Из каких элементов состоит прямоугольный параллелепипед. Прямоугольный параллелепипед — Гипермаркет знаний

Когда вы были маленькими и играли кубиками, то, возможно, складывали фигуры, изображенные на рисунке 154 . Эти фигуры дают представление о прямоугольном параллелепипеде . Форму прямоугольного параллелепипеда имеют, например, коробка конфет, кирпич, спичечный коробок, упаковочный ящик, пакет сока.

На рисунке 155 изображен прямоугольный параллелепипед ABCDA 1 B 1 C 1 D 1 .

Прямоугольный параллелепипед ограничен шестью гранями . Каждая грань − это прямоугольник, т.е. поверхность прямоугольного параллелепипеда состоит из шести прямоугольников.

Стороны граней называют ребрами прямоугольного параллелепипеда , вершины граней − вершинами прямоугольного параллелепипеда . Например, отрезки AB, BC, A 1 B 1 − ребра, а точки B, A 1 , C 1 − вершины параллелепипеда ABCDA 1 B 1 C 1 D 1 (рис. 155 ).

У прямоугольного параллелепипеда 8 вершин и 12 ребер.

Грани AA 1 B 1 B и DD 1 C 1 C не имеют общих вершин. Такие грани называют противолежащими . В параллелепипеде ABCDA 1 B 1 C 1 D 1 есть еще две пары противолежащих граней: прямоугольники ABCD и A 1 B 1 C 1 D 1 , а также прямоугольники AA 1 D 1 D и BB 1 C 1 C.

Противолежащие грани прямоугольного параллелепипеда равны.

На рисунке 155 грань ABCD называют основанием прямоугольного параллелепипеда ABCDA 1 B 1 C 1 D 1 .

Площадью поверхности параллелепипеда называют сумму площадей всех его граней.

Чтобы иметь представление о размерах прямоугольного параллелепипеда, достаточно рассмотреть любые три ребра, имеющие общую вершину. Длины этих ребер называют измерениями прямоугольного параллелепипеда. Чтобы их различать, пользуются названиями: длина , ширина , высота (рис. 156 ).

Прямоугольный параллелепипед, у которого все измерения равны, называют кубом (рис. 157 ). Поверхность куба состоит из шести равных квадратов.

Если коробку, имеющую форму прямоугольного параллелепипеда, открыть (рис. 158 ) и разрезать по четырем вертикальным ребрам (рис. 159 ), а затем развернуть, то получим фигуру, состоящую из шести прямоугольников (рис. 160 ). Эту фигуру называют разверткой прямоугольного параллелепипеда .

На рисунке 161 изображена фигура, состоящая из шести равных квадратов. Она является разверткой куба.

С помощью развертки можно изготовить модель прямоугольного параллелепипеда.

Это можно сделать, например, так. Начертить на бумаге его развертку. Вырезать ее, согнуть по отрезкам, соответствующим ребрам прямоугольного параллелепипеда (см. рис. 159 ), и склеить.

Прямоугольный параллелепипед является видом многогранника − фигуры, поверхность которой состоит из многоугольников. На рисунке 162 изображены многогранники.

Одним из видов многогранника является пирамида .

Эта фигура для вас не нова. Изучая курс Древнего мира, вы познакомились с одним из семи чудес света − египетскими пирамидами.

На рисунке 163 изображены пирамиды MABC, MABCD, MABCDE. Поверхность пирамиды состоит из боковых граней − треугольников, имеющих общую вершину, и основания (рис. 164 ). Общую вершину боковых граней называют ребрами основания пирамиды , а стороны боковых граней, не принадлежащие основанию, − боковыми ребрами пирамиды .

Пирамиды можно классифицировать по количеству сторон основания: треугольная, четырехугольная, пятиугольная (см. рис. 163 ) и т.д.

Поверхность треугольной пирамиды состоит из четырех треугольников. Любой из этих треугольников может служить основанием пирамиды. Это основание вид пирамиды, любая грань которой может служить ее основанием.

На рисунке 165 изображена фигура, которая может служить разверткой четырехугольной пирамиды . Она состоит из квадрата и четырех равных равнобедренных треугольников.

На рисунке 166 изображена фигура, состоящая из четырех равных равносторонних треугольников. С помощью этой фигуры можно сделать модель треугольной пирамиды, у которой все грани − равносторонние треугольники.

Многогранники являются примерами геометрических тел .

На рисунке 167 изображены знакомые вам геометрические тела, не являющиеся многогранниками. Более подробно с этими телами вы познакомитесь в 6 классе.

Параллелепипед – это геометрическая фигура, все 6 граней которой представляют собой параллелограммы.

В зависимости от вида этих параллелограммов различают следующие виды параллелепипеда:

  • прямой;
  • наклонный;
  • прямоугольный.

Прямым параллелепипедом называют четырехугольную призму, ребра которой составляют с плоскостью основания угол 90 °.

Прямоугольным параллелепипедом называют четырехугольную призму, все грани которой являются прямоугольниками. Куб есть разновидность четырехугольной призмы, у которой все грани и ребра равны между собой.

Особенности фигуры предопределяют ее свойства. К ним относят 4 следующих утверждений:


Запомнить все приведенные свойства просто, они легки для понимания и выводятся логически исходя из вида и особенностей геометрического тела. Однако, незамысловатые утверждения могут быть невероятно полезны при решении типовых заданий ЕГЭ и позволят сэкономить время необходимое для прохождения теста.

Формулы параллелепипеда

Для поиска ответов на поставленную задачу недостаточно знать только свойства фигуры. Также могут понадобиться и некоторые формулы для нахождения площади и объема геометрического тела.

Площадь оснований находится также как и соответствующий показатель параллелограмма или прямоугольника. Выбирать основание параллелограмма можно самостоятельно. Как правило, при решении задач проще работать с призмой, в основании которой лежит прямоугольник.

Формула нахождения боковой поверхности параллелепипеда, также может понадобиться в тестовых заданиях.

Примеры решения типовых заданий ЕГЭ

Задание 1.

Дано : прямоугольный параллелепипед с измерениями 3, 4 и 12 см.
Необходимо найти длину одной из главных диагоналей фигуры.
Решение : Любое решение геометрической задачи должно начинаться с построения правильного и четкого чертежа, на котором будет обозначено «дано» и искомая величина. На рисунке ниже приведен пример правильного оформления условий задания.

Рассмотрев сделанный рисунок и вспомнив все свойства геометрического тела, приходим к единственно верному способу решения. Применив 4 свойство параллелепипеда, получим следующее выражение:

После несложных вычислений получим выражение b2=169, следовательно, b=13. Ответ задания найден, на его поиск и чертеж необходимо потратить не более 5 минут.

В геометрии ключевыми понятиями являются плоскость, точка, прямая и угол. Используя эти термины, можно описать любую геометрическую фигуру. Многогранники обычно описывают через более простые фигуры, которые лежат в одной плоскости, такие как круг, треугольник, квадрат, прямоугольник и т.д. В данной статье мы рассмотрим, что такое параллелепипед, опишем типы параллелепипедов, его свойства, из каких элементов он состоит, а также дадим основные формулы для вычисления площади и объема для каждой разновидности параллелепипеда.

Определение

Параллелепипед в трехмерном пространстве - это призма, все стороны которой являются параллелограммами. Соответственно, она может иметь только три пары параллельных параллелограммов или шесть граней.

Чтобы визуализировать параллелепипед, представьте себе обычный стандартный кирпич. Кирпич - хороший пример прямоугольного параллелепипеда, который может представить себе даже ребенок. Другими примерами могут послужить многоэтажные панельные дома, шкафы, контейнеры для хранения пищевых продуктов соответствующей формы и т.д.

Разновидности фигуры

Существует всего две разновидности параллелепипедов:

  1. Прямоугольные, все боковые грани которых находятся под углом 90 о к основанию и являются прямоугольниками.
  2. Наклонные, боковые грани которых расположены под определенным углом к основанию.

На какие элементы можно разделить эту фигуру?

  • Как и в любой другой геометрической фигуре, в параллелепипеде любые 2 грани с общим ребром зовутся смежными, а те, что его не имеют, являются параллельными (исходя из свойства параллелограмма, имеющего попарно параллельные противоположные стороны).
  • Вершины параллелепипеда, не лежащие на одной грани, зовутся противоположными.
  • Отрезок, соединяющий такие вершины, является диагональю.
  • Длины трех ребер прямоугольного параллелепипеда, соединяющихся в одной вершине, являются его измерениями (а именно, его длиной, шириной и высотой).

Свойства фигуры

  1. Он всегда построен симметрично по отношению к середине диагонали.
  2. Точка пересечения всех диагоналей делит каждую диагональ на два равных отрезка.
  3. Противолежащие грани равные по длине и лежат на параллельных прямых.
  4. Если сложить квадраты всех измерений параллелепипеда, полученное значение будет равно квадрату длины диагонали.

Расчетные формулы

Формулы для каждого частного случая параллелепипеда будут свои.

Для произвольного параллелепипеда верно утверждение, что его объем равен абсолютной величине тройного скалярного произведения векторов трех сторон, исходящих из одной вершины. Однако формулы для вычисления объема произвольного параллелепипеда не существует.

Для прямоугольного параллелепипеда действуют следующие формулы:

  • V=a*b*c;
  • Sб=2*c*(a+b);
  • Sп=2*(a*b+b*c+a*c).
  • V - объем фигуры;
  • Sб - площадь боковой поверхности;
  • Sп - площадь полной поверхности;
  • a - длина;
  • b - ширина;
  • c - высота.

Еще одним частным случаем параллелепипеда, в котором все стороны - квадраты, является куб. Если любую из сторон квадрата обозначить буквой a, то для площади поверхности и объема данной фигуры можно будет использовать следующие формулы:

  • S=6*a*2;
  • V=3*а.

Последняя рассматриваемая нами разновидность параллелепипеда - прямой параллелепипед. В чем разница между прямым параллелепипедом и прямоугольным параллелепипедом, спросите вы. Дело в том, что основанием прямоугольного параллелепипеда может быть любой параллелограмм, а основанием прямого - только прямоугольник. Если обозначить периметр основания, равный сумме длин всех сторон, как Po, а высоту обозначить буквой h, мы имеем право воспользоваться следующими формулами для вычисления объема и площадей полной и боковой поверхностей.

Параллелепипедом называется призма, основаниями которой служат параллелограммы. При этом все грани будут параллелограммами .
Каждый параллелепипед можно рассматривать как призму тремя различными способами, так как за основания можно принять каждые две противоположные грани (на черт. 5 грани ABCD и A"B"C"D", или АВА"В" и CDC"D", или ВСВ"С" и ADA"D").
Рассматриваемое тело имеет двенадцать рёбер, по четыре равных и параллельных между собой.
Теорема 3 . Диагонали параллелепипеда пересекаются в одной точке, совпадающей с серединой каждой из них.
Параллелепипед ABCDA"B"C"D" (черт. 5) имеет четыре диагонали AC", BD", CA", DB". Мы должны доказать, что середины двух каких-либо из них, например АС и BD", совпадают. Это следует из того, что фигура ABC"D", имеющая равные и параллельные стороны АВ и C"D", есть параллелограмм.
Определение 7 . Прямым параллелепипедом называется параллелепипед, являющийся одновременно и прямой призмой, т. е. параллелепипед, боковые рёбра которого перпендикулярны к плоскости основания.
Определение 8 . Прямоугольным параллелепипедом называется прямой параллелепипед, основанием которого служит прямоугольник. При этом все его грани будут прямоугольниками.
Прямоугольный параллелепипед представляет собой прямую призму, какую бы из его граней мы ни приняли за основание, так как каждое его ребро перпендикулярно к рёбрам, выходящим с ним из одной вершины, и будет, следовательно, перпендикулярно и к плоскостям граней, определяемых этими рёбрами. В противоположность этому прямой, но не прямоугольный, параллелепипед можно рассматривать как прямую призму только одним способом.
Определение 9 . Длины трёх рёбер прямоугольного параллелепипеда, из которых никакие два не параллельны между собой (например трёх рёбер, выходящих из одной вершины), называются его измерениями. Два |прямоугольных параллелепипеда, имеющих соответственно равные изме- рения, очевидно, равны между собой.
Определение 10 .Кубом называется прямоугольный параллелепипед, все три измерения которого равны между собой, так что все его грани - квадраты. Два куба, рёбра которых равны между собой, равны.
Определение 11 . Наклонный параллелепипед, у которого все рёбра равны между собой и углы всех граней равны или пополнительны, называется ромбоэдром.
Все грани ромбоэдра - равные ромбы. (Форму ромбоэдра имеют некоторые кристаллы, имеющие большое значение, например кристаллы исландского шпата.) В ромбоэдре можно найти такую вершину (и даже две противололожные вершины), что все прилежащие к ней углы равны между собой.
Теорема 4 . Диагонали прямоугольного параллелепипеда равны между собой. Квадрат диагонали равен сумме квадратов трёх измерений.
В прямоугольном параллелепипеде ABCDA"B"C"D" (черт. 6) диагонали АС" и BD" равны, так как четырёхугольник ABC"D" - прямоугольник (прямая АВ перпендикулярна к плоскости ВСВ"С", в которой лежит ВС").
Кроме того, AC" 2 =BD" 2 = AB2+AD" 2 на основании теоремы о квадрате гипотенузы. Но на основании той же теоремы AD" 2 = AA" 2 + +A"D" 2 ; отсюда имеем:
АС" 2 = АВ 2 + АА" 2 +A"D" 2 =АВ 2 + AA" 2 + AD 2 .



Понравилась статья? Поделитесь с друзьями!