Фундаментальные исследования. Тяжелые металлы в почве, десять решений одной проблемы

Почва – это поверхность земли, имеющая свойства, которые характеризуют как живую, так и неживую природу.

Почва является индикатором общей . Загрязнения поступают в почву с атмосферными осадками, поверхностными отходами. Также они вносятся в почвенный слой почвенными породами и подземными водами.

К группе тяжелых металлов относятся все с плотностью, превышающей плотность железа. Парадокс этих элементов состоит в том, что в определенных количествах они необходимы для обеспечения нормальной жизнедеятельности растений и организмов.

Но их избыток может привести к тяжелым заболеваниям и даже гибели. Пищевой круговорот становится причиной того, что вредные соединения попадают в организм человека и часто наносят огромный вред здоровью.

Источники загрязнения тяжелыми металлами – это . Существует методика, по которой рассчитывается допустимая норма содержания металлов. При этом учитывается суммарная величина нескольких металлов Zc.

  • допустимая;
  • умеренно опасная;
  • высоко-опасная;
  • чрезвычайно опасная.

Очень важна охрана почв. Постоянный контроль и мониторинг не позволяет выращивать сельскохозяйственную продукцию и вести выпас скота на загрязненных землях.

Тяжелые металлы, загрязняющие почву

Существует три класса опасности тяжелых металлов. Всемирная организация здравоохранения самыми опасными считает заражение свинцом, ртутью и кадмием. Но не менее вредна и высокая концентрация остальных элементов.

Ртуть

Загрязнение почвы ртутью происходит с попаданием в нее пестицидов, различных бытовых отходов, например люминесцентных ламп, элементов испорченных измерительных приборов.

По официальным данным годовой выброс ртути составляет более пяти тысяч тонн. Ртуть может поступать в организм человека из загрязненной почвы.

Если это происходит регулярно, могут возникнуть тяжелые расстройства работы многих органов, в том числе страдает и нервная система.

При ненадлежащем лечении возможен летальный исход.

Свинец

Очень опасным для человека и всех живых организмов является свинец.

Он чрезвычайно токсичен. При добыче одной тонны свинца двадцать пять килограммов попадает в окружающую среду. Большое количество свинца поступает в почву с выделением выхлопных газов.

Зона загрязнения почвы вдоль трасс составляет свыше двухсот метров вокруг. Попадая в почву, свинец поглощается растениями, которые употребляют в пищу человек и животные, в том числе и скот, мясо которого также присутствует в нашем меню. От избытка свинца поражается центральная нервная система, головной мозг, печень и почки. Он опасен своим канцерогенным и мутагенным действием.

Кадмий

Огромной опасностью для организма человека является загрязнение почвы кадмием. Попадая в пищу, он вызывает деформацию скелета, остановку роста у детей и сильные боли в спине.

Медь и цинк

Высокая концентрация в почве этих элементов становится причиной того, что замедляется рост и ухудшается плодоношение растений, что приводит в конечном итоге к резкому уменьшению урожайности. У человека происходят изменения в мозге, печени и поджелудочной железе.

Молибден

Избыток молибдена вызывает подагру и поражения нервной системы.

Опасность тяжелых металлов заключается в том, что они плохо выводятся из организма, накапливаются в нем. Они могут образовывать очень токсичные соединения, легко переходят из одной среды в другую, не разлагаются. При этом они вызывают тяжелейшие заболевания, приводящие часто к необратимым последствиям.

Сурьма

Присутствует в некоторых рудах.

Входит в состав сплавов, используемых в различных производственных сферах.

Ее избыток вызывает тяжелые пищевые расстройства.

Мышьяк

Основным источником загрязнения почвы мышьяком являются вещества, с помощью которых борются с вредителями сельскохозяйственных растений, например гербициды, инсектициды. Мышьяк – это накапливающийся яд, вызывающий хронические . Его соединения провоцируют заболевания нервной системы, мозга, кожных покровов.

Марганец

В почве и растениях наблюдается высокое содержание этого элемента.

При попадании в почву дополнительного количества марганца быстро создается его опасный избыток. На организме человека это сказывается в виде разрушения нервной системы.

Не менее опасен переизбыток и остальных тяжелых элементов.

Из вышесказанного можно сделать вывод, что накопление тяжелых металлов в почве влечет за собой тяжелые последствия для состояния здоровья человека и окружающей среды в целом.

Основные методы борьбы с загрязнением почв тяжелыми металлами

Методы борьбы с загрязнением почвы тяжелыми металлами могут быть физическими, химическими и биологическими. Среди них можно выделить следующие способы:

  • Увеличение кислотности почвы повышает возможность Поэтому внесение органических веществ и глины, известкование помогают в какой-то мере в борьбе с загрязнением.
  • Посев, скашивание и удаление с поверхности почвы некоторых растений, например клевера, существенно снижает концентрацию тяжелых металлов в почве. К тому же данный способ является совершенно экологичным.
  • Проведение детоксикации подземных вод, ее откачивание и очистка.
  • Прогнозирование и устранение миграции растворимой формы тяжелых металлов.
  • В некоторых особо тяжелых случаях требуется полное снятие почвенного слоя и замена его новым.

Самым опасным из всех перечисленных металлов является свинец. Он имеет свойство, накапливаясь ударять по организму человека. Ртуть не опасна если попадет в организм человека один раз или несколько, особо опасны лишь пары ртути. Я считаю, что промышленные предприятия должны использовать более усовершенствованные технологии производства не столь губительные для всего живого. Задуматься должен не один человек, а масса, тогда мы придем к хорошему результату.

Тяжелые металлы в почве

В последнее время в связи с бурным развитием промышленности наблюдается значительное возрастание уровня тяжелых металлов в окружающей среде. Термин "тяжелые металлы" применяется к металлам либо с плотностью, превышающей 5 г/см 3 , либо с атомным номером больше 20. Хотя, существует и другая точка зрения, согласно которой к тяжелым металлам относятся свыше 40 химических элементов с атомными массами, превышающими 50 ат. ед. Среди химических элементов тяжелые металлы наиболее токсичны и уступают по уровню своей опасности только пестицидам. При этом к токсичным относятся следующие химические элементы: Co, Ni, Cu, Zn, Sn, As, Se, Te, Rb, Ag, Cd, Au, Hg, Pb, Sb, Bi, Pt.

Фитотоксичность тяжелых металлов зависит от их химических свойств: валентности, ионного радиуса и способности к комплексообразованию. В большинстве случаев элементы по степени токсичности располагаются в последовательности: Cu> Ni > Cd>Zn> Pb> Hg>Fe> Mo> Mn. Однако этот ряд может несколько изменяться в связи с неодинаковым осаждением элементов почвой и переводом в недоступное для растений состояние, условиями выращивания, физиолого-генетическими особенностями самих растений. Трансформация и миграция тяжелых металлов происходит при непосредственном и косвенном влиянии реакции комплексообразования. При оценке загрязнения окружающей среды необходимо учитывать свойства почвы и, в первую очередь, гранулометрический состав, гумусированность и буферность. Под буферностью понимают способность почв поддерживать концентрацию металлов в почвенном растворе на постоянном уровне.

В почвах тяжелые металлы присутствуют в двух фазах - твердой и в почвенном растворе. Форма существования металлов определяется реакцией среды, химическим и вещественным составом почвенного раствора и, в первую очередь, содержанием органических веществ. Элементы - комплексанты, загрязняющие почву, концентрируются, в основном, в ее верхнем 10 см слое. Однако при подкислении малобуферной почвы значительная доля металлов из обменно-поглощенного состояния переходит в почвенный раствор. Сильной миграционной способностью в кислой среде обладают кадмий, медь, никель, кобальт. Уменьшение рН на 1,8-2 единицы приводит к увеличению подвижности цинка в 3,8-5,4, кадмия - в 4-8, меди - в 2-3 раза. .

Таблица 1 Нормативы ПДК (ОДК), фоновые содержания химических элементов в почвах (мг/кг)

Класс опасности

ОДК по группам почв

Извлекаемые ацетатно-аммонийным буфером (рН=4,8)

Песчаные, супесчаные

Суглинистые, глинистые

рН ксl < 5,5

рН ксl > 5,5

Таким образом, при попадании в почву тяжелые металлы быстро взаимодействуют с органическими лигандами с образованием комплексных соединений. Так, что при низких концентрациях в почве (20-30 мг/кг) приблизительно 30% свинца находится в виде комплексов с органическими веществами. Доля комплексных соединений свинца увеличивается с возрастанием его концентрации до 400 мг/г, а затем уменьшается . Металлы также сорбируются (обменно или необменно) осадками гидроксидов железа и марганца, глинистыми минералами и органическим веществом почвы. Металлы, доступные растениям и способные к вымыванию, находятся в почвенном растворе в виде свободных ионов, комплексов и хелатов.

Поглощение ТМ почвой в большей степени зависит от реакции среды и от того, какие анионы преобладают в почвенном растворе. В кислой среде больше сорбируются медь, свинец и цинк, а в щелочной - интенсивно поглощаются кадмий и кобальт. Медь преимущественно связывается с органическими лигандами и гидроксидами железа.

Таблица 2 Подвижность микроэлементов в различных почвах в зависимости от рН почвенного раствора

Почвенно-климатические факторы часто определяют направление и скорость миграции и трансформации ТМ в почве. Так, условия почвенного и водного режимов лесостепной зоны способствуют интенсивной вертикальной миграции ТМ по профилю почвы, в том числе возможен перенос металлов с потоком воды по трещинам, ходам корней и т.д. .

Никель(Ni) - элемент VIII группы периодической системы с атомной массой 58,71. Никель наряду с Mn, Fe, Co и Cu относится к так называемым переходным металлам, соединения которых обладают высокой биологической активностью. Вследствие особенностей строения электронных орбиталей вышеуказанные металлы, в том числе и никель, обладают хорошо выраженной способностью к комплексообразованию. Никель способен формировать стабильные комплексы, например, с цистеином и цитратом, а также со многими органическими и неорганическими лигандами. Геохимический состав материнских пород во многом определяет содержание никеля в почвах. Наибольшее количество никеля содержат почвы, образовавшиеся из основных и ультраосновных пород. По данным некоторых авторов, границы избыточного и токсичного уровней никеля для большинства видов изменяются от 10 до 100 мг/кг. Основная масса никеля закреплена в почве неподвижно, а очень слабая миграция в коллоидном состоянии и в составе механических взвесей не влияет на распределение их по вертикальному профилю и вполне равномерна.

Свинец (Pb). Химизм свинца в почве определяется тонким равновесием противоположно направленных процессов: сорбция-десорбция, растворение-переход в твердое состояние. Попавший в почву с выбросами свинец включается в цикл физических, химических и физико-химических превращений. Сначала доминируют процессы механического перемещения (частицы свинца перемещаются по поверхности и в толще почвы по трещинам) и конвективной диффузии. Затем по мере растворения твердофазных соединений свинца вступают в действие более сложные физико-химические процессы (в частности, процессы ионной диффузии), сопровождающиеся трансформацией поступивших с пылью соединений свинца.

Установлено, что свинец мигрирует как в вертикальном, так и в горизонтальном направлении, причем второй процесс превалирует над первым. За 3 года наблюдений на разнотравном лугу нанесенная локально на поверхность почвы свинцовая пыль переместилась в горизонтальном направлении на 25-35 см, глубина же ее проникновения в толщину почвы составила 10-15 см. Важную роль в миграции свинца играют биологические факторы: корни растений поглощают ионы металлов; во время вегетации происходит их перемещение в толще почвы; при отмирании и разложении растений свинец выделяется в окружающую почвенную массу .

Известно, что почва обладает способностью связывать (сорбировать) поступивший в нее техногенный свинец. Сорбция, как полагают, включает несколько процессов: полный обмен с катионами поглощающего комплекса почв (неспецифическая адсорбция) и ряд реакций комплексообразования свинца с донорами почвенных компонентов (специфическая адсорбция). В почве свинец ассоциируется главным образом с органическим веществом, а также с глинистыми минералами, оксидами марганца, гидроокислами железа и алюминия. Связывая свинец, гумус препятствует его миграции в сопредельные среды и ограничивает поступление в растения. Из глинистых минералов склонностью к сорбции свинца характеризуются иллиты. Повышение рН почвы при известковании ведет к еще большему связыванию свинца почвой за счет образования труднорастворимых соединений (гидроокислов, карбонатов и др.) .

Свинец, присутствующий в почве в подвижных формах, со временем фиксируется почвенными компонентами и становится недоступным для растений. По данным отечественных исследователей, наиболее прочно фиксируется свинец черноземных и торфяно-иловых почв.

Кадмий (Cd) Особенность кадмия, отличающая его от других ТМ, заключается в том, что в почвенном растворе он присутствует в основном в виде катионов (Cd 2+), хотя в почве с нейтральной реакцией среды он может образовывать труднорастворимые комплексы с сульфатами, фосфатами или гидроокислами.

По имеющимся данным, концентрация кадмия в почвенных растворах фоновых почв колеблется от 0,2 до 6 мкг/л. В очагах загрязнения почв она возрастает до 300-400 мкг/л. .

Известно, что кадмий в почвах очень подвижен, т.е. способен переходить в больших количествах из твердой фазы в жидкую и обратно (что затрудняет прогнозирование его поступления в растение). Механизмы, регулирующие концентрацию кадмия в почвенном растворе, определяются процессами сорбции (под сорбцией понимают собственно адсорбцию, преципитацию и комплексообразование). Кадмий поглощается почвой в меньших количествах, чем другие ТМ. Для характеристики подвижности тяжелых металлов в почве используют отношение концентраций металлов в твердой фазе к таковой в равновесном растворе. Высокие значения этого отношения свидетельствуют о том, что ТМ удерживаются в твердой фазе благодаря реакции сорбции, низкие - благодаря тому, что металлы находятся в растворе, откуда они могут мигрировать в другие среды или вступать в различные реакции (геохимические или биологические). Известно, что ведущим процессом в связывании кадмия является адсорбция глинами. Исследования последних лет показали также большую роль в этом процессе гидроксильных групп, окислов железа и органического вещества. При невысоком уровне загрязнения и нейтральной реакции среды кадмий адсорбируется в основном окислами железа. А в кислой среде (рН=5) в качестве мощного адсорбента начинает выступать органическое вещество. При более низком показателе рН (рН=4) функции адсорбции переходят почти исключительно к органическому веществу. Минеральные компоненты в этих процессах перестают играть какую-либо роль.

Известно, что кадмий не только сорбируется поверхностью почв, но и фиксируется за счет осаждения, коагуляции, межпакетного поглощения глинистыми минералами. Внутрь почвенных частиц он диффундирует по микропорам и другими путями.

Кадмий по-разному закрепляется в почвах разного типа. Пока мало что известно о конкурентных взаимоотношениях кадмия с другими металлами в процессах сорбции в почвенно-поглощающем комплексе. По исследованиям специалистов Технического университета Копенгагена (Дания), в присутствии никеля, кобальта и цинка поглощение кадмия почвой подавлялось . Другие исследования показали, что процессы сорбции кадмия почвой затухают в присутствии ионов хлора. Насыщение почвы ионами Са 2+ приводило к увеличению сорбируемости кадмия. Многие связи кадмия с компонентами почвы оказываются непрочными, в определенных условиях (например, кислая реакция среды) он высвобождается и снова переходит в раствор.

Выявлена роль микроорганизмов в процессе растворения кадмия и перехода его в подвижное состояние. В результате их жизнедеятельности либо образуются водорастворимые металлокомплексы, либо создаются физико-химические условия, благоприятствующие переходу кадмия из твердой фазы в жидкую.

Процессы, происходящие с кадмием в почве (сорбция-десорбция, переход в раствор и пр.) взаимосвязаны и взаимозависимы, от их направленности, интенсивности и глубины зависит поступление этого металла в растения. Известно, что величина сорбции кадмия почвой зависит от величины рН: чем выше рН почвы, тем больше она сорбирует кадмия. Так, по имеющимся данным, в интервале рН от 4 до 7,7 при увеличении рН на единицу сорбционная емкость почв по отношению к кадмию возрастала примерно втрое.

Цинк (Zn). Недостаток цинка может проявляться как на кислых сильнооподзоленных легких почвах, так и на карбонатных, бедных цинком, и на высокогумусированных почвах. Усиливают проявление цинковой недостаточности применение высоких доз фосфорных удобрений и сильное припахивание подпочвы к пахотному горизонту.

Наиболее высокое валовое содержание цинка в тундровых (53-76 мг/кг) и черноземных (24-90 мг/кг) почвах, наиболее низкое - в дерново-подзолистых почвах (20-67 мг/кг). Недостаток цинка чаще всего проявляется на нейтральных и слабощелочных карбонатных почвах. В кислых почвах цинк более подвижен и доступен растениям.

Цинк в почве присутствует в ионной форме, где адсорбируется по катионообменному механизму в кислой или в результате хемосорбции в щелочной среде. Наиболее подвижен ион Zn 2+ . На подвижность цинка в почве в основном влияют величина рН и содержание глинистых минералов. При рН<6 подвижность Zn 2+ возрастает, что приводит к его выщелачиванию. Попадая в межпакетные пространства кристаллической решетки монтмориллонита, ионы цинка теряют свою подвижность. Кроме того, цинк образует устойчивые формы с органическим веществом почвы, поэтому он накапливается в основном в горизонтах почв с высоким содержанием гумуса и в торфе .

1

Охрана окружающей среды от загрязнения стала насущной задачей общества. Среди многочисленных загрязнителей особое место занимают тяжелые металлы. К ним условно относят химические элементы с атомной массой свыше 50, обладающие свойствами металлов. Считается, что среди химических элементов тяжелые металлы являются наиболее токсичными.

Почва является основной средой, в которую попадают тяжёлые металлы, в том числе из атмосферы и водной среды. Она же служит источником вторичного загрязнения приземного воздуха и вод, попадающих из неё в Мировой океан.

Тяжелые металлы опасны тем, что они обладают способностью накапливаться в живых организмах, включаться в метаболический цикл, образовывать высокотоксичные металлорганические соединения, изменять формы нахождения при переходе от одной природной среды в другую, не подвергаясь биологическому разложению. Тяжелые металлы вызывают у человека серьезные физиологические нарушения, токсикоз, аллергию, онкологические заболевания, отрицательно влияют на зародыш и генетическую наследственность.

Среди тяжелых металлов приоритетными загрязнителями считаются свинец, кадмий, цинк, главным образом потому, что техногенное их накопление в окружающей среде идет высокими темпами. Эта группа веществ обладает большим сродством к физиологически важным органическим соединениям.

Загрязнение почвы подвижными формами тяжелых металлов является наиболее актуальной, так как в последние годы проблема загрязнения окружающей среды приняла угрожающий характер. В сложившейся ситуации необходимо не только усилить исследования по всем аспектам проблемы тяжелых металлов в биосфере, но и периодически подводить итоги для осмысливания результатов, полученных в разных, часто слабо связанных между собой отраслях науки.

Объектом данного исследования являются антропогенные почвы Железнодорожного района г.Ульяновска (на примере ул.Транспортной).

Главная цель проводимого исследования - определение степени загрязнения городских почв тяжелыми металлами.

Задачами исследования являются: определение величины рН в отобранных образцах почвы; определение концентрации подвижных форм меди, цинка, кадмия, свинца; проведения анализа полученных данных и предложение рекомендаций по снижению содержания тяжёлых металлов в городских почвах.

Пробы в 2005 году отбирались вдоль автодороги по ул.Транспортная, а в 2006 году на территории личных приусадебных участков (по той же улице), расположенных вблизи железнодорожных путей. Пробы отбирались на глубину 0-5 см и 5-10 см. Всего было отобрано 20 проб, массой по 500 г.

Исследуемые образцы проб 2005 и 2006 года относятся к нейтральной почве. Нейтральные почвы поглощают тяжелые металлы из растворов в большей степени, чем кислые. Но есть опасность увеличения подвижности тяжёлых металлов и их проникновение в грунтовые воды и близлежащий водоём, при выпадении кислотных дождей (обследуемый участок находиться в пойме р.Свияги), что незамедлительно скажется на пищевых цепях. В данных пробах наблюдается низкое содержание гумуса (2-4%). Соответственно нет способности почвы к образованию органо - металлических комплексов.

По лабораторным исследованиям почв на содержание Cu, Cd, Zn, Pb были сделаны выводы об их концентрациях в почвах обследуемой территории. В пробах 2005 года было выявлено превышение ПДК Cu в 1-1,2 раза,Cd в 6-9 раз, а содержание Zn и Pb ПДК не превысило. В пробах 2006 года отобранных на приусадебных участках концентрация Cu не превысила ПДК, содержание Cd меньше, чем в пробах отобранных вдоль дороги, но всё же превышает ПДК в разных точках от 0,3 до 4,6 раз. Содержание Zn увеличено только в 5 точке и составляет на глубине 0-5 см 23,3 мг/кг почвы (ПДК 23 мг/кг), а на глубине 5-10 см 24,8 мг/кг.

По результатам исследования сделаны следующие выводы: для почв характерна нейтральная реакция почвенного раствора; в пробах почвы низкое содержание гумуса; на территории Железнодорожного района г.Ульяновска наблюдается различное по интенсивности загрязнение тяжелыми металлами почвы; установлено, что в некоторых пробах значительное превышение ПДК, особенно это наблюдается в исследованиях почвы на концентрацию кадмия; для улучшения эколого-географического состояния почвы на данном участке рекомендуется выращивать растения-аккумуляторы тяжелых металлов и управлять экологическими свойствами самой почвы посредством ее искусственного конструирования; необходимо проводить систематический мониторинг и выявлять наиболее загрязненные и опасные для здоровья населения участки.

Библиографическая ссылка

Антонова Ю.А., Сафонова М.А. ТЯЖЁЛЫЕ МЕТАЛЛЫ В ГОРОДСКИХ ПОЧВАХ // Фундаментальные исследования. – 2007. – № 11. – С. 43-44;
URL: http://fundamental-research.ru/ru/article/view?id=3676 (дата обращения: 31.03.2019). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

Не секрет, что каждому хочется иметь дачу в экологически чистом районе, где нет городской загазованности. Окружающая среда содержит в себе тяжелые металлы (мышьяк, свинец, медь, ртуть, кадмий, марганец и другие), которые исходят даже от выхлопных газов автомобилей. При этом надо понимать, что земля – это природный очиститель атмосферы и грунтовых вод, она накапливает в себе не только тяжелые металлы, но и вредные пестициды с углеводородами. Растения в свою очередь принимают все то, что дает им почва. Металл, оседая в почве, наносит вред не только самой почве, но и растениям, а как следствие и человеку.

Вблизи магистральной дороги много копоти, которая проникает в поверхностные слои почвы и оседает на листьях растений. На таком участке нельзя выращивать корнеплоды, фрукты, ягоды и другие плодородные культуры. Минимальное расстояние от дороги – 50 м.

Почва, наполненная тяжелыми металлами – плохая почва, тяжелые металлы токсичны. На ней вы никогда не увидите муравьев, жужелиц и дождевых червей, но будет большое скопление сосущих насекомых. Растения часто болеют грибковыми болезнями, сохнут и неустойчивы к вредителям.

Самыми опасными являются подвижные соединения тяжелых металлов, которые легко получаются в кислой почве. Доказано, что растения, выращенные на кислой или легкой песчаной почве, содержат в себе больше металлов, чем на нейтральной или известковой почве. Мало того, песчаная почва с кислой реакцией особенно опасна, она легко накапливает и так же легко промывается, попадая в грунтовые воды. Садовый участок, где львиная доля – это глина, тоже легко подвержен накоплению тяжелых металлов, при этом самоочищение происходит долго и медленно. Самой безопасной и устойчивой почвой является чернозем, обогащенный известью и гумусом.

Что делать, если в почве тяжелые металлы? Путей решения проблемы есть несколько.

1. Неудачный участок можно продать.

2. Известкование – хороший способ уменьшить концентрацию тяжелых металлов в почве. Есть разные . Самый простой: горсть земли бросьте в емкость с уксусом, если появится пена, то почва щелочная. Или копните немного землю, если в ней найдете белую прослойку, то кислотность присутствует. Вопрос насколько много. После известкования регулярно проверяйте на кислотность, возможно нужно будет повторить процедуру. Известкуют доломитовой мукой, доменным шлаком, торфяной золой, известняком.

Если тяжелых металлов в земле уже накоплено очень много, то будет полезно верхний слой грунта (20-30 см) снять и заменить черноземом.

3. Постоянная подкормка органическими удобрениями (навоз, компост). Чем больше гумуса в почве, тем меньше в ней тяжелых металлов, снижается токсичность. Бедная, неплодородная земля не способна защитить растения. Не перенасыщать минеральными удобрениями, особенно азотным. Минеральные удобрения быстро разлагают органику.

4. Поверхностное рыхление. После рыхления обязательно провести , торфом или компостом. При рыхлении полезно добавить вермикулит, который станет барьером между растениями и токсическими веществами в почве.

5. Промывка земли только при хорошем дренаже. Иначе с водой тяжелые металлы разнесутся по всему участку. Заливают чистой водой так, чтобы промылся слой грунта 30-50 см для овощных культур и до 120 см для плодовых кустарников и деревьев. Промывку проводят весной, когда после зимы влаги в почве достаточно.

6. Верхний слой почвы убрать, сделать хороший дренаж из керамзита или гальки, а сверху засыпать чернозем.

7. Растения выращивать в контейнерах или теплице, где землю легко можно заменить. Соблюдать , не выращивать растение на одном месте длительное время.

8. Если садовый участок у дороги, то в почве с большой вероятностью есть свинец, который выходит с выхлопными газами автомобилей. Проводите вытяжку свинца посадкой гороха между растениями, урожай не собирайте. Осенью горох выкопайте и сожгите вместе с плодами. Улучшат почву растения с мощной глубокой корневой системой, которые перенесут из глубокого слоя в верхний фосфор, калий и кальций.

9. Выращенные на тяжелой почве овощи и фрукты всегда подвергать термической обработке или как минимум мыть под проточной водой, убирая, таким образом, атмосферную пыль.

10. В загрязненных районах или участке при дороге ставят забор сплошной, сетка-рабица не станет барьером от дорожной пыли. За забором обязательно посадить и лиственные (). Как вариант отличной защитой станут многоярусные посадки, которые сыграют роль защитников от атмосферной пыли и копоти.

Наличие тяжелых металлов в почве – не приговор, главное это своевременно выявить и обезвредить.


Тяжелые металлы в почве

В последнее время в связи с бурным развитием промышленности наблюдается значительное возрастание уровня тяжелых металлов в окружающей среде. Термин "тяжелые металлы" применяется к металлам либо с плотностью, превышающей 5 г/см 3 , либо с атомным номером больше 20. Хотя, существует и другая точка зрения, согласно которой к тяжелым металлам относятся свыше 40 химических элементов с атомными массами, превышающими 50 ат. ед. Среди химических элементов тяжелые металлы наиболее токсичны и уступают по уровню своей опасности только пестицидам. При этом к токсичным относятся следующие химические элементы: Co, Ni, Cu, Zn, Sn, As, Se, Te, Rb, Ag, Cd, Au, Hg, Pb, Sb, Bi, Pt.

Фитотоксичность тяжелых металлов зависит от их химических свойств: валентности, ионного радиуса и способности к комплексообразованию. В большинстве случаев элементы по степени токсичности располагаются в последовательности: Cu> Ni > Cd>Zn> Pb> Hg>Fe> Mo> Mn. Однако этот ряд может несколько изменяться в связи с неодинаковым осаждением элементов почвой и переводом в недоступное для растений состояние, условиями выращивания, физиолого-генетическими особенностями самих растений. Трансформация и миграция тяжелых металлов происходит при непосредственном и косвенном влиянии реакции комплексообразования. При оценке загрязнения окружающей среды необходимо учитывать свойства почвы и, в первую очередь, гранулометрический состав, гумусированность и буферность. Под буферностью понимают способность почв поддерживать концентрацию металлов в почвенном растворе на постоянном уровне.

В почвах тяжелые металлы присутствуют в двух фазах – твердой и в почвенном растворе. Форма существования металлов определяется реакцией среды, химическим и вещественным составом почвенного раствора и, в первую очередь, содержанием органических веществ. Элементы - комплексанты, загрязняющие почву, концентрируются, в основном, в ее верхнем 10 см слое. Однако при подкислении малобуферной почвы значительная доля металлов из обменно-поглощенного состояния переходит в почвенный раствор. Сильной миграционной способностью в кислой среде обладают кадмий, медь, никель, кобальт. Уменьшение рН на 1,8-2 единицы приводит к увеличению подвижности цинка в 3,8-5,4, кадмия - в 4-8, меди - в 2-3 раза..

Таблица 1 Нормативы ПДК (ОДК), фоновые содержания химических элементов в почвах (мг/кг)

Элемент Класс опасности ПДК ОДК по группам почв Фоновое содержание
Валовое содержание Извлекаемые ацетатно-аммонийным буфером (рН=4,8) Песчаные, супесчаные Суглинистые, глинистые
рН кс l < 5,5 рН кс l > 5,5
Pb 1 32 6 32 65 130 26
Zn 1 - 23 55 110 220 50
Cd 1 - - 0,5 1 2 0,3
Cu 2 - 3 33 66 132 27
Ni 2 - 4 20 40 80 20
Со 2 - 5 - - - 7,2

Таким образом, при попадании в почву тяжелые металлы быстро взаимодействуют с органическими лигандами с образованием комплексных соединений. Так, что при низких концентрациях в почве (20-30 мг/кг) приблизительно 30% свинца находится в виде комплексов с органическими веществами. Доля комплексных соединений свинца увеличивается с возрастанием его концентрации до 400 мг/г, а затем уменьшается. Металлы также сорбируются (обменно или необменно) осадками гидроксидов железа и марганца, глинистыми минералами и органическим веществом почвы. Металлы, доступные растениям и способные к вымыванию, находятся в почвенном растворе в виде свободных ионов, комплексов и хелатов.

Поглощение ТМ почвой в большей степени зависит от реакции среды и от того, какие анионы преобладают в почвенном растворе. В кислой среде больше сорбируются медь, свинец и цинк, а в щелочной – интенсивно поглощаются кадмий и кобальт. Медь преимущественно связывается с органическими лигандами и гидроксидами железа.

Таблица 2 Подвижность микроэлементов в различных почвах в зависимости от рН почвенного раствора

Почвенно-климатические факторы часто определяют направление и скорость миграции и трансформации ТМ в почве. Так, условия почвенного и водного режимов лесостепной зоны способствуют интенсивной вертикальной миграции ТМ по профилю почвы, в том числе возможен перенос металлов с потоком воды по трещинам, ходам корней и т.д..

Никель(Ni) – элемент VIII группы периодической системы с атомной массой 58,71. Никель наряду с Mn, Fe, Co и Cu относится к так называемым переходным металлам, соединения которых обладают высокой биологической активностью. Вследствие особенностей строения электронных орбиталей вышеуказанные металлы, в том числе и никель, обладают хорошо выраженной способностью к комплексообразованию. Никель способен формировать стабильные комплексы, например, с цистеином и цитратом, а также со многими органическими и неорганическими лигандами. Геохимический состав материнских пород во многом определяет содержание никеля в почвах. Наибольшее количество никеля содержат почвы, образовавшиеся из основных и ультраосновных пород. По данным некоторых авторов, границы избыточного и токсичного уровней никеля для большинства видов изменяются от 10 до 100 мг/кг. Основная масса никеля закреплена в почве неподвижно, а очень слабая миграция в коллоидном состоянии и в составе механических взвесей не влияет на распределение их по вертикальному профилю и вполне равномерна.

Свинец (Pb). Химизм свинца в почве определяется тонким равновесием противоположно направленных процессов: сорбция-десорбция, растворение-переход в твердое состояние. Попавший в почву с выбросами свинец включается в цикл физических, химических и физико-химических превращений. Сначала доминируют процессы механического перемещения (частицы свинца перемещаются по поверхности и в толще почвы по трещинам) и конвективной диффузии. Затем по мере растворения твердофазных соединений свинца вступают в действие более сложные физико-химические процессы (в частности, процессы ионной диффузии), сопровождающиеся трансформацией поступивших с пылью соединений свинца.

Установлено, что свинец мигрирует как в вертикальном, так и в горизонтальном направлении, причем второй процесс превалирует над первым. За 3 года наблюдений на разнотравном лугу нанесенная локально на поверхность почвы свинцовая пыль переместилась в горизонтальном направлении на 25-35 см, глубина же ее проникновения в толщину почвы составила 10-15 см. Важную роль в миграции свинца играют биологические факторы: корни растений поглощают ионы металлов; во время вегетации происходит их перемещение в толще почвы; при отмирании и разложении растений свинец выделяется в окружающую почвенную массу.

Известно, что почва обладает способностью связывать (сорбировать) поступивший в нее техногенный свинец. Сорбция, как полагают, включает несколько процессов: полный обмен с катионами поглощающего комплекса почв (неспецифическая адсорбция) и ряд реакций комплексообразования свинца с донорами почвенных компонентов (специфическая адсорбция). В почве свинец ассоциируется главным образом с органическим веществом, а также с глинистыми минералами, оксидами марганца, гидроокислами железа и алюминия. Связывая свинец, гумус препятствует его миграции в сопредельные среды и ограничивает поступление в растения. Из глинистых минералов склонностью к сорбции свинца характеризуются иллиты. Повышение рН почвы при известковании ведет к еще большему связыванию свинца почвой за счет образования труднорастворимых соединений (гидроокислов, карбонатов и др.).

Свинец, присутствующий в почве в подвижных формах, со временем фиксируется почвенными компонентами и становится недоступным для растений. По данным отечественных исследователей, наиболее прочно фиксируется свинец черноземных и торфяно-иловых почв.

Кадмий (Cd) Особенность кадмия, отличающая его от других ТМ, заключается в том, что в почвенном растворе он присутствует в основном в виде катионов (Cd 2+), хотя в почве с нейтральной реакцией среды он может образовывать труднорастворимые комплексы с сульфатами, фосфатами или гидроокислами.

По имеющимся данным, концентрация кадмия в почвенных растворах фоновых почв колеблется от 0,2 до 6 мкг/л. В очагах загрязнения почв она возрастает до 300-400 мкг/л..

Известно, что кадмий в почвах очень подвижен, т.е. способен переходить в больших количествах из твердой фазы в жидкую и обратно (что затрудняет прогнозирование его поступления в растение). Механизмы, регулирующие концентрацию кадмия в почвенном растворе, определяются процессами сорбции (под сорбцией понимают собственно адсорбцию, преципитацию и комплексообразование). Кадмий поглощается почвой в меньших количествах, чем другие ТМ. Для характеристики подвижности тяжелых металлов в почве используют отношение концентраций металлов в твердой фазе к таковой в равновесном растворе. Высокие значения этого отношения свидетельствуют о том, что ТМ удерживаются в твердой фазе благодаря реакции сорбции, низкие – благодаря тому, что металлы находятся в растворе, откуда они могут мигрировать в другие среды или вступать в различные реакции (геохимические или биологические). Известно, что ведущим процессом в связывании кадмия является адсорбция глинами. Исследования последних лет показали также большую роль в этом процессе гидроксильных групп, окислов железа и органического вещества. При невысоком уровне загрязнения и нейтральной реакции среды кадмий адсорбируется в основном окислами железа. А в кислой среде (рН=5) в качестве мощного адсорбента начинает выступать органическое вещество. При более низком показателе рН (рН=4) функции адсорбции переходят почти исключительно к органическому веществу. Минеральные компоненты в этих процессах перестают играть какую-либо роль.

Известно, что кадмий не только сорбируется поверхностью почв, но и фиксируется за счет осаждения, коагуляции, межпакетного поглощения глинистыми минералами. Внутрь почвенных частиц он диффундирует по микропорам и другими путями.

Кадмий по-разному закрепляется в почвах разного типа. Пока мало что известно о конкурентных взаимоотношениях кадмия с другими металлами в процессах сорбции в почвенно-поглощающем комплексе. По исследованиям специалистов Технического университета Копенгагена (Дания), в присутствии никеля, кобальта и цинка поглощение кадмия почвой подавлялось. Другие исследования показали, что процессы сорбции кадмия почвой затухают в присутствии ионов хлора. Насыщение почвы ионами Са 2+ приводило к увеличению сорбируемости кадмия. Многие связи кадмия с компонентами почвы оказываются непрочными, в определенных условиях (например, кислая реакция среды) он высвобождается и снова переходит в раствор.

Выявлена роль микроорганизмов в процессе растворения кадмия и перехода его в подвижное состояние. В результате их жизнедеятельности либо образуются водорастворимые металлокомплексы, либо создаются физико-химические условия, благоприятствующие переходу кадмия из твердой фазы в жидкую.

Процессы, происходящие с кадмием в почве (сорбция-десорбция, переход в раствор и пр.) взаимосвязаны и взаимозависимы, от их направленности, интенсивности и глубины зависит поступление этого металла в растения. Известно, что величина сорбции кадмия почвой зависит от величины рН: чем выше рН почвы, тем больше она сорбирует кадмия. Так, по имеющимся данным, в интервале рН от 4 до 7,7 при увеличении рН на единицу сорбционная емкость почв по отношению к кадмию возрастала примерно втрое.

Цинк (Zn). Недостаток цинка может проявляться как на кислых сильнооподзоленных легких почвах, так и на карбонатных, бедных цинком, и на высокогумусированных почвах. Усиливают проявление цинковой недостаточности применение высоких доз фосфорных удобрений и сильное припахивание подпочвы к пахотному горизонту.

Наиболее высокое валовое содержание цинка в тундровых (53-76 мг/кг) и черноземных (24-90 мг/кг) почвах, наиболее низкое - в дерново-подзолистых почвах (20-67 мг/кг). Недостаток цинка чаще всего проявляется на нейтральных и слабощелочных карбонатных почвах. В кислых почвах цинк более подвижен и доступен растениям.

Цинк в почве присутствует в ионной форме, где адсорбируется по катионообменному механизму в кислой или в результате хемосорбции в щелочной среде. Наиболее подвижен ион Zn 2+ . На подвижность цинка в почве в основном влияют величина рН и содержание глинистых минералов. При рН<6 подвижность Zn 2+ возрастает, что приводит к его выщелачиванию. Попадая в межпакетные пространства кристаллической решетки монтмориллонита, ионы цинка теряют свою подвижность. Кроме того, цинк образует устойчивые формы с органическим веществом почвы, поэтому он накапливается в основном в горизонтах почв с высоким содержанием гумуса и в торфе.

Тяжелые металлы в растениях

По мнению А. П. Виноградова (1952), все химические элементы в той или иной степени участвуют в жизнедеятельности растений, и если многие из них считаются физиологически значимыми, то только потому, что для этого пока нет доказательств. Поступая в растение в небольшом количестве и становясь в них составной частью или активаторами ферментов, микроэлемента выполняют сервисные функции в процессах метаболизма. Когда же в среду поступают непривычно высокие концентрации элементов, они становятся токсичными для растений. Проникновение тяжелых металлов в ткани растений в избыточном количестве приводит к нарушению нормальной работы их органов, и это нарушение тем сильнее, чем больше избыток токсикантов. Продуктивность при этом падает. Токсическое действие ТМ проявляется с ранних стадий развития растений, но в различной степени на различных почвах и для разных культур.

Поглощение химических элементов растениями – активный процесс. Пассивная диффузия составляет всего 2-3% от всей массы усвоенных минеральных компонентов. При содержании металлов в почве на уровне фона происходит активное поглощение ионов, и если учитывать малую подвижность данных элементов в почвах, то их поглощению должна предшествовать мобилизация прочносвязанных металлов. При содержании ТМ в корнеобитаемом слое в количествах, значительно превышающих предельные концентрации, при которых металл может быть закреплен за счет внутренних ресурсов почвы, в корни поступают такие количества металлов, которые мембраны удержать уже не могут. В результате этого поступление ионов или соединений элементов перестает регулироваться клеточными механизмами. На кислых почвах идет более интенсивное накопление ТМ, чем на почвах с нейтральной или близкой к нейтральной реакцией среды. Мерой реального участия ионов ТМ в химических реакциях является их активность. Токсическое действие высоких концентраций ТМ на растения может проявляться в нарушении поступления и распределения других химических элементов. Характер взаимодействия ТМ с другими элементами изменяется в зависимости от их концентраций. Миграция и поступление в растение осуществляется в виде комплексных соединений.

В начальный период загрязнения среды тяжелыми металлами, благодаря буферным свойствам почвы, приводящим к инактивации токсикантов, растения практически не будут испытывать неблагоприятного воздействия. Однако защитные функции почвы небезграничны. При повышении уровня загрязнения тяжелыми металлами их инактивация становится неполной и поток ионов атакует корни. Часть ионов растение способно перевести в менее активное состояние еще до проникновения их в корневую систему растений. Это, например, хелатирование с помощью корневых выделений или адсорбирование на внешней поверхности корней с образованием комплексных соединений. Кроме того, как показали вегетационные опыты с заведомо токсичными дозами цинка, никеля, кадмия, кобальта, меди, свинца, корни располагаются в слоях не загрязненные ТМ почвы и в этих вариантах отсутствуют симптомы фототоксичности.

Несмотря на защитные функции корневой системы, ТМ в условиях загрязнения поступают в корень. В этом случае в действие вступают механизмы защиты, благодаря которым происходит специфическое распределение ТМ по органам растений, позволяющее как можно полнее обезопасить их рост и развитие. При этом содержание, например, ТМ в тканях корня и семян в условиях сильно загрязненной среды может различаться в 500-600 раз, что свидетельствует о больших защитных возможностях этого подземного органа растений.

Избыток химических элементов вызывает токсикозы у растений. По мере возрастания концентрации ТМ вначале задерживается рост растений, затем наступает хлороз листьев, который сменяется некрозами, и, наконец, повреждается корневая система. Токсическое действие ТМ может проявляться непосредственно и косвенно. Прямое воздействие избытка ТМ в растительных клетках обусловлено реакциями комплексообразования, в результате которых происходит блокировка ферментов или осаждение белков. Дезактивация ферментативных систем происходит в результате замены металла фермента на металл-загрязнитель. При критическом содержании токсиканта каталитическая способность фермента значительно снижается или полностью блокируется.

Растения - гипераккумуляторы тяжелых металлов

А. П. Виноградов (1952) выделил растения, которые способны концентрировать элементы. Он указал на два типа растений - концентраторов: 1) растения, концентрирующие элементы в массовом масштабе; 2) растения с селективным (видовым) концентрированием. Растения первого типа обогащаются химическими элементами, если последние содержатся в почве в повышенном количестве. Концентрирование в данном случае вызвано экологическим фактором. Растениям второго типа свойственно постоянно высокое количество того или иного химического элемента независимо от его содержания в среде. Оно обусловлено генетически закрепленной потребностью.

Рассматривая механизм поглощения тяжелых металлов из почвы в растения, можно говорить о барьерном (не концентрирующем) и безбарьерном (концентрирующем) типах накопления элементов. Барьерное накопление характерно для большинства высших растений и не характерно для мохообразных и лишайниковых. Так, в работе М. А. Тойкка и Л. Н. Потехиной (1980) в качестве растения-концентратора кобальта назван сфагнум (2,66 мг/кг); меди (10,0 мг/кг)- береза, костяника, ландыш; марганца (1100 мг/кг) - черника. Lepp и соавт. (1987) выявили высокие концентрации кадмия в спорофорах гриба Amanita muscaria, растущего в березовых лесах. В спорофорах гриба содержание кадмия составляло 29,9 мг/кг сухой массы, а в почве, на которой они выросли, - 0,4 мг/кг. Существует мнение, что растения, которые являются концентраторами кобальта, отличаются также высокой толерантностью к никелю и способны его накапливать в больших количествах. К ним, в частности, относятся растения семейств Boraginaceae, Brassicaceae, Myrtaceae, Fabaceae, Caryophyllaceae. Концентраторы и сверхконцентраторы никеля обнаружены также среди лекарственных растений. К сверхконцентраторам относятся дынное дерево, красавка беладонна, мачок желтый, пустырник сердечный, страстоцвет мясокрасный и термопсис ланцетовидный. Тип накопления химических элементов, находящихся в больших концентрациях в питающей среде, зависит от фаз вегетации растений. Безбарьерное накопление характерно для фазы проростков, когда у растений нет дифференциации надземных частей на различные органы и в заключительные фазы вегетации - после созревания, а так же в период зимнего покоя, когда безбарьерное накопление может сопровождаться выделением избыточных количеств химических элементов в твердой фазе (Ковалевский, 1991).

Гипераккумулирующие растения обнаружены в семействах Brassicaceae, Euphorbiaceae, Asteraceae, Lamiaceae и Scrophulariaceae (Baker 1995). Наиболее известным и изученным среди них является Brassica juncea (Индийская горчица) - растение, развивающее большую биомассу и способное к аккумуляции Pb, Cr (VI), Cd, Cu, Ni, Zn, 90Sr, B и Se (Nanda Kumar et al. 1995; Salt et al. 1995; Raskin et al. 1994). Из различных видов протестированных растений B. juncea имела наиболее выраженную способность транспортировать свинец в надземную часть, аккумулируя при этом более 1,8% данного элемента в надземных органах (в пересчете на сухую массу). За исключением подсолнечника (Helianthus annuus) и табака (Nicotiana tabacum), другие виды растений, не относящиеся к семейству Brassicaceae, имели коэффициент биологического поглощения менее 1.

Согласно классификации растений по ответной реакции на присутствие в среде произрастания тяжелых металлов, используемой многими зарубежными авторами, растения имеют три основные стратегии для роста на загрязненных металлами почвах:

Исключатели металлов. Такие растения сохраняют постоянную низкую концентрацию металла несмотря на широкое варьирование его концентраций в почве, удерживая главным образом металл в корнях. Растения-исключатели способны изменять проницаемость мембран и металл-связывающую способность клеточных стенок или выделять большое количество хелатирующих веществ.

Металл-индикаторы. К ним относятся виды растений, которые активно аккумулируют металл в надземных частях и в целом отражают уровень содержания металла в почве. Они толерантны к существующему уровню концентрации металла благодаря образованию внеклеточных металл-связывающих соединений (хелаторов), или меняют характер компартментации металла путем его запасания в нечувствительных к металлу участках. Аккумулирующие металлы виды растений. Относящиеся к этой группе растения могут накапливать металл в надземной биомассе в концентрациях, намного превышающих таковые в почве. Baker и Brooks дали определение гипераккумуляторам металлов как растениям, содержащим свыше 0,1%, т.е. более чем 1000 мг/г меди, кадмия, хрома, свинца, никеля, кобальта или 1% (более 10 000 мг/г) цинка и марганца в сухой массе. Для редких металлов эта величина составляет более 0,01% в пересчете на сухую массу. Исследователи идентифицируют гипераккумулирующие виды путем сбора растений в областях, где почвы содержат металлы в концентрациях, превышающих фоновые, как в случае с загрязненными районами или в местах выхода рудных тел. Феномен гипераккумуляции ставит перед исследователями много вопросов. Например, какое значение имеет для растений накопление металла в высокотоксичных концентрациях. Окончательного ответа на этот вопрос еще не получено, однако существует несколько основных гипотез. Предполагают, что такие растения обладают усиленной системой поглощения ионов (гипотеза "неумышленного" поглощения) для осуществления определенных физиологических функций, которые еще не исследованы. Считают также, что гипераккумуляция – это один из видов толерантности растений к высокому содержанию металлов в среде произрастания.



Понравилась статья? Поделитесь с друзьями!