и OC . Но длина стороны OA равна v x , а длина стороны OC - t , отсюда S = v x t . Произведение проекции скорости на ось X и времени равно проекции перемещения, т. е. s x = v x t .

Таким образом, проекция перемещения при равномерном прямолинейном движении численно равна площади прямоугольника, ограниченного осями координат, графиком скорости и перпендикуляром, восставленным к оси времени.

2. Получим аналогичным образом формулу проекции перемещения при прямолинейном равноускоренном движении. Для этого воспользуемся графиком зависимости проекции скорости на ось X от времени (рис. 31). Выделим на графике малый участок ab и опустим перпендикуляры из точек a и b на ось времени. Если промежуток времени Dt , соответствующий участку cd на оси времени, мал, то можно считать, что скорость в течение этого промежутка времени не изменяется и тело движется равномерно. В этом случае фигура cabd мало отличается от прямоугольника и ее площадь численно равна проекции перемещения тела за время, соответствующее отрезку cd .

На такие полоски можно разбить всю фигуру OABC , и ее площадь будет равна сумме площадей всех полосок. Следовательно, проекция перемещения тела за время t численно равна площади трапеции OABC . Из курса геометрии вы знаете, что площадь трапеции равна произведению полусуммы ее оснований и высоты:S = (OA + BC )OC .

Как видно из рисунка 31, OA = v 0x , BC = v x , OC = t . Отсюда следует, что проекция перемещения выражается формулой: s x = (v x + v 0x )t .

При равноускоренном прямолинейном движении скорость тела в любой момент времени равна v x = v 0x + a x t , следовательно,s x = (2v 0x + a x t )t .

Отсюда:

Чтобы получить уравнение движения тела, подставим в формулу проекции перемещения ее выражение через разность координат s x = x x 0 .

Получим: x x 0 = v 0x t + , или

x = x 0 + v 0x t + .

По уравнению движения можно определить координату тела в любой момент времени, если известны начальная координата, начальная скорость и ускорение тела.

3. На практике часто встречаются задачи, в которых нужно найти перемещение тела при равноускоренном прямолинейном движении, но время движения при этом неизвестно. В этих случаях используют другую формулу проекции перемещения. Получим ее.

Из формулы проекции скорости равноускоренного прямолинейного движения v x = v 0x + a x t выразим время:

t = .

Подставив это выражение в формулу проекции перемещения, получим:

s x = v 0x + .

Отсюда:

s x = , или
–= 2a x s x .

Если начальная скорость тела равно нулю, то:

2a x s x .

4. Пример решения задачи

Лыжник съезжает со склона горы из состояния покоя с ускорением 0,5 м/с 2 за 20 с и дальше движется по горизонтальному участку, проехав до остановки 40 м. С каким ускорением двигался лыжник по горизонтальной поверхности? Какова длина склона горы?

Дано :

Решение

v 01 = 0

a 1 = 0,5 м/с 2

t 1 = 20 с

s 2 = 40 м

v 2 = 0

Движение лыжника состоит из двух этапов: на первом этапе, спускаясь со склона горы, лыжник движется с возрастающей по модулю скоростью; на втором этапе при движении по горизонтальной поверхности его скорость уменьшается. Величины, относящиеся к первому этапу движения, запишем с индексом 1, а ко второму этапус индексом 2.

a 2?

s 1?

Систему отсчета свяжем с Землей, ось X направим по направлению скорости лыжника на каждом этапе его движения (рис. 32).

Запишем уравнение для скорости лыжника в конце спуска с горы:

v 1 = v 01 + a 1 t 1 .

В проекциях на ось X получим: v 1x = a 1x t . Поскольку проекции скоростии ускорения на ось X положительны, модуль скорости лыжника равен: v 1 = a 1 t 1 .

Запишем уравнение, связывающее проекции скорости, ускорения и перемещения лыжника на втором этапе движения:

–= 2a 2x s 2x .

Учитывая, что начальная скорость лыжника на этом этапе движения равна его конечной скорости на первом этапе

v 02 = v 1 , v 2x = 0 получим

– = –2a 2 s 2 ; (a 1 t 1) 2 = 2a 2 s 2 .

Отсюда a 2 = ;

a 2 == 0,125 м/с 2 .

Модуль перемещения лыжника на первом этапе движения равен длине склона горы. Запишем уравнение для перемещения:

s 1x = v 01x t + .

Отсюда длина склона горы равна s 1 = ;

s 1 == 100 м.

Ответ: a 2 = 0,125 м/с 2 ; s 1 = 100 м.

Вопросы для самопроверки

1. Как по графику зависимости проекции скорости равномерного прямолинейного движения на ось X

2. Как по графику зависимости проекции скорости равноускоренного прямолинейного движения на ось X от времени определить проекцию перемещения тела?

3. По какой формуле рассчитывается проекция перемещения тела при равноускоренном прямолинейном движении?

4. По какой формуле рассчитывается проекция перемещения тела, движущегося равноускоренно и прямолинейно, если начальная скорость тела равна нулю?

Задание 7

1. Чему равен модуль перемещения автомобиля за 2 мин, если за это время его скорость изменилась от 0 до 72 км/ч? Какова координата автомобиля в момент времени t = 2 мин? Начальную координату считать равной нулю.

2. Поезд движется с начальной скоростью 36 км/ч и ускорением0,5 м/с 2 . Чему равны перемещение поезда за 20 с и его координата в момент времени t = 20 с, если начальная координата поезда 20 м?

3. Каково перемещение велосипедиста за 5 с после начала торможения, если его начальная скорость при торможении равна 10 м/с,а ускорение составляет 1,2 м/с 2 ? Чему равна координата велосипедиста в момент времени t = 5 с, если в начальный момент времени он находился в начале координат?

4. Автомобиль, движущийся со скоростью 54 км/ч, останавливается при торможении в течение 15 с. Чему равен модуль перемещения автомобиля при торможении?

5. Два автомобиля движутся навстречу друг другу из двух населенных пунктов, находящихся на расстоянии 2 км друг от друга. Начальная скорость одного автомобиля 10 м/с и ускорение 0,2 м/с 2 , начальная скорость другого - 15 м/с и ускорение 0,2 м/с 2 . Определите время и координату места встречи автомобилей.

Лабораторная работа № 1

Исследование равноускоренного
прямолинейного движения

Цель работы:

научиться измерять ускорение при равноускоренном прямолинейном движении; экспериментально установить отношение путей, проходимых телом при равноускоренном прямолинейном движении за последовательные равные промежутки времени.

Приборы и материалы:

желоб, штатив, металлический шарик, секундомер, измерительная лента, цилиндр металлический.

Порядок выполнения работы

1. Укрепите в лапке штатива один конец желоба так, чтобы он составлял небольшой угол с поверхностью стола.У другого конца желоба положите в него цилиндр металлический.

2. Измерьте пути, проходимые шариком за 3 последовательных промежутка времени, равных 1 с каждый. Это можно сделать по‑разному. Можно поставить мелом на желобе метки, фиксирующие положения шарика в моменты времени, равные 1 с, 2 с, 3 с, и измерить расстояния s_ между этими метками. Можно, отпуская каждый раз шарик с одной и той же высоты, измерить путь s , пройденный им сначала за 1 с, затем за 2 с и за 3 с, а затем рассчитать путь, пройденный шариком за вторую и третью секунды. Результаты измерений запишите в таблицу 1.

3. Найдите отношения пути, пройденного за вторую секунду, к пути, пройденному за первую секунду, и пути, пройденного за третью секунду, к пути, пройденному за первую секунду. Сделайте вывод.

4. Измерьте время движения шарика по желобу и пройденныйим путь. Вычислите ускорение его движения, используя формулуs = .

5. Используя экспериментально полученное значение ускорения, вычислите пути, которые должен пройти шарик за первую, вторую и третью секунды своего движения. Сделайте вывод.

Таблица 1

№ опыта

Экспериментальные данные

Теоретические результаты

Время t, с

Путь s, см

Время t, с

Путь

s, см

Ускорение a, см/с2

Время t , с

Путь s, см

1

1

1

Равномерное движение – это движение с постоянной скоростью, то есть когда скорость не изменяется (v = const) и ускорения или замедления не происходит (а = 0).

Прямолинейное движение – это движение по прямой линии, то есть траектория прямолинейного движения – это прямая линия.

– это движение, при котором тело за любые равные промежутки времени совершает одинаковые перемещения. Например, если мы разобьём какой-то временной интервал на отрезки по одной секунде, то при равномерном движении тело будет перемещаться на одинаковое расстояние за каждый из этих отрезков времени.

Скорость равномерного прямолинейного движения не зависит от времени и в каждой точке траектории направлена также, как и перемещение тела. То есть вектор перемещения совпадает по направлению с вектором скорости. При этом средняя скорость за любой промежуток времени равна мгновенной скорости:

Скорость равномерного прямолинейного движения – это физическая векторная величина, равная отношению перемещения тела за любой промежуток времени к значению этого промежутка t:

V(вектор) = s(вектор) / t

Таким образом, скорость равномерного прямолинейного движения показывает, какое перемещение совершает материальная точка за единицу времени.

Перемещение при равномерном прямолинейном движении определяется формулой:

s(вектор) = V(вектор) t

Пройденный путь при прямолинейном движении равен модулю перемещения. Если положительное направление оси ОХ совпадает с направлением движения, то проекция скорости на ось ОХ равна величине скорости и положительна:

v x = v, то есть v > 0

Проекция перемещения на ось ОХ равна:

s = vt = x – x 0

где x 0 – начальная координата тела, х – конечная координата тела (или координата тела в любой момент времени)

Уравнение движения , то есть зависимость координаты тела от времени х = х(t), принимает вид:

Если положительное направление оси ОХ противоположно направлению движения тела, то проекция скорости тела на ось ОХ отрицательна, скорость меньше нуля (v < 0), и тогда уравнение движения принимает вид:

4. Равнопеременное движение.

Равномерное прямолинейное движение – это частный случай неравномерного движения.

Неравномерное движение – это движение, при котором тело (материальная точка) за равные промежутки времени совершает неодинаковые перемещения. Например, городской автобус движется неравномерно, так как его движение состоит в основном из разгонов и торможений.

Равнопеременное движение – это движение, при котором скорость тела (материальной точки) за любые равные промежутки времени изменяется одинаково.

Ускорение тела при равнопеременном движении остаётся постоянным по модулю и по направлению (a = const).

Равнопеременное движение может быть равноускоренным или равнозамедленным.

Равноускоренное движение – это движение тела (материальной точки) с положительным ускорением, то есть при таком движении тело разгоняется с неизменным ускорением. В случае равноускоренного движения модуль скорости тела с течением времени возрастает, направление ускорения совпадает с направлением скорости движения.

Равнозамедленное движение – это движение тела (материальной точки) с отрицательным ускорением, то есть при таком движении тело равномерно замедляется. При равнозамедленном движении векторы скорости и ускорения противоположны, а модуль скорости с течением времени уменьшается.

В механике любое прямолинейное движение является ускоренным, поэтому замедленное движение отличается от ускоренного лишь знаком проекции вектора ускорения на выбранную ось системы координат.

Средняя скорость переменного движения определяется путём деления перемещения тела на время, в течение которого это перемещение было совершено. Единица измерения средней скорости – м/с.

Мгновенная скорость – это скорость тела (материальной точки) в данный момент времени или в данной точке траектории, то есть предел, к которому стремится средняя скорость при бесконечном уменьшении промежутка времени Δt:

V=lim(^t-0) ^s/^t

Вектор мгновенной скорости равнопеременного движения можно найти как первую производную от вектора перемещения по времени:

V(вектор) = s’(вектор)

Проекция вектора скорости на ось ОХ:

это производная от координаты по времени (аналогично получают проекции вектора скорости на другие координатные оси).

Ускорение – это величина, которая определяет быстроту изменения скорости тела, то есть предел, к которому стремится изменение скорости при бесконечном уменьшении промежутка времени Δt:

а(вектор) = lim (t-0) ^v(вектор)/^t

Вектор ускорения равнопеременного движения можно найти как первую производную от вектора скорости по времени или как вторую производную от вектора перемещения по времени:

a(вектор) = v(вектор)" = s(вектор)"

Учитывая, что 0 – скорость тела в начальный момент времени (начальная скорость), – скорость тела в данный момент времени (конечная скорость), t – промежуток времени, в течение которого произошло изменение скорости,формула ускорения будет следующей:

a(вектор) = v(вектор)-v0(вектор)/t

Отсюда формула скорости равнопеременного движения в любой момент времени:

v(вектор) = v 0 (вектор) + a(вектор)t

Если тело движется прямолинейно вдоль оси ОХ прямолинейной декартовой системы координат, совпадающей по направлению с траекторией тела, то проекция вектора скорости на эту ось определяется формулой:

v x = v 0x ± a x t

Знак «-» (минус) перед проекцией вектора ускорения относится к равнозамедленному движению. Аналогично записываются уравнения проекций вектора скорости на другие оси координат.

Так как при равнопеременном движении ускорение является постоянным (a = const), то график ускорения – это прямая, параллельная оси 0t (оси времени, рис. 1.15).

Рис. 1.15. Зависимость ускорения тела от времени.

Зависимость скорости от времени – это линейная функция, графиком которой является прямая линия (рис. 1.16).

Рис. 1.16. Зависимость скорости тела от времени.

График зависимости скорости от времени (рис. 1.16) показывает, что

При этом перемещение численно равно площади фигуры 0abc (рис. 1.16).

Площадь трапеции равна произведению полусуммы длин её оснований на высоту. Основания трапеции 0abc численно равны:

Высота трапеции равна t. Таким образом, площадь трапеции, а значит, и проекция перемещения на ось ОХ равна:

В случае равнозамедленного движения проекция ускорения отрицательна и в формуле для проекции перемещения перед ускорением ставится знак «–» (минус).

Общая формула для определения проекции перемещения:

График зависимости скорости тела от времени при различных ускорениях показан на рис. 1.17. График зависимости перемещения от времени при v0 = 0 показан на рис. 1.18.

Рис. 1.17. Зависимость скорости тела от времени для различных значений ускорения.

Рис. 1.18. Зависимость перемещения тела от времени.

Скорость тела в данный момент времени t 1 равна тангенсу угла наклона между касательной к графику и осью времени v = tg α, а перемещение определяют по формуле:

Если время движения тела неизвестно, можно использовать другую формулу перемещения, решая систему из двух уравнений:

Формула сокращённого умножения разности квадратов поможет нам вывести формулу для проекции перемещения:

Так как координата тела в любой момент времени определяется суммой начальной координаты и проекции перемещения, то уравнение движения тела будет выглядеть следующим образом:

Графиком координаты x(t) также является парабола (как и график перемещения), но вершина параболы в общем случае не совпадает с началом координат. При а x < 0 и х 0 = 0 ветви параболы направлены вниз (рис. 1.18).

Основные единицы измерения величин в системе СИ таковы:

  1. единица измерения длины - метр (1 м),
  2. времени - секунда (1 с),
  3. массы - килограмм (1 кг),
  4. количества вещества - моль (1 моль),
  5. температуры - кельвин (1 К),
  6. силы электрического тока - ампер (1 А),
  7. Справочно: силы света - кандела (1 кд, фактически не используется при решении школьных задач).

При выполнении расчетов в системе СИ углы измеряются в радианах.

Если в задаче по физике не указано, в каких единицах нужно дать ответ, его нужно дать в единицах системы СИ или в производных от них величинах, соответствующих той физической величине, о которой спрашивается в задаче. Например, если в задаче требуется найти скорость, и не сказано в чем ее нужно выразить, то ответ нужно дать в м/с.

Для удобства в задачах по физике часто приходится использовать дольные (уменьшающие) и кратные (увеличивающие) приставки. их можно применять к любой физической величине. Например, мм – миллиметр, кт – килотонна, нс – наносекунда, Мг – мегаграмм, ммоль – миллимоль, мкА – микроампер. Запомните, что в физике не существует двойных приставок. Например, мкг – это микрограмм, а не милликилограмм. Учтите, что при сложении и вычитании величин Вы можете оперировать только величинами одинаковой размерности. Например, килограммы можно складывать только с килограммами, из миллиметров можно вычитать только миллиметры, и так далее. При переводе величин пользуйтесь следующей таблицей.

Путь и перемещение

Кинематикой называют раздел механики, в котором движение тел рассматривается без выяснения причин этого движения.

Механическим движением тела называют изменение его положения в пространстве относительно других тел с течением времени.

Всякое тело имеет определенные размеры. Однако, во многих задачах механики нет необходимости указывать положения отдельных частей тела. Если размеры тела малы по сравнению с расстояниями до других тел, то данное тело можно считать материальной точкой . Так при движении автомобиля на большие расстояния можно пренебречь его длиной, так как длина автомобиля мала по сравнению с расстояниями, которое он проходит.

Интуитивно понятно, что характеристики движения (скорость, траектория и т.д.) зависят от того, откуда мы на него смотрим. Поэтому для описания движения вводится понятие системы отсчета. Система отсчета (СО) – совокупность тела отсчета (оно считается абсолютно твердым), привязанной к нему системой координат, линейки (прибора, измеряющего расстояния), часов и синхронизатора времени.

Перемещаясь с течением времени из одной точки в другую, тело (материальная точка) описывает в данной СО некоторую линию, которую называют траекторией движения тела .

Перемещением тела называют направленный отрезок прямой, соединяющий начальное положение тела с его конечным положением. Перемещение есть векторная величина. Перемещением может в процессе движение увеличиваться, уменьшаться и становиться равным нулю.

Пройденный путь равен длине траектории, пройденной телом за некоторое время. Путь – скалярная величина. Путь не может уменьшаться. Путь только возрастает либо остается постоянным (если тело не движется). При движении тела по криволинейной траектории модуль (длина) вектора перемещения всегда меньше пройденного пути.

При равномерном (с постоянной скоростью) движении путь L может быть найден по формуле:

где: v – скорость тела, t – время в течении которого оно двигалось. При решении задач по кинематике перемещение обычно находится из геометрических соображений. Часто геометрические соображения для нахождения перемещения требуют знания теоремы Пифагора.

Средняя скорость

Скорость – векторная величина, характеризующая быстроту перемещения тела в пространстве. Скорость бывает средней и мгновенной. Мгновенная скорость описывает движение в данный конкретный момент времени в данной конкретной точке пространства, а средняя скорость характеризует все движение в целом, в общем, не описывая подробности движения на каждом конкретном участке.

Средняя скорость пути – это отношение всего пути ко всему времени движения:

где: L полн – весь путь, который прошло тело, t полн – все время движения.

Средняя скорость перемещения – это отношение всего перемещения ко всему времени движения:

Эта величина направлена так же, как и полное перемещение тела (то есть из начальной точки движения в конечную точку). При этом не забывайте, что полное перемещение не всегда равно алгебраической сумме перемещений на определённых этапах движения. Вектор полного перемещения равен векторной сумме перемещений на отдельных этапах движения.

  • При решении задач по кинематике не совершайте очень распространенную ошибку. Средняя скорость, как правило, не равна среднему арифметическому скоростей тела на каждом этапе движения. Среднее арифметическое получается только в некоторых частных случаях.
  • И уж тем более средняя скорость не равна одной из скоростей, с которыми двигалось тело в процессе движения, даже если эта скорость имела примерно промежуточное значение относительно других скоростей, с которыми двигалось тело.

Равноускоренное прямолинейное движение

Ускорение – векторная физическая величина, определяющая быстроту изменения скорости тела. Ускорением тела называют отношение изменения скорости к промежутку времени, в течение которого происходило изменение скорости:

где: v 0 – начальная скорость тела, v – конечная скорость тела (то есть спустя промежуток времени t ).

Далее, если иное не указано в условии задачи, мы считаем, что если тело движется с ускорением, то это ускорение остается постоянным. Такое движение тела называется равноускоренным (или равнопеременным). При равноускоренном движении скорость тела изменяется на одинаковую величину за любые равные промежутки времени.

Равноускоренное движение бывает собственно ускоренным, когда тело увеличивает скорость движения, и замедленным, когда скорость уменьшается. Для простоты решения задач удобно для замедленного движения брать ускорение со знаком «–».

Из предыдущей формулы, следует другая более распространённая формула, описывающая изменение скорости со временем при равноускоренном движении:

Перемещение (но не путь) при равноускоренном движении рассчитывается по формулам:

В последней формуле использована одна особенность равноускоренного движения. При равноускоренном движении среднюю скорость можно рассчитывать, как среднее арифметическое начальной и конечной скоростей (этим свойством очень удобно пользоваться при решении некоторых задач):

С расчетом пути все сложнее. Если тело не меняло направления движения, то при равноускоренном прямолинейном движении путь численно равен перемещению. А если меняло – надо отдельно считать путь до остановки (момента разворота) и путь после остановки (момента разворота). А просто подстановка времени в формулы для перемещения в этом случае приведет к типичной ошибке.

Координата при равноускоренном движении изменяется по закону:

Проекция скорости при равноускоренном движении изменяется по такому закону:

Аналогичные формулы получаются для остальных координатных осей.

Свободное падение по вертикали

На все тела, находящиеся в поле тяготения Земли, действует сила тяжести. В отсутствие опоры или подвеса эта сила заставляет тела падать к поверхности Земли. Если пренебречь сопротивлением воздуха, то движение тел только под действием силы тяжести называется свободным падением. Сила тяжести сообщает любым телам, независимо от их формы, массы и размеров, одинаковое ускорение, называемое ускорением свободного падения. Вблизи поверхности Земли ускорение свободного падения составляет:

Это значит, что свободное падение всех тел вблизи поверхности Земли является равноускоренным (но не обязательно прямолинейным) движением. Вначале рассмотрим простейший случай свободного падения, когда тело движется строго по вертикали. Такое движение является равноускоренным прямолинейным движением, поэтому все изученные ранее закономерности и фокусы такого движения подходят и для свободного падения. Только ускорение всегда равно ускорению свободного падения.

Традиционно при свободном падении используют направленную вертикально ось OY. Ничего страшного здесь нет. Просто надо во всех формулах вместо индекса «х » писать «у ». Смысл этого индекса и правило определения знаков сохраняется. Куда направлять ось OY – Ваш выбор, зависящий от удобства решения задачи. Вариантов 2: вверх или вниз.

Приведем несколько формул, которые являются решением некоторых конкретных задач по кинематике на свободное падение по вертикали. Например, скорость, с которой упадет тело падающее с высоты h без начальной скорости:

Время падения тела с высоты h без начальной скорости:

Максимальная высота на которую поднимется тело, брошенное вертикально вверх с начальной скоростью v 0 , время подъема этого тела на максимальную высоту, и полное время полета (до возвращения в исходную точку):

Горизонтальный бросок

При горизонтальном броске с начальной скоростью v 0 движение тела удобно рассматривать как два движения: равномерное вдоль оси ОХ (вдоль оси ОХ нет никаких сил препятствующих или помогающих движению) и равноускоренного движения вдоль оси OY.

Скорость в любой момент времени направлена по касательной к траектории. Ее можно разложить на две составляющие: горизонтальную и вертикальную. Горизонтальная составляющая всегда остается неизменной и равна v x = v 0 . А вертикальная возрастает по законам ускоренного движения v y = gt . При этом полная скорость тела может быть найдена по формулам:

При этом важно понять, что время падения тела на землю никоим образом не зависит от того, с какой горизонтальной скоростью его бросили, а определяется только высотой, с которой было брошено тело. Время падения тела на землю находится по формуле:

Пока тело падает, оно одновременно движется вдоль горизонтальной оси. Следовательно, дальность полета тела или расстояние, которое тело сможет пролететь вдоль оси ОХ, будет равно:

Угол между горизонтом и скоростью тела легко найти из соотношения:

Также иногда в задачах могут спросить о моменте времени, при котором полная скорость тела будет наклонена под определенным углом к вертикали . Тогда этот угол будет находиться из соотношения:

Важно понять, какой именно угол фигурирует в задаче (с вертикалью или с горизонталью). Это и поможет вам выбрать правильную формулу. Если же решать эту задачу координатным методом, то общая формула для закона изменения координаты при равноускоренном движении:

Преобразуется в следующий закон движения по оси OY для тела брошенного горизонтально:

При ее помощи мы можем найти высоту на которой будет находится тело в любой момент времени. При этом в момент падения тела на землю координата тела по оси OY будет равна нулю. Очевидно, что вдоль оси OХ тело движется равномерно, поэтому в рамках координатного метода горизонтальная координата изменятся по закону:

Бросок под углом к горизонту (с земли на землю)

Максимальная высота подъема при броске под углом к горизонту (относительно начального уровня):

Время подъема до максимальной высоты при броске под углом к горизонту:

Дальность полета и полное время полета тела брошенного под углом к горизонту (при условии, что полет заканчивается на той же высоте с которой начался, т.е. тело бросали, например, с земли на землю):

Минимальная скорость тела брошенного под углом к горизонту – в наивысшей точке подъёма, и равна:

Максимальная скорость тела брошенного под углом к горизонту – в моменты броска и падения на землю, и равна начальной. Это утверждение верно только для броска с земли на землю. Если тело продолжает лететь ниже того уровня, с которого его бросали, то оно будет там приобретать все большую и большую скорость.

Сложение скоростей

Движение тел можно описывать в различных системах отсчета. С точки зрения кинематики все системы отсчета равноправны. Однако кинематические характеристики движения, такие как траектория, перемещение, скорость, в разных системах оказываются различными. Величины, зависящие от выбора системы отсчета, в которой производится их измерение, называют относительными. Таким образом, покой и движение тела относительны.

Таким образом, абсолютная скорость тела равна векторной сумме его скорости относительно подвижной системы координат и скорости самой подвижной системы отсчета. Или, другими словами, скорость тела в неподвижной системе отсчета равна векторной сумме скорости тела в подвижной системе отсчета и скорости подвижной системы отсчета относительно неподвижной.

Равномерное движение по окружности

Движение тела по окружности является частным случаем криволинейного движения. Такой вид движения также рассматривается в кинематике. При криволинейном движении вектор скорости тела всегда направлен по касательной к траектории. То же самое происходит и при движении по окружности (см. рисунок). Равномерное движение тела по окружности характеризуется рядом величин.

Период – время, за которое тело, двигаясь по окружности, совершает один полный оборот. Единица измерения – 1 с. Период рассчитывается по формуле:

Частота – количество оборотов, которое совершило тело, двигаясь по окружности, в единицу времени. Единица измерения – 1 об/с или 1 Гц. Частота рассчитывается по формуле:

В обеих формулах: N – количество оборотов за время t . Как видно из вышеприведенных формул, период и частота величины взаимообратные:

При равномерном вращении скорость тела будет определяется следующим образом:

где: l – длина окружности или путь, пройденный телом за время равное периоду T . При движении тела по окружности удобно рассматривать угловое перемещение φ (или угол поворота), измеряемое в радианах. Угловой скоростью ω тела в данной точке называют отношение малого углового перемещения Δφ к малому промежутку времени Δt . Очевидно, что за время равное периоду T тело пройдет угол равный 2π , следовательно при равномерном движении по окружности выполняются формулы:

Угловая скорость измеряется в рад/с. Не забывайте переводить углы из градусов в радианы. Длина дуги l связана с углом поворота соотношением:

Связь между модулем линейной скорости v и угловой скоростью ω :

При движении тела по окружности с постоянной по модулю скоростью изменяется только направление вектора скорости, поэтому движение тела по окружности с постоянной по модулю скоростью является движением с ускорением (но не равноускоренным), так как меняется направление скорости. В этом случае ускорение направлено по радиусу к центру окружности. Его называют нормальным, или центростремительным ускорением , так как вектор ускорения в любой точке окружности направлен к ее центру (см. рисунок).

Модуль центростремительного ускорения связан с линейной v и угловой ω скоростями соотношениями:

Обратите внимание, что если тела (точки) находятся на вращающемся диске, шаре, стержне и так далее, одним словом на одном и том же вращающемся объекте, то у всех тел одинаковые период вращения, угловая скорость и частота.

Скорость (v) - физическая величина, численно равна пути (s), пройденного телом за единицу времени (t).

Путь

Путь (S) - длина траектории, по которой двигалось тело, численно равен произведению скорости (v) тела на время (t) движения.

Время движения

Время движения (t) равно отношению пути (S), пройденного телом, к скорости (v) движения.

Средняя скорость

Средняя скорость (vср) равна отношению суммы участков пути (s 1 s 2 , s 3 , ...), пройденного телом, к промежутку времени (t 1 + t 2 + t 3 + ...), за который этот путь пройден.

Средняя скорость - это отношение длины пути, пройденного телом, ко времени, за которое этот путь был пройден.

Средняя скорость при неравномерном движении по прямой: это отношение всего пути ко всему времени.

Два последовательных этапа с разными скоростями: где

При решении задач - сколько этапов движения столько будет составляющих:

Проекции вектора перемещения на оси координат

Проекция вектора перемещения на ось ОХ:

Проекция вектора перемещения на ось OY:

Проекция вектора на ось равна нулю, если вектор перпендикулярен оси.

Знаки проекций перемещения: проекцию считают положительной, если движение от проекции начала вектора к проекции конца происходит по направлению оси, и отрицательной, если против оси. В данном примере

Модуль перемещения - это длина вектора перемещения:

По теореме Пифагора:

Проекции перемещения и угол наклона

В данном примере:

Уравнение координаты (в общем виде):

Радиус-вектор - вектор, начало которого совпадает с началом координат, а конец - с положением тела в данный момент времени. Проекции радиус-вектора на оси координат определяют координаты тела в данный момент времени.

Радиус-вектор позволяет задать положение материальной точки в заданной системе отсчета :

Равномерное прямолинейное движение - определение

Равномерное прямолинейное движение - движение, при котором тело за любые равные промежутки времени, совершает равные перемещения.

Скорость при равномерном прямолинейном движении . Скорость - векторная физическая величина, которая показывает, какое перемещение совершает тело за единицу времени.

В векторном виде:

В проекциях на ось ОХ:

Дополнительные единицы измерения скорости:

1 км/ч = 1000 м/3600 с,

1 км/с = 1000 м/с,

1 см/с = 0,01 м/с,

1 м/мин =1 м/60 с.

Измерительный прибор - спидометр - показывает модуль скорости.

Знак проекции скорости зависит от направления вектора скорости и оси координат:

График проекции скорости представляет собой зависиость проекции скорости от времени:

График скорости при равномерном прямолинейном движении - прямая, параллельная оси времени (1, 2, 3).

Если график лежит над осью времени (.1), то тело движется по направлению оси ОХ. Если график расположен под осью времени, то тело движется против оси ОХ (2, 3).

Геометрический смысл перемещения.

При равномерном прямолинейном движении перемещение определяют по формуле . Такой же результат получим, если вычислим площадь фигуры под графиком скорости в осях. Значит, для определения пути и модуля перемещения при прямолинейном движении необходимо вычислять площадь фигуры под графиком скорости в осях:

График проекции перемещения - зависимость проекции перемещения от времени.

График проекции перемещения при равномерном прямолинейном движении - прямая, выходящая из начала координат (1, 2, 3).

Если прямая (1) лежит над осью времени, то тело движется по направлению оси ОХ, а если под осью (2, 3), то против оси ОХ.

Чем больше тангенс утла наклона (1) графика, тем больше модуль скорости.

График координаты - зависимость координаты тела от времени:

График координаты при равномерном прямолинейном движении - прямые (1, 2, 3).

Если с течением времени координата увеличивается (1, 2), то тело движется по направлению оси ОХ; если координата уменьшается (3), то тело движется против направления оси ОХ.

Чем больше тангенс угла наклона (1), тем больше модуль скорости.

Если графики координат двух тел пересекаются, то из точки пересечения следует опустить перпендикуляры на ось времени и ось координат.

Относительность механического движения

Под относительностью мы понимаем зависимость чего-либо от выбора системы отсчета. Например, покой относителен; движение относительно и положение тела относительно.

Правило сложения перемещений. Векторная сумма перемещений

где - перемещение тела относительно подвижной системы отсчета (ПСО); - перемещение ПСО относительно неподвижной системы отсчета (НСО); - перемещение тела относительно неподвижной системы отсчета (НСО).

Векторное сложение:

Сложение векторов, направленных вдоль одной прямой:

Сложение векторов, перпендикулярных друг другу

По теореме Пифагора



Понравилась статья? Поделитесь с друзьями!