Формула сернистой кислоты. Сернистая кислота: химические свойства, получение











Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Воспитывающая:

Создать условия для нравственного и эстетического воспитания учащихся к окружающей среде, умения работать в парах при самоанализе контрольных срезов, тестов.

Развивающая:

развивать умение работать в атмосфере поиска, творчества, дать каждому учащемуся возможность достичь успеха; умение давать самооценку деятельности на уроке;

Общеобразовательная:

организовать деятельность учащихся на усвоение:

  • знаний
  • : химические свойства и способы получения сернистого газа и сернистой кислоты;
  • умений
  • : записывать уравнения химических реакций, характеризующих химические свойства сернистой кислоты и её солей в ионном и окислительно-восстановительном виде.

Ход урока

I. Оргмомент.

II. Изучение нового материала:

1. Строение:

SO 2 (сернистый газ, оксид серы (IV)), молекулярная формула

Структурная формула

2. Физические свойства

  1. Бесцветный газ с резким запахом, ядовит.
  2. Хорошо растворим в воде (в 1 V H 2 O растворяется 40 V SO 2 при н.у.)
  3. Тяжелее воздуха, ядовит.

3. Получение

1. В промышленности: обжиг сульфидов.

FeS 2 + O 2 → Fe 2 O 3 + SO 2

а) Составить электронный баланс (ОВР).

2. В лабораторных условиях: взаимодействие сульфитов с сильными кислотами:

Na 2 SO 3 + 2HCl → 2NaCl + SO 2 + H 2 O

3. При окислении металлов концентрированной серной кислотой:

Cu + H 2 SO 4(конц) → CuSO 4 + SO 2 + H 2 O

б) Составить электронный баланс (ОВР).

4. Химические свойства SO 2

1. Взаимодействие с водой

При растворении в воде образуется слабая и неустойчивая сернистая кислота H 2 SO 3 (существует только в водном растворе).

SO 2 + H 2 O ↔ H 2 SO 3

2. Взаимодействие со щелочами:

Ba(OH) 2 + SO 2 → BaSO 3 ↓(сульфит бария) + H 2 O

Ba(OH) 2 + 2SO 2 (избыток) → Ba(HSO 3) 2 (гидросульфит бария)

3. Взаимодействие с основными оксидами (образуется соль):

SO 2 + CaO = CaSO 3

4. Реакции окисления, SO 2 – восстановитель:

SO 2 + O 2 → SO 3 (катализатор – V 2 O 5)

в) Составить электронный баланс (ОВР)

SO 2 + Br 2 + H 2 O → H 2 SO 4 + HBr

г) Составить электронный баланс (ОВР)

SO 2 + KMnO 4 + H 2 O → K 2 SO 4 + MnSO 4 + H 2 SO 4

д) Составить электронный баланс (ОВР)

5. Реакции восстановления, SO 2 - окислитель

SO 2 + С → S + СO 2 (при нагревании)

е) Составить электронный баланс (ОВР)

SO 2 + H 2 S → S + H 2 O

ж) Составить электронный баланс (ОВР)

5. Химические свойства H 2 SO 3

1. Сернистая кислота диссоциирует ступенчато:

H 2 SO 3 ↔ H + + HSO 3 - (первая ступень, образуется гидросульфит – анион)

HSO 3 - ↔ H+ + SO 3 2- (вторая ступень, образуется анион сульфит)

H 2 SO 3 образует два ряда солей:

Средние (сульфиты)

Кислые (гидросульфиты)

2. Раствор сернистой кислоты H 2 SO 3 обладает восстановительными свойствами:

H 2 SO 3 + I 2 + H 2 O = H 2 SO 4 + НI

з) Составить электронный баланс (ОВР)

III. Самоконтроль.

Осуществите превращения по схеме:

S → H 2 S → SO 2 → Na 2 SO 3 → BaSO 3 → SO 2

Уравнения реакций ионного обмена напишите в полном и кратком ионном виде.

Ответы для самопроверки выводятся на экране.

IV. Рефлексия.

Ответьте на вопросы в таблице “Вопросы к ученику” (Приложение 1).

V. Домашнее задание (дифференцированно)

Сделать задания выделенные красным шрифтом:

Уравнения а, в, е, ж – “3”

Уравнения а – е – “4”

Уравнения а – з – “5”

Приложение 1

Вопросы к ученику

Дата ___________________ Класс ______________________

Постарайся точно вспомнить то, что слышал на уроке и ответь на поставленные вопросы:

№ п/п Вопросы
1 Какова была тема урока?
2 Какая цель стояла перед тобой на уроке?
3 Каков вывод урока?
4 Как работали на уроке твои одноклассники?
5 Как работал ты на уроке?
6 Как ты думаешь, ты справишься с домашним заданием, полученном на уроке?

Серная кислота (H2SО4) – это одна из самых едких кислот и опасных реагентов, известных человеку, особенно в концентрированном виде. Химически чистая серная кислота представляет собой тяжелую токсичную жидкость маслянистой консистенции, не имеющую запаха и цвета. Получают ее методом окисления сернистого газа (SO2) контактным способом.

При температуре + 10,5 °C, серная кислота превращается в застывшую стекловидную кристаллическую массу, жадно, подобно губке, поглощающую влагу из окружающей среды. В промышленности и химии серная кислота является одним из основных химических соединений и занимает лидирующие позиции по объему производства в тоннах. Именно поэтому серную кислоту называют «кровью химии». С помощью серной кислоты получают удобрения, лекарственные препараты, другие кислоты, большой , удобрений и много другое.

Основные физические и химические свойства серной кислоты

  1. Серная кислота в чистом виде (формула H2SO4), при концентрации 100% представляет собой бесцветную густую жидкость. Самое важное свойство H2SO4 заключается в высокой гигроскопичности – это способность отнимать из воздуха воду. Данный процесс сопровождается масштабным выделением тепла.
  2. H2SO4 – это сильная кислота.
  3. Серная кислота называется моногидратом – в ней на 1 моль SO3 приходится 1 моль Н2О (воды). Из-за ее внушительных гигроскопических свойств ее используют для извлечения влаги из газов.
  4. Температура кипения – 330 °С. При этом происходит разложение кислоты на SO3 и воду. Плотность – 1,84. Температура плавления – 10,3 °С/.
  5. Концентрированная серная кислота представляет собой мощный окислитель. Чтобы запустить окислительно-восстановительную реакцию кислоту требуется нагреть. Итог реакции – SO2. S+2H2SO4=3SO2+2H2O
  6. В зависимости от концентрации серная кислота по-разному вступает в реакцию с металлами. В разбавленном состоянии серная кислота способна окислять все металлы, которые стоят в ряду напряжений до водорода. Исключение составляют как самые стойкие к окислению. Разбавленная серная кислота взаимодействует с солями, основаниями, амфотерными и основными оксидами. Серная кислота концентрированная способна окислять все металлы, стоящие в ряду напряжений, причем серебро тоже.
  7. Серная кислота образует два вида солей: кислые (это гидросульфаты) и средние (сульфаты)
  8. H2SO4 вступает в активную реакцию с органическими веществами и неметаллами, причем некоторые из них она способна превратить в уголь.
  9. Серный ангидрит отлично растворяется в H2SО4, и при этом образуется олеум – раствор SО3 в серной кислоте. Внешне это выглядит так: дымящаяся серная кислота, выделяющая серный ангидрит.
  10. Серная кислота в водных растворах является сильной двухосновной, и при добавлении ее к воде выделяется огромное количество теплоты. Когда готовят разбавленные растворы H2SО4 из концентрированных, необходимо небольшой струйкой добавлять более тяжелую кислоту к воде, а не наоборот. Это делается во избежание вскипания воды и разбрызгивания кислоты.

Концентрированная и разбавленная серные кислоты

К концентрированным растворам серной кислоты относятся растворы от 40%, способные растворять серебро или палладий.

К разбавленной серной кислоте относятся растворы, концентрация которых составляет менее 40%. Это не такие активные растворы, но они способны вступать в реакцию с латунью и медью.

Получение серной кислоты

Производство серной кислоты в промышленных масштабах было запущено в XV веке, но в то время ее называли “купоросное масло». Если раньше человечество потребляло всего лишь несколько десятков литров серной кислоты, то в современном мире исчисление идет на миллионы тонн в год.

Производство серной кислоты осуществляется промышленным способом, и их существует три:

  1. Контактный способ.
  2. Нитрозный способ
  3. Другие методы

Поговорим подробно о каждом из них.

Контактный способ производства

Контактный способ производства – самый распространенный, и он выполняет следующие задачи:

  • Получается продукт, удовлетворяющий потребности максимального количества потребителей.
  • Во время производства сокращается вред для окружающей среды.

При контактном способе в качестве сырья используются такие вещества:

  • пирит (серный колчедан);
  • сера;
  • оксид ванадия (это вещество вызывает роль катализатора);
  • сероводород;
  • сульфиды различных металлов.

Перед запуском процесса производства сырье предварительно подготавливают. Для начала в специальных дробильных установках колчедан подвергается измельчению, что позволяет, благодаря увеличению площади соприкосновения активных веществ, ускорить реакцию. Пирит подвергается очищению: его опускают в большие емкости с водой, в ходе чего пустая порода и всевозможные примеси всплывают на поверхность. В конце процесса их убирают.

Производственную часть разделяют на несколько стадий:

  1. После дробления колчедан очищают и отправляют в печь – там при температуре до 800 °C происходит его обжиг. По принципу противотока в камеру снизу идет подача воздуха, и это обеспечивает нахождение пирита в подвешенном состоянии. На сегодняшний день, на этот процесс тратится несколько секунд, а вот раньше на обжиг уходило несколько часов. В процессе обжига появляются отходы в виде оксида железа, которые удаляются, и в дальнейшем передаются на предприятия металлургической промышленности. При обжиге выделяются водные пары, газы O2 и SO2. Когда завершится очистка от паров воды и мельчайших примесей, получается чистый оксид серы и кислород.
  2. На второй стадии под давлением происходит экзотермическая реакция с использованием ванадиевого катализатора. Запуск реакции начинается при достижении температуры 420 °C, но ее могут повысить до 550 °C с целью увеличения эффективности. В процессе реакции идет каталитическое окисление и SO2 становится SO.
  3. Суть третьей стадии производства такова: поглощение SO3 в поглотительной башне, в ходе чего образуется олеум H2SO4. В таком виде H2SO4 разливается в специальные емкости (она не вступает в реакция со сталью) и готова ко встрече с конечным потребителем.

В ходе производства, как мы уже говорили выше, образуется много тепловой энергии, которая используется в отопительных целях. Многие предприятия по производству серной кислоты устанавливают паровые турбины, которые использую выбрасываемый пар для вырабатывая дополнительной электроэнергии.

Нитрозный способ получения серной кислоты

Несмотря на преимущества контактного способа производства, при котором получается более концентрированная и чистая серная кислота и олеум, достаточно много H2SO4 получают нитрозным способом. В частности, на суперфосфатных заводах.

Для производства H2SO4 исходным веществом, как в контактном, так и в нитрозном способе выступает сернистый газ. Его получают специально для этих целей посредством сжигания серы или обжигом сернистых металлов.

Переработка сернистого газа в сернистую кислоту заключается в окислении двуокиси серы и присоединении воды. Формула выглядит так:
SO2 + 1|2 O2 + H2O = H2SO4

Но двуокись серы с кислородом не вступает в непосредственную реакцию, поэтому при нитрозном методе окисление сернистого газа осуществляют при помощи окислов азота. Высшие окислы азота (речь идет о двуокиси азота NO2, трехокиси азота NO3) при данном процессе восстанавливаются до окиси азота NO, которая впоследствии опять окисляется кислородом до высших окислов.

Получение серной кислоты нитрозным способом в техническом плане оформлено в виде двух способов:

  • Камерного.
  • Башенного.

Нитрозный способ имеет ряд достоинств и недостатков.

Недостатки нитрозного способа:

  • Получается 75%-ная серная кислота.
  • Качество продукции низкое.
  • Неполный возврат оксидов азота (добавление HNO3). Их выбросы вредны.
  • В кислоте присутствуют железо, оксиды азота и прочие примеси.

Достоинства нитрозного способа:

  • Себестоимость процесса более низкая.
  • Возможность переработки SO2 на все 100%.
  • Простота аппаратурного оформления.

Основные российские заводы по производству серной кислоты

Годовое производство H2SO4 в нашей стране ведет исчисление шестизначными цифрами – это порядка 10 миллионов тонн. Ведущими производителями серной кислоты в России являются компании, являющиеся, помимо этого, ее основными потребителями. Речь идет о компаниях, сферой деятельности которых является выпуск минеральных удобрений. К примеру, «Балаковские минудобрения», «Аммофос».

В Крыму в Армянске работает крупнейший производитель диоксида титана на территории Восточной Европы «Крымский титан». Вдобавок, завод занимается производством серной кислоты, минеральных удобрений, железного купороса и т.д.

Серную кислоту различных видов производят многие заводы. К примеру, аккумуляторную серную кислоту производят: Карабашмедь, ФКП Бийский олеумный завод,Святогор, Славия, Северхимпром и т.д.

Олеум производят ОХК Щекиноазот, ФКП Бийский олеумный завод, Уральская Горно-Металлургическая Компания, ПО Киришинефтеоргсинтез и т.д.

Серную кислоту особой чистоты производят ОХК Щекиноазот, Компонент-Реактив.

Отработанную серную кислоту можно купить на заводах ЗСС, ГалоПолимер Кирово-Чепецк.

Производителями технической серной кислоты являются Промсинтез, Хипром, Святогор, Апатит, Карабашмедь, Славия, Лукойл-Пермнефтеоргсинтез, Челябинский цинковый завод, Электроцинк и т.д.

По причине, что колчедан является основным сырьем при производстве H2SO4, а это отход обогатительных предприятий, его поставщиками выступают Норильская и Талнахская обогатительные фабрики.

Лидерские мировые позиции по производству H2SO4 занимают США и Китай, на которые приходятся 30 млн. тонн и 60 млн. тонн соответственно.

Сфера применения серной кислоты

В мире ежегодно потребляется порядка 200 миллионов тонн H2SO4, из которой производится широкий спектр продукции. Серная кислота по праву держит пальму первенства среди других кислот по масштабам использования в промышленных целях.

Как вы уже знаете, серная кислота является одним из важнейших продуктов химической промышленности, поэтому область применения серной кислоты довольно широкая. Основные направления использования H2SО4 таковы:

  • Серную кислоту в колоссальных объемах используют для производства минеральных удобрений, и на это уходит около 40% всего тоннажа. По этой причине производящие H2SO4 заводы строят рядом с предприятиями, выпускающими удобрения. Это сульфат аммония, суперфосфат и т.д. При их производстве серная кислота берется в чистом виде (100% концентрация). Чтобы произвести тонну аммофоса или суперфосфата понадобится 600 литров H2SO4. Именно эти удобрения в большинстве случаев применяются в сельском хозяйстве.
  • H2SО4 используется для производства взрывчатых веществ.
  • Очистка нефтепродуктов. Для получения керосина, бензина минеральных масел требуется очистка углеводородов, которая происходит с применением серной кислоты. В процессе переработки нефти на очистку углеводородов данная индустрия «забирает» целых 30% мирового тоннажа H2SO4. Вдобавок, серной кислотой увеличивают октановое число топлива и при добыче нефти обрабатывают скважины.
  • В металлургической промышленности. Серная кислота в металлургии используется для очистки от окалины и ржавчины проволоки, листового металла, а также для восстановления алюминия при производстве цветных металлов. Перед тем как покрывать металлические поверхности медью, хромом или никелем, поверхность протравливается серной кислотой.
  • При производстве лекарственных препаратов.
  • При производстве красок.
  • В химической промышленности. H2SO4 используется при производстве моющих средств, этилового средства, инсектицидов и т.д., и без нее эти процессы невозможны.
  • Для получения других известных кислот, органических и неорганических соединений, используемых в промышленных целях.

Соли серной кислоты и их применение

Самые важные соли серной кислоты:

  • Глауберова соль Na2SO4 · 10H2O (кристаллический сульфат натрия). Сфера ее применения достаточно емкая: производство стекла, соды, в ветеринарии и медицине.
  • Сульфат бария BaSO4 используется в производстве резины, бумаги, белой минеральной краски. Вдобавок, он незаменим в медицине при рентгеноскопии желудка. Из него делают «бариевую кашу» для проведения данной процедуры.
  • Сульфат кальция CaSO4. В природе его можно встретить в виде гипса CaSO4 · 2H2O и ангидрита CaSO4. Гипс CaSO4 · 2H2O и сульфат кальция применяют в медицине и строительстве. С гипсом при нагревании до температуры 150 - 170 °C происходит частичная дегидратизация, вследствие которой получается жженый гипс, известный нам как алебастр. Замешивая алебастр с водой до консистенции жидкого теста, масса быстро затвердевает и превращается в подобие камня. Именно это свойство алебастра активно используется в строительных работах: из него делают слепки и отливочные формы. В штукатурных работах алебастр незаменим в качестве вяжущего материала. Пациентам травматологических отделений накладывают специальные фиксирующие твердые повязки – они делаются на основе алебастра.
  • Железный купорос FeSO4 · 7H2O используют для приготовления чернил, пропитки дерева, а также в сельскохозяйственной деятельности для уничтожения вредителей.
  • Квасцы KCr(SO4)2 · 12H2O , KAl(SO4)2 · 12H2O и др. используют в производстве красок и кожевенной промышленности (дублении кожи).
  • Медный купорос CuSO4 · 5H2O многие из вас знают не понаслышке. Это активный помощник в сельском хозяйстве при борьбе с болезнями растений и вредителями – водным раствором CuSO4 · 5H2O протравливают зерно и опрыскивают растения. Также его применяют для приготовления некоторых минеральных красок. А в быту его используют для выведения плесени со стен.
  • Сульфат алюминия – его используют в целлюлозно-бумажной промышленности.

Серная кислота в разбавленном виде применяется в качестве электролита в свинцовых аккумуляторах. Вдобавок, она используется для производства моющих средств и удобрений. Но в большинстве случаев она идет в виде олеума – это раствор SO3 в H2SO4 (можно встретить и другие формулы олеума).

Удивительный факт! Олеум химически активнее, чем концентрированная серная кислота, но, несмотря на это, он не вступает в реакцию со сталью! Именно по этой причине его проще транспортировать, чем саму серную кислоту.

Сфера использования «королевы кислот» поистине масштабна, и сложно рассказать обо всех способах ее применения в промышленности. Также она применяется в качестве эмульгатора в пищевой промышленности, для очистки воды, при синтезе взрывчатых веществ и множество других целей.

История появления серной кислоты

Кто из нас хоть раз не слышал о медном купоросе? Так вот, его изучением занимались еще в древности, и в некоторых работах начала новой эры ученые обсуждали происхождение купоросов и их свойства. Купоросы изучали греческий врач Диоскорид, римский исследователь природы Плиний Старший, и в своих трудах они писали о проводимых опытах. В медицинских целях различные вещества-купоросы применял древний лекарь Ибн Сина. Как использовались купоросы в металлургии, говорилось в работах алхимиков Древней Греции Зосимы из Панополиса.

Первейшим способом получения серной кислоты является процесс нагревания алюмокалиевых квасцов, и об этом есть информация в алхимической литературе XIII века. В то время состав квасцов и суть процесса была не известна алхимикам, но уже в XV веке химическим синтезом серной кислоты стали заниматься целенаправленно. Процесс был таковым: алхимики обрабатывали смесь серы и сульфида сурьмы (III) Sb2S3 при нагревании с азотной кислотой.

В средневековые времена в Европе серную кислоту называли «купоросным маслом», но потом название изменилось на купоросную кислоту.

В XVII веке Иоганн Глаубер в результате горения калийной селитры и самородной серы в присутствии водных паров получил серную кислоту. В результате окисления серы селитрой получался оксид серы, вступавший в реакцию с парами воды, и в итоге получалась жидкость маслянистой консистенции. Это было купоросное масло, и это название серной кислоты существует и поныне.

Фармацевт из Лондона Уорд Джошуа в тридцатые годы XVIII века применял данную реакцию для промышленного производства серной кислоты, но в средневековье ее потребление ограничивалось несколькими десятками килограммов. Сфера использования была узкой: для алхимических опытов, очистки драгоценных металлов и в аптекарском деле. Концентрированная серная кислота в небольших объемах использовалась в производстве особых спичек, которые содержали бертолетову соль.

На Руси только лишь в XVII веке появилась купоросная кислота.

В Англии в Бирмингеме Джон Робак в 1746 году адаптировал указанный выше способ получения серной кислоты и запустил производство. При этом он использовал прочные крупные освинцованные камеры, которые были дешевле стеклянных емкостей.

В промышленности этот способ держал позиции почти 200 лет, и в камерах получали 65%-ую серную кислоту.

Через время английский Гловер и французский химик Гей-Люссак усовершенствовали сам процесс, и серная кислота стала получаться с концентрацией 78%. Но для производства, к примеру, красителей такая кислота не подходила.

В начале 19 века были открыты новые способы окисления сернистого газа в серный ангидрид.

Первоначально это делали с применением окислов азота, а потом использовали в качестве катализатора платину. Два этих метода окисления сернистого газа усовершенствовались и дальше. Окисление сернистого газа на платиновых и других катализаторах стало называться контактным способом. А окисление этого газа окислами азота получило название нитрозного способа получения серной кислоты.

Британский торговец уксусной кислотой Перегрин Филипс только лишь в 1831 году запатентовал экономичный процесс для производства оксида серы (VI) и концентрированной серной кислоты, и именно он на сегодняшний день знаком миру как контактный способ ее получения.

Производство суперфосфата началось в 1864 году.

В восьмидесятые годы девятнадцатого века в Европе производство серной кислоты достигло 1 миллиона тонн. Главными производителями стали Германия и Англия, выпускающие 72% от всего объема серной кислоты в мире.

Перевозка серной кислоты является трудоемким и ответственным мероприятием.

Серная кислота относится к классу опасных химических веществ, и при контакте с кожными покровами вызывает мощнейшие ожоги. Вдобавок, она может стать причиной химического отравления человека. Если при транспортировке не будут соблюдены определенные правила, то серная кислота по причине своей взрывоопасности может причинить немало вреда, как людям, так и окружающей среде.

Серной кислоте присвоен 8 класс опасности и перевозку должны осуществлять специально обученные и подготовленные профессионалы. Важное условие доставки серной кислоты – соблюдение специально разработанных Правил перевозки опасных грузов.

Перевозка автомобильным транспортом осуществляется согласно следующим правилам:

  1. Под перевозку изготавливают специальные емкости из особого стального сплава, не вступающего в реакцию с серной кислотой или титана. Такие емкости не окисляются. Опасную серную кислоту перевозят в специальных сернокислотных химических цистернах. Они отличаются по конструкции и при перевозке подбираются в зависимости от вида серной кислоты.
  2. При перевозке дымящейся кислоты берутся специализированные изотермические цистерны-термосы, в которых для сохранения химических свойств кислоты поддерживается необходимый температурный режим.
  3. Если перевозится обычная кислота, то выбирается сернокислотная цистерна.
  4. Перевозка серной кислоты автотранспортом, таких видов как дымящаяся, безводная, концентрированная, для аккумуляторов, гловерная осуществляется в специальной таре: цистернах, бочках, контейнерах.
  5. Перевозкой опасного груза могут заниматься исключительно водители, у которых на руках есть свидетельство АДР.
  6. Время в пути не имеет ограничений, так как при перевозке нужно строго придерживаться допустимой скорости.
  7. При перевозке строится специальный маршрут, который должен пролегать, минуя места большого скопления людей и производственные объекты.
  8. Транспорт должен иметь специальную маркировку и знаки опасности.

Опасные свойства серной кислоты для человека

Серная кислота представляет повышенную опасность для человеческого организма. Ее токсическое действие наступает не только при непосредственном контакте с кожей, но при вдыхании ее паров, когда происходит выделение сернистого газа. Опасное воздействие распространяется на:

  • Дыхательную систему;
  • Кожные покровы;
  • Слизистые оболочки.

Интоксикацию организма может усилить мышьяк , который часто входит в состав серной кислоты.

Важно! Как вы знаете, при соприкосновении кислоты с кожей происходят сильнейшие ожоги. Не меньшую опасность представляет и отравление парами серной кислоты. Безопасная доза содержания серной кислоты в воздухе равняется всего 0,3 мг на 1 квадратный метр.

Если на слизистые покровы или на кожу попадает серная кислота, появляется сильный ожог, плохо заживающий. Если по масштабу ожог внушительный, у пострадавшего развивается ожоговая болезнь, которая может привести даже к смертельному исходу, если своевременно не будет оказана квалифицированная медицинская помощь.

Важно! Для взрослого человека смертельная доза серной кислоты равняется всего 0,18 см на 1 литр.

Безусловно, «испытать на себе» токсическое действие кислоты в обычной жизни проблематично. Чаще всего отравление кислотой происходит из-за пренебрежения техникой безопасности на производстве при работе с раствором.

Может случиться массовое отравление парами серной кислоты вследствие технических неполадок на производстве или неосторожности, и происходит массивный выброс в атмосферу. Для предотвращения таких ситуаций работают специальные службы, задача которых контролировать функционирование производства, где используется опасная кислота.

Какие симптомы наблюдаются при интоксикации серной кислотой

Если кислота была принята внутрь:

  • Боль в области пищеварительных органов.
  • Тошнота и рвота.
  • Нарушение стула, как итог сильных кишечных расстройств.
  • Сильное выделение слюны.
  • Из-за токсического воздействия на почки, моча становится красноватой.
  • Отек гортани и горла. Возникают хрипы, осиплость. Это может привести к летальному исходу от удушья.
  • На деснах появляются бурые пятна.
  • Кожные покровы синеют.

При ожоге кожных покровов могут быть все осложнения, присущие для ожоговой болезни.

При отравлении парами наблюдается такая картина:

  • Ожог слизистой оболочки глаз.
  • Носовое кровотечение.
  • Ожог слизистых оболочек дыхательных путей. При этом пострадавший испытывает сильный болевой симптом.
  • Отек гортани с симптомами удушения (нехватка кислорода, кожа синеет).
  • Если отравление сильное, то может быть тошнота и рвота.

Важно знать! Отравление кислотой после приема внутрь намного опасней, чем интоксикация от вдыхания паров.

Первая помощь и терапевтические процедуры при поражении серной кислотой

Действуйте по следующей схеме при контакте с серной кислотой:

  • Первым делом вызовите скорую помощь. Если жидкость попала внутрь, то сделайте промывание желудка теплой водой. После этого мелкими глотками понадобится выпить 100 граммов подсолнечного или оливкового масла. Вдобавок, следует проглотить кусочек льда, выпить молоко или жженую магнезию. Это нужно сделать для снижения концентрации серной кислоты и облегчения состояния человека.
  • Если кислота попала в глаза, нужно промыть их проточной водой, а затем закапать раствором дикаина и новокаина.
  • При попадании кислоты на кожу, обожженное место нужно хорошо промыть под проточной водой и наложить повязку с содой. Промывать нужно около 10-15 минут.
  • При отравлении парами нужно выйти на свежий воздух, а также промыть по мере доступности пострадавшие слизистые водой.

В условиях стационара лечение будет зависеть от площади ожога и степени отравления. Обезболивание осуществляют только новокаином. Во избежание развития в области поражения инфекции, пациенту подбирают курс антибиотикотерапии.

При желудочном кровотечении вводится плазма или переливается кровь. Источник кровотечения могут устранять оперативным путем.

  1. Серная кислота в чистом 100%-ом виде встречается в природе. К примеру, в Италии на Сицилии в Мертвом море можно увидеть уникальное явление – серная кислота просачивается прямо из дна! А происходит вот что: пирит из земной коры служит в этом случае сырьем для ее образования. Это место еще называют Озером смерти, и к нему боятся подлетать даже насекомые!
  2. После больших извержений вулканов в земной атмосфере часто можно обнаружить капли серной кислоты, и в таких случаях «виновница» может принести негативные последствия для окружающей среды и стать причиной серьезных изменений климата.
  3. Серная кислота является активным поглотителем воды, поэтому ее используют в качестве осушителя газов. В былые времена, чтобы в помещениях не запотевали окна, эту кислоту наливали в баночки и ставили между стеклами оконных проемов.
  4. Именно серная кислота – основная причина выпадения кислотных дождей. Главная причина образования кислотного дождя – загрязнение воздуха диоксидом серы, и он при растворении в воде образует серную кислоту. В свою очередь двуокись серы выделяется при сжигании ископаемого топлива. В кислотных дождях, исследуемых за последние годы, возросло содержание азотной кислоты. Причина такого явления – снижение выбросов двуокиси серы. Несмотря на этот факт, основной причиной появления кислотных дождей так и остается серная кислота.

Мы предлагаем вам видеоподборку интересных опытов с серной кислотой.

Рассмотрим реакцию серной кислоты при ее заливании в сахар. На первых секундах попадания серной кислоты в колбу с сахаром происходит потемнение смеси. После нескольких секунд субстанция приобретает черный цвет. Далее происходит самое интересное. Масса начинает стремительно расти и вылазить за пределы колбы. На выходе получаем гордое вещество, похоже на пористый древесный уголь, превышающий первоначальный объем в 3-4 раза.

Автор видео предлагает сравнить реакцию кока-колы с соляной кислотой и серной кислотой. При смешивании Кока-колы с соляной кислотой никаких визуальных изменений не наблюдается, а вот при смешивании с серной кислотой Кока-кола начинает закипать.

Интересное взаимодействие можно наблюдать при попадании серной кислоты на туалетную бумагу. Туалетная бумага состоит из целлюлозы. При попадании кислоты молекулы целлюлозы мгновенно разрушайся с выделением свободного углерода. Подобное обугливание можно наблюдать при попадании кислоты на древесину.

В колбу с концентрированной кислотой добавляю маленький кусочек калия. На первой секунде происходит выделение дыма, после чего металл мгновенно вспыхивает, загорается и взрывается, разделаясь на кусочки.

В следующем опыте при попадании серной кислоты на спичку происходит ее вспыхивание. Во второй части опыта погружают алюминиевую фольгу с ацетоном и спичкой внутри. Происходит мгновенное нагревание фольги с выделением огромного количества дыма и полное ее растворение.

Интересный эффект наблюдается при добавлении пищевой соды в серную кислоту. Сода мгновенно окрашивается в желтый цвет. Реакция протекает с бурным кипением и увеличением объема.

Все вышеприведенные опыты мы категорически не советует проводить в домашних условиях. Серная кислота очень агрессивное и токсичное вещество. Подобные опыты необходимо проводить в специальных помещениях, которые оборудованы принудительной вентиляцией. Газы, выделяемые в реакциях с серной кислотой, очень токсичны и могут вызвать поражение дыхательных путей и отравление организма. Кроме того, подобные опыты проводятся в средствах индивидуальной защиты кожных покровов и органов дыхания. Берегите себя!

Оксид серы (IV) хорошо растворим в воде (в 1 объеме воды при 200С растворяется 40 объемов SО2). При этом образуется существующая только в водном растворе сернистая кислота:

SO2+ Н2О = Н2SO3

Реакция соединения SO2с водой обратимая. В водном растворе оксид серы (IV) и сернистая кислота находятся в химическом равновесии, которое можно смещать. При связыванииН2SO3щелочью (нейтрализация кислоты) реакция протекает в сторону образования сернистой кислоты; при удаленииSO2(продувание через раствор азота или нагревание) реакция протекает в сторону исходных веществ. В растворе сернистой кислоты всегда имеется оксид серы (IV), который придает ему резкий запах.

Сернистая кислота обладает всеми свойствами кислот. В растворе Н2SO3диссоциирует ступенчато:

Н2SО3 H+ + HSO4 –

HSO3 -H++ SO3 2-

Как двухосновная кислота она образует два ряда солей - сульфиты и гидросульфиты. Сульфиты образуются при полной нейтрализации кислоты щелочью:

Н2SO3 + 2NаОН =NаHSО4+ 2Н2О

Гидросульфиты получаются при недостатке щелочи (по сравнению с количеством, необходимым для полной нейтрализации кислоты):

Н2SO3+NаОН = NаНSO3+ Н2О

Как и оксид серы (IV), сернистая кислота и ее соли являются сильны­ми восстановителями. При этом степень окисления серы возрастает. Так, Н2SО3легко окисляется в серную кислоту даже кислородом воздуха:

2Н2SO3+O2= 2Н2SO4

Поэтому долго хранившиеся растворы сернистой кислоты всегда со­держат серную кислоту.

Еще легче протекает окисление сернистой кислоты бромом и перманганатом калия:

Н2SО3+ Вr2+ Н2О = Н2SO4 + 2НВr

5Н2S03+ 2КмnО4= 2Н2SO4+ 2МnSO4+ К2SО4+ 2Н2О

Оксид серы (IV) и сернистая кислота обесцвечивают многие краси­тели, образуя с ними бесцветные соединения. Последние могут снова разлагаться при нагревании или на свету, в результате чего окраска восстанавливается. Следовательно, белящее действиеSO2 иН2SO4отличается от белящего действия хлора. Обычно оксидом серы (IV) белят шерсть, шелк и солому (хлорной водой эти материалы разруша­ются).

Важное применение находит раствор гидросульфита кальция Ca(HSO3)2(сульфитный щелок), которым обрабатывают волокна древесины и бумажную массу.

Сероводород и сульфиды

Сероводород Н2S - бесцветный газ с запахом тухлых яиц. Он хоро­шо растворим в воде (при 20 °C в 1 объеме воды растворяется 2,5 объема сероводорода). Раствор сероводорода в воде называется сероводородной водой или сероводородной кислотой (она обнаруживает свойства слабой кислоты).

Сероводород - очень ядовитый газ, поражаю­щий нервную систему. Поэтому работать с ним надо в вытяжных шка­фах или с герметически закрывающимися приборами. Допустимое содержание Н2Sв производственных помещениях составляет 0,01 мг в 1 л воздуха.


Сероводород встречается в природе в вул­канических газах и в водах некоторых минеральных источников, на­пример Пятигорска; Мацесты. Он образуется при гниении серосодержащих органических веществ различных растительных и животных остатков. Этим объясняется характерный неприятный запах сточных вод, выгребных ям и свалок мусора.

Сероводород может быть получен непосредственным соединением серы с водородом при нагревании:

Но обычно его получают действием разбавленной соляной или серной кислоты на сульфид железа (II):

2НСl + FеS = FеСl2+ Н2S

Эту реакцию часто проводят в аппарате Киппа.

Н2S- менее прочное соединение, чем вода. Это обусловлено большим размером атома серы по сравнению с атомом кислорода. Поэтому связь Н-0 короче и прочнее связи Н-S. При сильном нагревании сероводород почти полностью разлагается на серу и водород:

Газообразный Н2Sгорит на воздухе голубым пламенем с образованием оксида серы (IV) и воды:

2Н2S+ 3O2= 2SO2+ 2Н2О

При недостатке кислорода образуются сера и вода:

2Н2S+O2= 2S+ 2Н2О

Этой реакцией пользуются для получения серы из сероводорода в промышленном масштабе.

Сероводород - довольно сильный восстановитель. Это его важное химическое свойство можно объяснить так. В растворе Н2Sсравнитель­но легко отдает электроны молекулам кислорода воздуха:

Н2S - 2е- = S + 2H + 2

O2 + 4е- = 2O 2- 1

В этом случае Н2Sокисляется кислородом воздуха до серы, которая делает сероводородную воду мутной. Суммарное уравнение реакции:

2Н2S + O2 = 2S + 2Н2O

Этим объясняется и тот факт, что сероводород не накапливается в очень больших количествах в природе при гниении органических веществ - кислород воздуха окисляет его в свободную серу.

Энергично реагирует сероводород с растворами галогенов. Напри­мер:

Н2S + I2 = 2HI + S

Происходит выделение серы и обесцвечивание раствора йода.

Сероводородная кислота как двухосновная образует два ряда солей - средние (сульфиды) и кислые (гидросульфиды). Например, Nа2S - сульфид натрия,NаНS- гидросульфид натрия. Гидросульфиды почти все хорошо растворимы в воде. Сульфиды щелочных и щелочно-земельных металлов также растворимы в воде, а остальных металлов практически нерастворимы или мало растворимы; некоторые из них не растворяются и в разбавленных кислотах. Поэтому такие сульфиды можно легко получить, пропуская сероводород через соли соответствующего металла, например:

СuSO4 + Н2S = CuS + H2SO4

Некоторые сульфиды имеют характерную окраску: CuSиРbS - черную,СdS- желтую,ZnS- белую,MnS- розовую,SnS- коричне­вую,Sb2S3- оранжевую и т. д. На различной растворимости сульфи­дов и различной окраске многих из них основан качественный анализ катионов.

БИЛЕТ №39

Серная кислота. Получение. Физические и химические свойства. Значение серной кислоты.

Се́рная кислота́ H2SO4 - сильная двухосновная кислота, отвечающая высшей степени окисления серы (+6). При обычных условиях концентрированная серная кислота - тяжёлая маслянистая жидкость без цвета и запаха, с кислым «медным» вкусом. В технике серной кислотой называют её смеси как с водой, так и с серным ангидридом SO3. Если молярное отношение SO3: H2O < 1, то это водный раствор серной кислоты, если > 1 - раствор SO3 в серной кислоте (олеум).

Сернистая кислота способна реагировать с кислородом. При этом образуется серная кислота. Такая реакция протекает очень долго и возможна только при нарушении правил хранения. Сернистая кислота обладает как окислительными, так и восстановительными свойствами. С ее помощью можно получать галогенные кислоты. Водный раствор при реакции с хлором образует соляную и серную кислоту.

При реакции с сильными восстановителями сернистая кислота играет роль окислителя. Одним из таких веществ является сероводород, газ с очень неприятным запахом. Взаимодействуя с водным раствором серной кислоты, он образует серу и воду. Соли сернистой кислоты также обладают восстановительными свойствами. Они делятся на сульфиты и гидросульфиты. При реакциях окисления этих солей образуется серная кислота.

Получение сернистой кислоты

Сернистая кислота образуется только при взаимодействии сернистого газа и воды. Нужно получить сернистый газ. Это можно сделать при помощи меди и серной кислоты. Осторожно налейте концентрированную серную кислоту в пробирку и бросьте туда кусочек меди. Нагрейте пробирку при помощи спиртовки.

В результате нагревания образуется медный купорос (сульфат меди), вода и сернистый газ, который при помощи специальной трубочки нужно подвести к колбочке с чистой водой. Таким образом можно получить сернистую кислоту.

Помните, что сернистый газ вреден для человека. Он вызывает поражение дыхательных путей, потерю аппетита и головную боль. Длительное вдыхание может вызвать обморочное состояние. При работе с ним нужна осторожность.

Применение сернистой кислоты

Сернистая кислота обладает антисептическими свойствами. Ее применяют при обеззараживании поверхностей, ферментации зерна. С ее помощью можно некоторые вещества, которые при взаимодействии с сильными окислителями (например, хлором) разлагаются. К таким веществам относится шерсть, шелк, бумага и некоторые другие. Ее антибактериальные свойства используются для предотвращения брожения вина в . Таким образом благородный напиток может храниться очень долго, приобретая благородный вкус и неповторимый аромат.

Сернистую кислоту используют при производстве бумаги. Добавление этой кислоты входит в технологию получения сульфитной целлюлозы. Затем ее обрабатывают раствором гидросульфита кальция, чтобы связать волокна воедино.

Неразбавленная серная кислота представляет собой ковалентное соединение.

В молекуле серная кислота тетраэдрически окружена четырьмя атомами кислорода, два из которых входят в состав гидроксильных групп. Связи S – O – двойные, а S – OH – одинарные.

Бесцветные, похожие на лед кристаллы имеют слоистую структуру: каждая молекула H 2 SO 4 соединена с четырьмя соседними прочными водородными связями, образуя единый пространственный каркас.

Структура жидкой серной кислоты похожа на структуру твердой, только целостность пространственного каркаса нарушена.

Физические свойства серной кислоты

При обычных условиях серная кислота – тяжёлая маслянистая жидкость без цвета и запаха. В технике серной кислотой называют её смеси как с водой, так и с серным ангидридом. Если молярное отношение SO 3: Н 2 О меньше 1, то это водный раствор серной кислоты, если больше 1, – раствор SO 3 в серной кислоте.

100 %-ная H 2 SO 4 кристаллизуется при 10,45 °С; Т кип = 296,2 °С; плотность 1,98 г/см 3 . H 2 SO 4 смешивается с Н 2 О и SO 3 в любых соотношениях с образованием гидратов, теплота гидратации настолько велика, что смесь может вскипать, разбрызгиваться и вызывать ожоги. Поэтому необходимо добавлять кислоту к воде, а не наоборот, поскольку при добавлении воды к кислоте более легкая вода окажется на поверхности кислоты, где и сосредоточится вся выделяющаяся теплота.

При нагревании и кипении водных растворов серной кислоты, содержащих до 70 % H 2 SO 4 , в паровую фазу выделяются только пары воды. Над более концентрированными растворами появляются и пары серной кислоты.

По структурным особенностям и аномалиям жидкая серная кислота похожа на воду. Здесь та же система водородных связей, почти такой же пространственный каркас.

Химические свойства серной кислоты

Серная кислота – одна из самых сильных минеральных кислот, из-за высокой полярности связь Н – О легко разрывается.

    В водном растворе серная кислота диссоциирует , образуя ион водорода и кислотный остаток:

H 2 SO 4 = H + + HSO 4 - ;

HSO 4 - = H + + SO 4 2- .

Суммарное уравнение:

H 2 SO 4 = 2H + + SO 4 2- .

    Проявляет свойства кислот , реагирует с металлами, оксидами металлов, основаниями и солями.

Разбавленная серная кислота не проявляет окислительных свойств, при ее взаимодействии с металлами выделяется водород и соль, содержащая металл в низшей степени окисления. На холоде кислота инертна по отношению к таким металлам, как железо, алюминий и даже барий.

Концентрированная кислота обладает окислительными свойствами. Возможные продукты взаимодействия простых веществ с концентрированной серной кислотой приведены в таблице. Показана зависимость продукта восстановления от концентрации кислоты и степени активности металла: чем активнее металл, тем глубже он восстанавливает сульфат-ион серной кислоты.

    Взаимодействие с оксидами:

CaO + H 2 SO 4 = CaSO 4 = H 2 O.

Взаимодействие с основаниями:

2NaOH + H 2 SO 4 = Na 2 SO 4 + 2H 2 O.

Взаимодействие с солями:

Na 2 CO 3 + H 2 SO 4 = Na 2 SO 4 + CO 2 + H 2 O.

    Окислительные свойства

Серная кислота окисляет HI и НВг до свободных галогенов:

H 2 SO 4 + 2HI = I 2 + 2H 2 O + SO 2.

Серная кислота отнимает химически связанную воду от органических соединений, содержащих гидроксильные группы. Дегидратация этилового спирта в присутствии концентрированной серной кислоты приводит к получению этилена:

С 2 Н 5 ОН = С 2 Н 4 + Н 2 О.

Обугливание сахара, целлюлозы, крахмала и др. углеводов при контакте с серной кислотой объясняется также их обезвоживанием:

C 6 H 12 O 6 + 12H 2 SO 4 = 18H 2 O + 12SO 2 + 6CO 2 .



Понравилась статья? Поделитесь с друзьями!