Гетероциклические соединения. Строение и номенклатура

Гетероциклические соединения

Гетероциклическими называются соединения, имеющие в своем составе кольца (циклы), в образовании которых, кроме атомов углерода, принимают участие и атомы других элементов.

Атомы других элементов, помимо атомов углерода, входящие в состав гетероциклов, называются гетероатомами. Наиболее часто встречаются в составе гетероциклов гетероатомы азота (N), кислорода (O) и серы (S).

Классификация гетероциклов

1. по общему числу атомов в цикле: трех-, четырех-, пяти-, шестичленные циклы и др.

2. по природе гетероатома: кислородо-, азото-, серо-, фосфорсодержащие

3. По числу гетероатомов:1,2 и более в цикле

4. По степени насыщенности циклов

5. По количеству циклов

Наибольшее значение имеют пяти и шестичленные гетероциклы, содержащие азот, кислород и серу. Эти циклы образуются наиболее легко и отличаются большой прочностью. Это обусловлено тем, что валентные углы приведенных гетероатомов незначительно отличаются от валентного угла углерода. По степени насыщенности гетероциклические соединения могут быть насыщенными, ненасыщенными и ароматическими. Особо следует выделить гетероциклические соединения, которые по своим свойствам отличаются от всех остальных циклических и ациклических соединений, напоминая своей устойчивостью и реакциями скорее бензол и его производные. Это гетероциклические соединения ароматического характера.

Гетероциклические соединения имеют огромное значение. Многие из них являются основой важных лекарственных препаратов, участвуют в построении некоторых аминокислот, входящих в состав белков. Гетероциклы являются структурными компонентами нуклеиновых кислот, лежат в основе природных окрашенных веществ таких, как хлорофилл, гемоглобин.

Гетероциклические соединения ароматического характера

В гетероциклических соединениях ароматического характера встречаются только следующие гетероатомы: азот, кислород и сера. Они являются единственными элементами, кроме углерода, которые могут образовывать π-связи и, следовательно, участвовать в построении ароматических ядер.

Пятичленные гетероциклы с одним гетероатомом

Важнейшими пятичленными гетероциклами с одним гетероатомом являются:

Индол (бензпиррол) является примером конденсированного гетероциклического соединения, в состав которого входят бензольное и пиррольное ядра, имеющие общее сочленение.

Производные пиррола широко распространены в природе. Сам же пиррол встречается редко. Он входит в состав каменноугольной смолы и костяного масла. Целый ряд производных пиррола и индола был получен искусственно и занял важное место в промышленном органическом синтезе: красители, лекарственные препараты, пластики. Индол является структурным компонентом незаменимой аминокислоты триптофан.

Шестичленные гетероциклы с одним гетероатомами

Важнейшим шестичленным гетероциклом с одним гетероатомом азота является пиридин. Наряду с пиридином большое значение имеют конденсированные системы, в которых ядро пиридина сочетается с одним и двумя ядрами бензола. Например, хинолин.


Пятичленные и шестичленные гетероциклы с двумя гетероатомами


В азотосодержащих гетероциклах два атома азота могут быть расположены в непосредственном соседстве и могут быть разделены одной или двумя группами CH (1,2-, 1,3- и 1,4- расположение).

Пурин – сложная гетероциклическая система, состоящая из двух конденсированных гетероциклов: пиримидина и имидазола.

Критерии ароматичности

1. Плоская циклическая система

2. Замкнутая, сопряженная система, охватывающая все атомы цикла

3. Число электронов, участвующих в сопряжении равно 4n+2, где n=0,1,2,3,… (n- количество циклов)

В гетероциклических соединениях с одним циклом, в сопряжении участвуют 6 электронов

Строение бензола по схеме

Пиридин. Как и в случае бензола, ароматический характер пиридина обусловлен сопряжением шести p-электронов (ароматический секстет) по одному от каждого атома цикла. Атом азота (пиридиновый) связан с двумя соседними атомами углерода sp 2 -гибридизованными орбиталями аналогично атомам углерода в бензоле. Межатомные расстояния C-C в пиридине равны между собой и практически равны расстояниям C-C в бензольном ядре; расстояния C-N значительно меньше тех же расстояний в несопряженных молекулах. Неподеленная электронная пара на sp 2 -АО азота не участвует в сопряжении. Именно она и обуславливает основные свойства пиридина.

Пиррол. Ароматический секстет пиррола образуется сочетанием четырех p-элетронов углерода и двух неподеленных электронов азота на p z -АО с образованием единой π-электронной системы. Атом азота в этом случае называется пиррольным.

Наличие гетероатома приводит к неравномерному распределению электронной плотности. Влияние гетероатома меняется в зависимости от того, один или два p-электрона вносит он в ароматический секстет. Распределение электронной плотности, длины связей и валентные углы в молекулах пиридина и пиррола приведены на рисунке. Так как электроотрицательность азота больше, чем углерода, то в пиридине электронная плотность увеличена у атома азота и понижена у остальных атомов цикла, главным образом у атомов в положениях 2,4 и 6.

Вследствие участия пары неподеленных электронов атома азота пиррола в ароматическом сопряжении гетероатом становится более бедным электронами. CH- группы, находящиеся по соседству с гетероатомом (α-положения), будут значительно богаче электронами и, следовательно, более реакционноспособными в реакциях электрофильного замещения, чем более удаленные CH-группы (β-положения)

Пиримидин содержит два пиридиновых атома азота, а имидазол и пурин – пиррольный и пиридиновый атомы азота. Это определяет кислотно-основные свойства данных соединений.


Пиррол. Бесцветная жидкость, слабо растворима в воде, на воздухе быстро окисляется и темнеет. Получение:

1. Фуран, тиофен и пиррол могут превращаться в друг друга при нагревании до 400-450 в присутствии катализатора Al 2 O 3 (цикл Юрьева)

2. Пиррол образуется при пропускании смеси C 2 H 2 и NH 3 через нагретый katFe 2 O 3


Химические свойства

1. Пиррол проявляет слабокислотные свойства, реагируя со щелочными Me или с очень сильными основаниями при t.

2. Легче чем бензол вступает в реакции замещения. Распределение электронной плотности, обусловленное наличием гетероатома таково, что наиболее реакционноспособными являются альфа-положения по отношению к атому азота.

3. При восстановлении в мягких условиях (Zn+HCl) пиррол превращается в пирролин. Энергичное восстановление (например, гидрирование в присутствии никеля при 200) приводит к образованию тетрагидропиррола (пирролидина).


Основные свойства пиррола практически не проявляются из-за участия неподеленной электронной пары в системе кольцевого сопряжения (пиррольный азот). В ряду пиррол – пирролин – пирролидин, основность растет.

Ядро пиррола и некотрые его производные входят в состав важнейших биологических и биохимических структур. Например. пиррольные циклы входят в состав порфина и гемма. При их разрушении в организме образуются «линейные» тетрапирролы, называемые желчными пигментами (биливердин, билирубин, стеркобилин и т.д.). По соотношению пигментов определяются вид желтухи и причины, вызывающие заболевание (механическая желтуха, вирусный гепатит и т.д.)

Пиридин. Бесцветная жидкость с характерным неприятным запахом, с водой смешивается в любых соотношениях. Получение:

1. Выделение из каменноугольной смолы

2. Синтез из синильной кислоты и ацетилена

Химические свойства

1. Пиридин обладает основными свойствами, т.к. содержит ПИРИДИНОВЫЙ атом азота, в известной степени аналогичный атому азота аминов (электронная пара не участвует в образовании ароматического секстета):

2. Водные раствора пиридина окрашивают лакмус в синий цвет, при действии минеральных кислот образуются кристаллические пиридиниевые соли

3. Пиридин и его гомологи присоединяют галоген алкилы, давая соли пиридиния

4. Пиридин труднее бензола вступает в реакции замещения из-за большей чем у углерода, электроотрицательности атома азота. При этом замещение идет приемущественно по β-положения

5. При каталитическом восстановлении пиридин переходит в пиперидин

6. Пиридин устойчив к действию окислителей. Его гомологи окисляются с образованием гетероциклических карбоновых кислот

7. Горение пиридина

Пиридин и его производные основа многих лекарственных средств. Например – никотиновая кислота и ее амид являются витаминами группы PP.

Нуклеиновые основания


Из ранее изложенного следует, что соединения, содержащие пиридиновый атом азота, обладают основными свойствами (азотистые основания). Производные пиримидина и пурина, входящие в состав нуклеиновых кислот. получили название «нуклеиновые основания». ГЕТЕРОЦИКЛИЧЕСКИЕ СОЕДИНЕНИЯ – один из самых многочисленных классов органических соединений (см . ОРГАНИЧЕСКАЯ ХИМИЯ), они содержат в составе углеводородного цикла они содержат один или несколько гетероатомов: O , N , S (рис. 1).

Рис. 1. ПРОСТЕЙШИЕ ГЕТЕРОЦИКЛИЧЕСКИЕ СОЕДИНЕНИЯ

Классификация гетероциклических соединений. В зависимости от природы гетероатома различают кислород-, азот- и серосодержащие соединения. Существуют и соединения, в составе которых есть одновременно несколько одинаковых (рис. 2, диоксан) или различных гетероатомов (рис. 2, тиазол, оксазин). Кроме того, их делят на насыщенные соединения (рис. 1, пиперидин) и ненасыщенные, т.е. содержащие кратные связи (рис. 1, фуран, пиридин, тиофен). В зависимости от числа циклических фрагментов в молекуле различают моноядерные – моноциклические соединения (рис. 1) и полиядерные – содержащие несколько циклов, причем циклы могут быть конденсированные (содержать два общих атома, рис. 2, индол), либо соединенные простой связью (рис. 2, бипиридил). В особую группу выделяют макроциклические соединения, так называемые краун-эфиры ( crown англ. – корона), содержащие свыше четырех гетероатомов и более десяти звеньев в структуре цикла (звеном называют фрагмент из двух химически связанных атомов, (рис. 2).

Рис. 2. РАЗЛИЧНЫЕ ТИПЫ БОЛЕЕ СЛОЖНЫХ ГЕТЕРОЦИКЛИЧЕСКИХ СОЕДИНЕНИЙ : с двумя одинаковыми (диоксан), или различными (тиазол, оксазин) гетероатомами. Биядерные соединения: с конденсированными (индол) или разделенными циклами (бипиридил). Краун-эфиры – соединения с крупными циклами (макроциклические).

Номенклатура гетероциклических соединений. Для большой группы гетероциклических соединений допускают использование тривиальных (см . ТРИВИАЛЬНЫЕ НАЗВАНИЯ ВЕЩЕСТВ ) названий, сложившихся исторически (например, рис. 1), всего таких названий около 60. В остальных случаях названия (их именуют систематическими) составляют по специальным правилам ИЮПАК (Международный Союз Теоретической и Прикладной Химии), которые в этом случае своеобразны и отличаются от той системы, которая принята для большинства органических соединений иных классов. Из специально предложенных для этой цели корней и приставок формируют название, соблюдая оговоренный порядок. В его основе лежит корень, состоящий из двух слогов. Первый слог указывает на количество звеньев цикла, например, слог «ир » (две переставленные буквы из латинского корня « tri ») соответствует трехчленному циклу, слог «ет » (фрагмент латинского tet ra ) – четырехзвенный цикл, слог «ок » (часть латинского octa ) используют для восьмичленных циклов. Происхождение некоторых других слогов, обозначающих размер цикла, не всегда логически обосновано, например, для шестичленных циклов используют слог «ин », взятый из названия распространенного гетероцикла «пиридин » (рис. 1).

Второй слог укаывает, является ли гетероцикл насыщенным – слог «ан », или ненасыщенным – слог «ен » (аналогия с названиями углеводородов: этан – этен) . Перед корнем помещают приставку, обозначающую природу гетероатома: О – окса,

S – тиа, N – аза. Поскольку корень часто начинается с гласной буквы, в приставке обычно опускают последнюю букву «а». В результате насыщенный трехчленный цикл, содержащий S , называют тииран (рис. 3А): «ти -» сокращенная приставка «тио-», часть корня «ир » обозначает трехчленный цикл, а вторая часть корня «ан » соответствует насыщенному соединению. Аналогично трехчленный О-содержащий ненасыщенный цикл называют оксирен (рис. 3Б). Если в гетероцикле несколько гетероатомов, то их положение указывают с помощью числовых индексов, пронумеровав предварительно атомы в цикле, а количество таких атомов обозначают приставками ди-, три- и т.д., например, 1,3,5-триазин (рис. 3В). Если есть различные гетероатомы, их упоминают в следующем порядке: O > S > N (этот установленный порядок носит условный характер и не связан с химическими свойствами). В конце названия с помощью корня указывают размер цикла и ненасыщенность, например, 1,2,6-оксадиазин (рис. 3Д). Способ написания корней для N -содержащих циклов несколько отличается от описанного выше, что также специально оговорено, например, корень «ин » в названии 1,2,6-оксадиазин (рис. 3Д) обозначает одновременно и шестичленный и ненасыщенный цикл. Правила составления систематических названий применимы к любым гетероциклическим соединениям, в том числе и к тем, для которых есть устоявшиеся тривиальные названия, например, у бициклического соединения с тривиальным названием хинолин (рис. 3Е) систематическое название бензазин. Часто химики вместо сложной системы систематических названий используют более простую, основанную на тривиальных названиях: в молекуле «вычленяют» фрагмент тривиального названия и с помощью цифровых индексов указывают положение заместителей По такой схеме составлено название 8-оксихинолин (рис. 3Ж).

Рис. 3. СИСТЕМАТИЧЕСКИЕ НАЗВАНИЯ ГЕТЕРОЦИКЛИЧЕСКИХ СОЕДИНЕНИЙ (А-Д). Сопоставление систематического и тривиального названия (Е). Использование тривиального термина при составлении названия (Ж). В 8-оксихинолине (Ж) два атома углерода, принадлежащие одновременно двум циклам, не нумеруют,т.к. у них не может быть заместителей.

Химические свойства гетероциклических соединений. Трех- и четырехчленные гетероциклы представляют собой напряженные системы, для них характерны реакции с раскрытием цикла. Этиленоксид (при 150° С и давлении 2 мПа) гидролизуется, образуя этиленгликоль (рис. 4А). Реакция О-содержащих напряженных циклов со спиртами приводит к соединениям с ОН-группой и простой эфирной связью (целлозольвы, рис. 4Б), а при действии на них галогенводородов образуются соединения, содержащие Hal и ОН-группу (галогенгидрины, рис. 4В). N -содержащие напряженные циклы, взаимодействуя с галогеноводородами образуют галогеналкиламины (рис. 4Г).

Рис. 4. ПЯТИ- И ШЕСТИЧЛЕННЫЕ НЕНАСЫЩЕННЫЕ ГЕТЕРОЦИКЛИЧЕСКИЕ СОЕДИНЕНИЯ , а также их производные обладают ароматичностью , поэтому их химическое поведение напоминает свойства ароматических соединений (производных бензола) – при различных превращениях циклический фрагмент сравнительно устойчив, а атомы Н при углеродных атомах кольца, как у бензола, могут замещаться разнообразными группами (см . ХИМИЯ ОРГАНИЧЕСКАЯ ). При сульфировании (рис. 5А), нитровании (рис. 5Б), ацилировании (рис. 5В,Г) атомы Н замещаются соответствующими группами, а цикл сохраняется неизменным. Тем не менее, устойчивость циклических фрагментов в таких соединениях ниже, чем у бензольного цикла, поэтому все реакции замещения проводят в более мягких условиях.

Рис. 5. РЕАКЦИИ ЗАМЕЩЕНИЯ в гетероциклических соединениях: А – сульфирование, Б – нитрование, В, Г – ацетилирование. Подобно реакциям замещения в бензольном ядре, циклический фрагмент остается неизменным.

Для возникновения ароматической системы в циклах среднего размера (5–7-звенных) нужно 6 р -электронов (см. АРОМАТИЧНОСТЬ ). Каждая двойная связь состоит из двух связей (см . ОРБИТАЛИ ), первую образуют два

s -электрона двух соседних атомов, а вторую – образует пара р- электронов (обозначены точками внутри цикла пиридина, рис. 6А). Шестиэлектронная система в пиридине образуется за счет пяти р- электронов, принадлежащих атомам углерода (черные точки) и одного р- электрона от азота (синяя точка). В результате неподеленная электронная пара азота (красные точки) не участвует в образовании ароматической системы, поэтому такой атом азота может быть донором (дающим электроны) при образовании донорно-акцепторной связи (этим же свойством обладают и амины ). Часто такой донор называют Льюисовским основанием, поскольку он проявляет свойства, типичные для основания: образует с минеральными кислотами устойчивые соли (рис. 6А), являющиеся комплексными соединениями. Аналогично ведет себя хинолин (рис. 6Б), который можно рассматривать как производное пиридина. Наиболее ярко свойства основания проявляются у 8-оксихинолина (рис. 3Ж). Это соединение прочно связывает ионы большинства металлов, образуя две обычные химические связи атома металла с двумя атомами О, и две донорно-акцепторных связи с атомами N . Такие комплексы называют хелатными (от греч. chele – клешня) или клешневидными. Это свойство 8-оксихинолина широко используют в аналитической химии для количественного определения металлов.

Рис. 6. ОБРАЗОВАНИЕ КОМПЛЕКСНЫХ СОЛЕЙ с участием шестичленных N-содержащих гетероциклов (А, Б). Хелатные комплексы ионов металлов (В).

При переходе от шестичленных к пятичленным

N -содержащим ненасыщенным гетероциклам (пиррол, рис. 7) ситуация меняется. В этом случае неподеленная электронная пара азота (рис. 7, красные точки) вовлечена в образование шестиэлектронной ароматической системы и не может участвовать в образовании донорно-акцепторной связи, в итоге отчетливо проявляются кислотные свойства связи N - H : водород может замещаться металлом (рис. 7). Такие металлопроизводные являются удобными промежуточными соединениями для присоединения к азоту алкильных (рис. 7А) или ацетильных групп (рис. 7Б).

Пятичленный гетероцикл имидазол (рис. 7В), содержащий два атома

N , также представляет собой ароматическое соединение – в образовании цикла участвует 6 р -электронов. Интересно, что он обладает одновременно и кислотными и основными свойствами. Атом N в группировке N - H может реагировать как кислота, аналогично пирролу (рис. 7А, Б), второй атом N по свойствам напоминает такой же атом в пиридине, для него характерны реакции, показанные на рис. 6А.

Рис. 7. КИСЛОТНЫЕ СВОЙСТВА ПЯТИЧЛЕННОГО ГЕТЕРОЦИКЛА ПИРРОЛА (А,Б). Сочетание кислотных и основных свойств в имидазоле (В). Два атома

N в имидазоле и принадлежащие им электроны отмечены различающимися цветами.

Гетероциклические соединения получают с помощью различных конденсационных процессов, проходящих через стадию замыкания цикла (рис. 8А-В). Протекание таких реакций в нужном направлении стимулируется тем, что в результате образуются сравнительно стабильные гетероароматические соединения. Некоторые гетероциклические соединения получают, взяв за основу соединения сходного состава. При декарбонилировании (удалении СО) фурфурола получают фуран (рис. 8Г, фурфурол – устоявшееся тривиальное название, неточно отражающее состав, правильнее, фурфураль). Гидрирование фурана приводит к тетрагидрофурану (рис. 8Д).

Рис. 8. СПОСОБЫ ПОЛУЧЕНИЯ ГЕТЕРОЦИКЛИЧЕСКИХ СОЕДИНЕНИЙ

В ненасыщенных пятичленных гетероциклах один гетероатом заменяется другим без изменения циклического фрагмента (рис. 9).

Рис. 9. ВЗАИМОПРЕВРАЩЕНИЯ ПЯТИЧЛЕННЫХ ГЕТЕРОЦИКЛОВ

Многие гетероциклические соединения получают переработкой природных продуктов. Пиррол и индол (рис. 2) содержатся в каменноугольной смоле, тиофен добывают из продуктов коксования каменного угля и термического разложения горючих сланцев, фуран выделяют из продуктов сухой перегонки некоторых пород древесины. Пиридин (рис. 1) получают из каменноугольной смолы, продуктов сухой перегонки дерева и торфа. Фурфурол (рис. 8) получают гидролизом растительного сырья (кукурузных початков, овсяной и рисовой шелухи) в присутствии разбавленных минеральных кислот.

Участие гетероциклических соединений в биологических процессах. Три соединения – урацил, тимин и цитозин, которые представляют собой производные азотсодержащего гетероцикла пиримидина (рис. 10, в скобках), а также два производных гетероцикла пурина (рис. 10, в скобках) – гуанин и аденин, входят в состав нуклеиновых кислот , порядок чередования этих гетероциклов вдоль полимерных цепей ДНК и РНК определяет всю наследственную информацию живого организма и способ сборки белковых молекул.

Рис.10. ГЕТЕРОЦИКЛИЧЕСКИЕ СОЕДИНЕНИЯ , входящие в состав нуклеиновых кислот

Некоторые аминокислоты (рис. 11), участвующие в образовании белков , также содержат гетероциклические фрагменты: триптофан включает в себя фрагмент индола (рис. 2), в гистидине есть цикл имидазола (рис. 7), пролин – производное пирролидина.

Фрагменты гетероциклов есть в структуре многих биологически-активных веществ, среди наиболее используемых лекарственных препаратов свыше 60% составляют гетероциклические соединения. Четырехчленный цикл азетидинон (рис. 11) входит в состав антибиотиков пенициллина и цефалоспорина, аскорбиновая кислота (витамин С) содержит в своем составе фурановый гетероцикл, другой витамин никотинамид включает в себя фрагмент пиридина, молекула кофеина «построена» на базе упомянутого ранее пурина (рис. 10).

Рис. 11. ПРИСУТСТВИЕ ФРАГМЕНТОВ ГЕТЕРОЦИКЛИЧЕСКИХ СОЕДИНЕНИЙ в структуре биологически важных молекул

Для всех соединений (рис. 10), за исключением азетидинона, приведены тривиальные названия, которые утвердились и вошли в употребление до того, как были сформулированы правила систематической номенклатуры.

Применение гетероциклических соединений. Диоксан (рис. 2) и тетрагидрофуран (рис. 8) широко используют в качестве высокополярных растворителей в органическом синтезе.

Фурфурол (рис. 8) является исходным продуктом для получения фурана (рис. 8), тетрагидрофурана, а также для синтеза некоторых лекарственных препаратов (фурацилин).

При конденсации фурфурола в кислой среде образуются полимерные продукты (фурановые смолы), по строению напоминающие фенольные смолы, – метиленовые группы СН 2 , соединяющие гетероциклы (рис. 12А). При нагревании таких смол в присутствии кислотных катализаторов (например, толуолсульфокислота) двойные связи раскрываются с образованием поперечных сшивок, в результате полимер переходит в нерастворимое состояние, что позволяет его использовать в качестве связующего при изготовлении различных наполненных прессматериалов: стекло- и углепластиков, древесноволокнистых плит и т.п. В твердом состоянии фурановые полимеры представляют собой химически стойкие вещества (до 300° С), это позволяет применять их и как коррозийноностойкие и огнеустойчивые герметики и мастики.

При конденсации ароматических тетраминов (4 амино-группы) с эфирами ароматических дикарбоновых кислот (см. СЛОЖНЫЕ ЭФИРЫ ) образуются полимеры, в структуре которых в процессе синтеза возникают фрагменты бензимидазола (рис. 12Б). Такие полимеры, получившие название полибензимидазолы, обладают высокой прочностью и термостойкостью (до 500° С), из них изготавливают пленки, волокна (торговое название АРМОС и РУСАР), армированные пластики.


Рис. 12. ПОЛИМЕРЫ, СОДЕРЖАЩИЕ В ЦЕПИ ГЕТЕРОЦИКЛИЧЕСКИЕ ФРАГМЕНТЫ : фурановый полимер (А), полибензимидазол (Б).

Производные бензимидазола входят в состав лекарственных препаратов (дибазол).

Индол (рис. 2) применяют как фиксатор запахов в парфюмерной промышленности и при изготовлении некоторых лекарств (индометацин).

Михаил Левицкий

ЛИТЕРАТУРА Джилкрист Т. Химия гетероциклических соединений . М., Мир, 1996
Ким Д.Г. Введение в химию гетероциклических соединений . Соросовский образовательный журнал, т. 7, 2001, № 11

Гетероциклические органические соединения - это соединения, в состав которых входят циклы, содержащие один или несколько неуглеродных атомов (гетероатомов), например, атомы азота, кислорода, серы.

Классификация гетероциклических соединений.

Гетероциклические соединения можно классифицировать по числу членов и числу гетероатомов в гетероцикле. В качестве примера такой классификации представлены гетероциклы с одним гетероатомом, с двумя и более гетероатомами.

По характеру химической связи между атомами цикла различают предельные, непредельные и ароматические гетероциклические соединения.

Трехчленные гетероциклы с одним гетероатомом:

этиленоксид (оксиран, окись этилена)

этиленсульфид (тииран)

этиленимин (азиридин)

Пятичленные гетероциклы с одним гетероатомом:

Шестичленные гетероциклы с одним гетероатомом:

тетрагидропиран

пиперидин

Пятичленные гетероциклы с несколькими гетероатомами:

имидазол

1,3-тиазол

тиазолидин

1,3-оксазол

1,2,3-оксадиазол

1,3,4-тиадиазол

1,2,4-тиадиазол

12,3,4-тетразол

Шестичленные гетероциклы с несколькими гетероатомами:

пиридиазин

пиримидин

1,3,5-триазин

пиперазин

морфолин

Рисунок 1. Представители предельных, непредельных и ароматических гетероциклических соединений

Пятичленные гетероциклы с одним гетероатомом

Наиболее важными представителями пятичленных гетероциклов с одним гетероатомом являются фуран (I), тиофен (II) и пиррол (III).

Эти соединения близки по строению и обладают способностью взаимопревращаться друг в друга

Пиррол, фуран и тиофен обладают химическими свойствами, характерными для ароматических соединений, и отличаются высокой реакционной способностью (по сравнению с бензолом). Для них характерны реакции электрофильного замещения (например, галогенирование и ацилирование):

тетраоидпиррол

4NaOH + 4NaI + 4Н2О

2-ацетилфуран, а также реакция гидрирования:

(СН 3 СО) +

пирролин пирролидин

Для пиррола характерны слабо выраженные кислотные свойства:

пирролят калия

Наиболее важными производными фурана являются фурфурол (IV) и пирослизевая кислота (V):

фурфурол (IV)

пирослизевая кислота (V)

Производными пиррола являются индол (VI) и аминокислота пролин (VII):

пролин (VII)

В молекуле индола содержатся пиррольное и бензольное ядра. Производные индола являются красителями и стимуляторами роста растений. Наибольшее практическое значение среди производных индола имеют аминокислота триптофан (VIII) и гетероауксин (IX):

триптофан (VIII)

гетероауксин (IX)

Из пятичленных гетероциклов с одним гетероатомом наиболее распространенным в природе является пиррол. Ядра пиррола входят в состав хлорофилла, в котором атомы азота пиррольных ядер связаны с магнием (рис. 2). Аналогичной структурой обладает небелковая составляющая гемоглобина - гем, в котором атомы азота пиррольных ядер связаны с атомом железа.

Рисунок 2. Структура хлорофилла б

Шестичленные гетероциклы с одним атомом азота

Наиболее важными шестичленными гетероциклами с одним атомом I азота являются пиридин (X), пиперидин (XI) и хинолин (XII):

пиридин (X)

пиперидин (XI)

хинолин (XII)

Пиридин проявляет основные свойства, а по своей реакционной способности аналогичен нитробензолу.

При каталитическом гидрировании пиридина образуется пиперидин:

Фрагменты пиридина и пиперидина входят в состав многих соединений. Например, фрагмент пиперидина входит в состав алкалоидов кониина (XIII) и анабазина (XIV), а фрагмент пиридина наблюдается в составе того же анабазина (XIV), никотиновой кислоты (XV) и никотина (XVI):

кониин (XIII)

анабазин (XIV)

никотиновая кислота (XV)

никотин (XVI)

Хинолин содержит кольца бензола и пиридина и напоминает по своим свойствам пиридин. К производным хинолина относятся оксин (XVII) и алкалоид хинин (XVIII):

оксин (XVII) хинин XVIII)

Шестичленные гетероциклы с двумя атомами азота и их производные

В настоящем пособии из шестичленных гетероциклов с двумя гетероатомами рассмотрим пиримидин (XIX) и пурин (XX):

пиримидин (XIX)

Оба гетероцикла представляют собой бесцветные кристаллические вещества. Пурин, в отличие от пиримидина, является бициклическим гетероциклом, в молекуле которого соединены вместе циклические структуры пиримидина и имидазола.

Среди производных пиримидина особенно важными являются урацил, тимин, цитозин и барбитуровая кислота (рис. 3), а из пуриновых производных следует отметить особо аденин, гуанин, кофеин, мочевую кислоту (рис. 4).

Рисунок 3. Производные пиримидина - пиримидиновые основания: цитозин урацил (У) и тимин (Т) и барбитуровая кислота

Рисунок 4. Производные пурина - пуриновые основания: аденин (А), гуанин (Г) и кофеин и мочевая кислота

Производные пиримидина и пурина играют большую роль в жизнедеятельности живых организмов. Так, пиримидиновые и пуриновые основания: урацил, тимин, цитозин, аденин и гуанин, - входят в состав нуклеиновых кислот (ДНК и РНК). Производные барбитуровой кислоты - барбитураты - применяются как снотворные средства, мочевая кислота является конечным продуктом метаболизма пуриновых соединений в организме, а кофеин - эффективный стимулятор работы сердца и центральной нервной системы.

Пиримидиновые основания (рис. 3) имеют слабоосновные свойства за счет неподеленных электронных пар атомов азота. Пуриновые основания (рис. 4) обладают слабощелочными свойствами за счет неподеленных электронных пар атомов азота пиримидинового кольца и слабокислотными свойствами за счет группы NH пиразольного кольца.

Цитозин, урацил, тимин (пиримидиновые основания) и аденин, гуанин (пуриновые основания) входят в состав нуклеиновых кислот. Эти основания могут соединяться друг с другом за счет водородных связей по Принципу дополнения одного другим и обязательно пиримидинового с пуриновым и в обратном порядке. Например, тимин образует водородные связи с аденином, а цитозин с гуанином:


аденин тимин гуанин цитозин

Такое явление образования водородной связи между строго определенными парами азотистых оснований (аденин - тимин; гуанин - цитозин) называют комплементарностью, а сами основания - комплементарными основаниями. Комплементарность обеспечивает спаривание двух нитей ДНК, соединение фермента с субстратом, антигена с антителом. Образно говоря, комплиментарные структуры подходят друг к другу "как ключ к замку".

гетероциклический соединение химический индол

Органические соединения, содержащие в своих молекулах циклы, в состав которых могут входить неуглеродные атомы . Гетероциклические соединения классифицируют по количеству атомов в цикле и по типу гетероатома.

Шестичленные гетероциклы.

Пиридин C 5 H 5 N :

Строение гетероциклов.

Пиридин напоминает бензол: все атомы углерода и атом азота находится в sp 2 - гибридизации . Шесть электронов находятся на негибридных орбиталях и образуют π -электронную ароматическую систему. Из 3х гибридных орбиталей атома азота две вступают в образование сигма-связей С-N , а на третьей находится неподеленная пара:

Пиридин - бесцветная жидкость, немного легче воды , с неприяным запахом, с водой смешивается в любых пропорциях.

Получение гетероциклов.

Пиридин выделяют из каменноугольной смолы. В лабораторных условиях его можно синтезировать из синильной кислоты и ацетилена:

1. Основные свойства гетероциклов. Пиридин - слабое основание, его водных раствор окрашивается в синий цвет:

При реакции с сильными кислотами образуются соли пиридиния:

2. Ароматические свойства гетероциклов. Как и бензол пиридин вступает в реакции электрофильного замещения. Его активность в этих реакция ниже, чем у бензола из-за большой электроотрицательности атома азота. Нитрование проводят при 300 ºС с низким выходом:

Реакции нуклеофильного замещения. Атом азота оттягивает к себе электронную плотность ароматической системы и орто-, пара - положения «обеднены» электронами. Поэтому пиридин может реагировать с амидом натрия, образую смесь орто- и пара- аминопиридинов (реакция Чичибана ):


3. Гидрирование пиридина, в результате чего образуется пиперидин:

4. Гомологи пиридина подвергаются боковому окислению :

Пиримидин С 4 Н 4 N 2 .

Это шестичленный гетероцикл с 2-мя атомами азота:

Пиримидин менее активен в реакциях электрофильного замещения, и основные свойства его выражены хуже, чем и пиридина.

К пиримидиновым основаниям относят: урацил, тимин, цитозин:

Каждое из этих соединений может существовать в 2х формах - лактим-лактамная таутомерия.

Пятичленные циклы.

Ярким представителем является пиррол C 4 H 4 NH :

Строение гетероциклов.

Атомы азота и углерода находятся в sp 2 -гибридизации. 2 электрона на негибридной орбитали атома азота образуют π -элеткронную ароматическую систему:

Электронная пара входит в состав ароматической системы, поэтому пиррол практически лишен основных свойств.

Физические свойства гетероциклов.

Пиррол - бесцветная жидкость с запахом хлороформа. Он слабо растворим в воде , но растворим в органических растворителях.

Получение гетероциклов.

Конденсация ацетилена с аммиаком:

Аммонолиз - реакция Юрьева:

Химические свойства гетероциклов.

1. Сильные минеральные соли могут вытянуть электронную пару из ароматической системы, при этом ароматичность нарушается и пиррол превращается в неустойчивое соединение, которое сразу полимеризуется. Такая неустойчивость в кислой среде называется ацидофобностью.

2. Пиролл - очень слабая кислота, поэтому он может реагировать с калием:

3. Электрофильное замещение, сульфирование:

4. Гидрирование. В результате образуется пирролидин:

Интересными свойствами обладают имидазол и пиразол:

Они могут быть в таутомерной форме, т.к. NH - группа проявляет слабые кислотные свойства и способность отдавать протон невелика. Поэтому протон может переходить от одного атома к другому.

Др. элементов (гетероатомов). Наиб. значение имеют Т.е., в цикл к-рых входят N, О, S. К ним относятся мн, прир. ; они входят в виде структурных фрагментов в нуклеиновых к-т, и др. Гетероциклические соединения-самый многочисленный класс орг. соед., включающий ок. 2 / 3 всех известных прир. и синтетич. орг. .

Номенклатура. Согласно правилам номенклатуры , для важнейших гетероциклических соединений сохраняются их тривиальные назв., напр. (ф-ла I), (II), (III). Систематич. назв. моноциклич. Т.е., содержащих в цикле от 3 до 10 , образуют путем сочетания приставок, обозначающих гетероатомы (N-аза, О-окса, S-тиа, Р-фосфа и т. п.), с корнями, к-рые для основных гетероциклических соединений приведены в таблице. Степень ненасыщ. гетероцикла отражается в назв. с помощью корней или приставок "дигидро" (присоединены два ), "тетрагидро", "пергидро" и т.д. Примеры систематич. назв.: (IV), тиирен (V), тает (VI), 1,3-диоксолан (VII), пергидропиримидин (VIII).

Для гетероциклических соединений с 11 и более членами в цикле, мостиковых и нек-рых конденсиров. систем используется "а"-номенклатура, по правилам к-рой первая составная часть назв. обозначает гетероатом, а вторая-назв. , к-рое м. б. образовано, если считать, что в ф-ле гетероциклического соединения все гетероатомы заменены на С, группы СН или СН 2 , напр. 1,5-диазабицикло (Xill). Для названия гетероциклических соединений этого типа используют также традиционные назв., напр. пентадеканолид (XIV), 18-краун-6-эфир (XV).

КОРНИ, ИСПОЛЬЗУЕМЫЕ ПРИ СОСТАВЛЕНИИ НАЗВАНИЙ ГЕТЕРОЦИКЛИЧЕСКИХ СОЕДИНЕНИЙ ПО НОМЕНКЛАТУРЕ

Химические свойства. Для 3- и 4-членных гетероциклических соединений характерна легкость раскрытия напряженного цикла. 5- и 6-членные ненасыщ. гетероциклы (наиб. многочисл. тип гетероциклических соединений), замкнутая сопряженная система связей к-рых включает (4м + 2) , обладают ароматич. характером (правило Хюккеля) и наз. гетероароматич. соединениями. Для них, как и для бензоидных ароматич. соед., Наиб. характерны р-ции замещения. При этом гетероатом играет роль "внутренней" ф-ции, определяющей ориентацию, а также активирующее или дезактивирующее влияние на кольцо к действию разл. .

Гетероароматич. соед. подразделяют на я-избыточные идефицитные. К первым относят 5-членные гетероциклические соединения с одним гетероатомом, в к-рых секстет делокализован между пятью цикла, что обусловливает их повыш. по отношению к электроф. агентам. Кдефицитным относят 6-членные гетероциклы с шестью , к-рые распределяются, как и в случае , между шестью кольца, но один или неск. из них - гетероатомы с большей, чем у , . Такие соед. напоминают по реакц. способности производные



Понравилась статья? Поделитесь с друзьями!