Изучение фотоэффекта. Квантовые свойства света

Введение

1. История открытия фотоэффекта

2. Законы Столетова

3. Уравнение Эйнштейна

4. Внутренний фотоэффект

5. Применение явления фотоэффекта

Список литературы


Введение

Многочисленные оптические явления непротиворечиво объясняли, исходя из представлений о волновой природе света. Однако в конце XIX – начале XX в. были открыты и изучены такие явления, как фотоэффект, рентгеновское излучение, эффект Комптона, излучение атомов и молекул, тепловое излучение и другие, объяснение которых с волновой точки зрения оказалось невозможным. Объяснение новых экспериментальных фактов было получено на основе корпускулярных представлений о природе света. Возникла парадоксальная ситуация, связанная с применением совершенно противоположных физических моделей волны и частицы для объяснения оптических явлений. В одних явлениях свет проявлял волновые свойства, в других – корпускулярные.

Среди разнообразных явлений, в которых проявляется воздействие света на вещество, важное место занимает фотоэлектрический эффект , то есть испускание электронов веществом под действием света. Анализ этого явления привел к представлению о световых квантах и сыграл чрезвычайно важную роль в развитии современных теоретических представлений. Вместе с тем фотоэлектрический эффект используется в фотоэлементах получивших исключительно широкое применение в разнообразнейших областях науки и техники и обещающих еще более богатые перспективы.

1. История открытия фотоэффекта

Открытие фотоэффекта следует отнести к 1887 г., когда Герц обнаружил, что освещение ультрафиолетовым светом электродов искрового промежутка, находящегося под напряжением, облегчает проскакивание искры между ними.

Явление, обнаруженное Герцом, можно наблюдать на следующем легко осуществимом опыте (рис. 1).

Величина искрового промежутка F подбирается таким образом, что в схеме, состоящей из трансформатора Т и конденсатора С, искра проскакивает с трудом (один – два раза в минуту). Если осветить электроды F, сделанные из чистого цинка, светом ртутной лампы Hg, то разряд конденсатора значительно облегчается: искра начинает проскакивать Рис. 1. Схема опыта Герца.

Фотоэффект был объяснён в 1905 году Альбертом Эйнштейном (за что в 1921 году он получил Нобелевскую премию) на основе гипотезы Макса Планка о квантовой природе света. В работе Эйнштейна содержалась важная новая гипотеза – если Планк предположил, что свет излучается только квантованными порциями, то Эйнштейн уже считал, что свет и существует только в виде квантовых порций. Из представления о свете как о частицах (фотонах) немедленно следует формула Эйнштейна для фотоэффекта:

, – кинетическая энергия вылетающего электрона, – работа выхода для данного вещества, – частота падающего света, – постоянная Планка, которая оказалась ровно той же, что и в формуле Планка для излучения абсолютно чёрного тела.

Из этой формулы следует существование красной границы фотоэффекта. Таким образом, исследования фотоэффекта были одними из самых первых квантово – механических исследований.

2. Законы Столетова

Впервые (1888–1890), подробно анализируя явление фотоэффекта, русский физик А.Г. Столетов получил принципиально важные результаты. В отличие от предыдущих исследователей он брал малую разность потенциалов между электродами. Схема опыта Столетова представлена на рис. 2.

Два электрода (один в виде сетки, другой – плоский), находящиеся в вакууме, присоединены к батарее. Включенный в цепь амперметр служит для измерения возникающей силы тока. Облучая катод светом различных длин волн, Столетов пришел к выводу, что наиболее эффективное действие оказывают ультрафиолетовые лучи. Кроме того, было установлено, что сила тока, возникающего под действием света, прямо пропорциональна его интенсивности.

В 1898 г. Ленард и Томсон методом отклонения зарядов в электрическом и магнитном полях определили удельный заряд заряженных частиц, вырываемых Рис. 2. Схема опыта Столетова.

светом из катода, и получили выражение

СГСЕ ед. з/г, совпадающее с известным удельным зарядом электрона. Отсюда следовало, что под действием света происходит вырывание электронов из вещества катода.

Путем обобщения полученных результатов были установлены следующие закономерности фотоэффекта:

1. При неизменном спектральном составе света сила фототока насыщения прямо пропорциональна падающему на катод световому потоку.

2. Начальная кинетическая энергия вырванных светом электронов линейно растет с ростом частоты света и не зависит от его интенсивности.

3. Фотоэффект не возникает, если частота света меньше некоторой характерной для каждого металла величины

, называемой красной границей.

Первую закономерность фотоэффекта, а также возникновение самого фотоэффекта легко объяснить, исходя из законов классической физики. Действительно, световое поле, воздействуя на электроны внутри металла, возбуждает их колебания. Амплитуда вынужденных колебаний может достичь такого значения, при котором электроны покидают металл; тогда и наблюдается фотоэффект.

Ввиду того, что согласно классической теории интенсивность света прямо пропорциональна квадрату электрического вектора, число вырванных электронов растет с увеличением интенсивности света.

Вторая и третья закономерности фотоэффекта законами классической физики не объясняются.

Изучая зависимость фототока (рис. 3), возникающего при облучении металла потоком монохроматического света, от разности потенциалов между электродами (такая зависимость обычно называется вольт – амперной характеристикой фототока), установили, что: 1) фототок возникает не только при

, но и при ; 2) фототок отличен от нуля до строго определенного для данного металла отрицательного значения разности потенциалов , так называемого задерживающего потенциала; 3) величина запирающего (задерживающего) потенциала не зависит от интенсивности падающего света; 4) фототок растет с уменьшением абсолютного значения задерживающего потенциала; 5) величина фототока растет с ростом и с какого-то определенного значения фототок (так называемый ток насыщения) становится постоянным; 6) величина тока насыщения растет с увеличением интенсивности падающего света; 7) величина задерживающего Рис. 3. Характеристика

потенциала зависит от частоты падающего света; фототока.

8) скорость вырванных под действием света электронов не зависит от интенсивности света, а зависит только от его частоты.


3. Уравнение Эйнштейна

Явление фотоэффекта и все его закономерности хорошо объясняются с помощью квантовой теории света, что подтверждает квантовую природу света.

Как уже было отмечено, Эйнштейн (1905 г.), развивая квантовую теорию Планка, выдвинул идею, согласно которой не только излучение и поглощение, но и распространение света происходит порциями (квантами), энергия и импульс которых.

Фотоэлектрический эффект был открыт в 1887 году немецким физиком Г. Герцем и в 1888-1890 годах экспериментально исследован А. Г. Столетовым. Наиболее полное исследование явления фотоэффекта было выполнено Ф. Ленардом в 1900 г. К этому времени уже был открыт электрон (1897 г., Дж. Томсон), и стало ясно, что фотоэффект (или точнее - внешний фотоэффект) состоит в вырывании электронов из вещества под действием падающего на него света.

Схема экспериментальной установки для исследования фотоэффекта изображена на рис. 5.2.1.

В экспериментах использовался стеклянный вакуумный баллон с двумя металлическими электродами, поверхность которых была тщательно очищена. К электродам прикладывалось некоторое напряжение U , полярность которого можно было изменять с помощью двойного ключа. Один из электродов (катод K) через кварцевое окошко освещался монохроматическим светом некоторой длины волны λ. При неизменном световом потоке снималась зависимость силы фототока I от приложенного напряжения. На рис. 5.2.2 изображены типичные кривые такой зависимости, полученные при двух значениях интенсивности светового потока, падающего на катод.

Кривые показывают, что при достаточно больших положительных напряжениях на аноде A фототок достигает насыщения, так как все электроны, вырванные светом из катода, достигают анода. Тщательные измерения показали, что ток насыщения I н прямо пропорционален интенсивности падающего света. Когда напряжение на аноде отрицательно, электрическое поле между катодом и анодом тормозит электроны. Анода могут достичь только те электроны, кинетическая энергия которых превышает |eU |. Если напряжение на аноде меньше, чем -U з, фототок прекращается. Измеряя U з, можно определить максимальную кинетическую энергию фотоэлектронов:

К удивлению ученых, величина U з оказалась независящей от интенсивности падающего светового потока. Тщательные измерения показали, что запирающий потенциал линейно возрастает с увеличением частоты ν света (рис. 5.2.3).

Многочисленными экспериментаторами были установлены следующие основные закономерности фотоэффекта:

1. Максимальная кинетическая энергия фотоэлектронов линейно возрастает с увеличением частоты света ν и не зависит от его интенсивности.

2. Для каждого вещества существует так называемая красная граница фотоэффекта , т. е. наименьшая частота ν min , при которой еще возможен внешний фотоэффект.

3. Число фотоэлектронов, вырываемых светом из катода за 1 с, прямо пропорционально интенсивности света.

4. Фотоэффект практически безынерционен, фототок возникает мгновенно после начала освещения катода при условии, что частота света ν > ν min .

Все эти закономерности фотоэффекта в корне противоречили представлениям классической физики о взаимодействии света с веществом. Согласно волновым представлениям при взаимодействии с электромагнитной световой волной электрон должен был бы постепенно накапливать энергию, и потребовалось бы значительное время, зависящее от интенсивности света, чтобы электрон накопил достаточно энергии для того, чтобы вылететь из катода. Как показывают расчеты, это время должно было бы исчисляться минутами или часами. Однако, опыт показывает, что фотоэлектроны появляются немедленно после начала освещения катода. В этой модели также было невозможно понять существование красной границы фотоэффекта. Волновая теория света не могла объяснить независимость энергии фотоэлектронов от интенсивности светового потока и пропорциональность максимальной кинетической энергии частоте света.

Таким образом, электромагнитная теория света оказалась неспособной объяснить эти закономерности.

Выход был найден А. Эйнштейном в 1905 г. Теоретическое объяснение наблюдаемых закономерностей фотоэффекта было дано Эйнштейном на основе гипотезы М. Планка о том, что свет излучается и поглощается определенными порциями, причем энергия каждой такой порции определяется формулой E = h ν, где h - постоянная Планка. Эйнштейн сделал следующий шаг в развитии квантовых представлений. Он пришел к выводу, что свет имеет прерывистую (дискретную) структуру . Электромагнитная волна состоит из отдельных порций - квантов , впоследствии названных фотонами . При взаимодействии с веществом фотон целиком передает всю свою энергию h ν одному электрону. Часть этой энергии электрон может рассеять при столкновениях с атомами вещества. Кроме того, часть энергии электрона затрачивается на преодоление потенциального барьера на границе металл-вакуум. Для этого электрон должен совершить работу выхода A , зависящую от свойств материала катода. Наибольшая кинетическая энергия, которую может иметь вылетевший из катода фотоэлектрон, определяется законом сохранения энергии:

Эту формулу принято называть уравнением Эйнштейна для фотоэффекта .

С помощью уравнения Эйнштейна можно объяснить все закономерности внешнего фотоэффекта. Из уравнения Эйнштейна следуют линейная зависимость максимальной кинетической энергии от частоты и независимость от интенсивности света, существование красной границы, безынерционность фотоэффекта. Общее число фотоэлектронов, покидающих за 1 с поверхность катода, должно быть пропорционально числу фотонов, падающих за то же время на поверхность. Из этого следует, что ток насыщения должен быть прямо пропорционален интенсивности светового потока.

Как следует из уравнения Эйнштейна, тангенс угла наклона прямой, выражающей зависимость запирающего потенциала U з от частоты ν (рис. 5.2.3), равен отношению постоянной Планка h к заряду электрона e :

Это позволяет экспериментально определить значение постоянной Планка. Такие измерения были выполнены в 1914 г. Р. Милликеном и дали хорошее согласие со значением, найденным Планком. Эти измерения позволили также определить работу выхода A :

где c - скорость света, λ кр - длина волны, соответствующая красной границе фотоэффекта. У большинства металлов работа выхода A составляет несколько электрон-вольт (1 эВ = 1,602·10 -19 Дж). В квантовой физике электрон-вольт часто используется в качестве энергетической единицы измерения. Значение постоянной Планка, выраженное в электрон-вольтах в секунду, равно

Среди металлов наименьшей работой выхода обладают щелочные элементы. Например, у натрия A = 1,9 эВ, что соответствует красной границе фотоэффекта λ кр ≈ 680 нм. Поэтому соединения щелочных металлов используют для создания катодов в фотоэлементах , предназначенных для регистрации видимого света.

Итак, законы фотоэффекта свидетельствуют, что свет при испускании и поглощении ведет себя подобно потоку частиц, получивших название фотонов или световых квантов .

Энергия фотонов равна

следует, что фотон обладает импульсом

Таким образом, учение о свете, совершив виток длительностью в два столетия, вновь возвратилось к представлениям о световых частицах - корпускулах.

Но это не был механический возврат к корпускулярной теории Ньютона. В начале XX века стало ясно, что свет обладает двойственной природой. При распространении света проявляются его волновые свойства (интерференция, дифракция, поляризация), а при взаимодействии с веществом - корпускулярные (фотоэффект). Эта двойственная природа света получила название корпускулярно-волнового дуализма , о которой говорил еще Ломоносов. Позже двойственная природа была открыта у электронов и других элементарных частиц. Классическая физика не может дать наглядной модели сочетания волновых и корпускулярных свойств у микрообъектов. Движением микрообъектов управляют не законы классической механики Ньютона, а законы квантовой механики. Теория излучения абсолютно черного тела, развитая М. Планком, и квантовая теория фотоэлектрического эффекта Эйнштейна лежат в основании этой современной науки.

Выска-зал гипотезу: свет излучается и поглощается отдель-ными порциями — квантами (или фотонами). Энер-гия каждого фотона определяется формулой Е = hν , где h — постоянная Планка, равная 6,63 . 10 -34 Дж. с, ν — частота света. Гипотеза Планка объяснила мно-гие явления: в частности, явление фотоэффекта, от-крытого в 1887 г. немецким ученым Генрихом Гер-цем и изученного экспериментально русским ученым А. Г. Столетовым .

Фотоэффект это явление испускания элек-тронов веществом под действием света.

В результате исследований были установлены три закона фотоэффекта:

1. Сила тока насыщения прямо пропорцио-нальна интенсивности светового излучения, па-дающего на поверхность тела.

2. Максимальная кинетическая энергия фото-электронов линейно возрастает с частотой света и не за-висит от его интенсивности.

3. Если частота света меньше некоторой опре-деленной для данного вещества минимальной часто-ты, то фотоэффект не происходит.

Зависимость фототока от напряжения показа-на на рисунке 36.

Теорию фотоэффекта создал немецкий ученый А. Эйнштейн в 1905 г. В основе теории Эйнштейна лежит понятие работы выхода электронов из металла и понятие о квантовом излучении света. По теории Эйнштейна фотоэффект имеет следующее объясне-ние: поглощая квант света, электрон приобретает энергию hv. При вылете из металла энергия каждого электрона уменьшается на определенную величину, которую называют работой выхода (А вых). Работа выхода — это работа, которую необходимо затратить, чтобы удалить электрон из металла. Максимальная энергия электронов после вылета (если нет других потерь) имеет вид: mv 2 /2 = hv — А вых, Это уравне-ние носит название уравнения Эйнштейна .

Если hν < А вых то фотоэффект не происходит. Значит, красная граница фотоэффекта равна ν min = А вых /h

Приборы, в основе принципа действия кото-рых лежит явление фотоэффекта, называют фото-элементами. Простейшим таким прибором является вакуумный фотоэлемент. Недостатками такого фото-элемента являются: слабый ток, малая чувствительность к длинноволновому излучению, сложность в изготовлении, невозможность использования в цепях переменного тока. Применяется в фотометрии для измерения силы света, яркости, освещенности, в ки-но для воспроизведения звука, в фототелеграфах и фототелефонах, в управлении производственными процессами.

Существуют полупроводниковые фотоэлемен-ты, в которых под действием света происходит изме-нение концентрации носителей тока.Они использу-ются при автоматическом управлении электрически-ми цепями (например, в турникетах метро), в цепях переменного тока, в качестве невозобновляемых ис-точников тока в часах, микрокалькуляторах, прохо-дят испытания первые солнечные автомобили, ис-пользуются в солнечных батареях на искусственных спутниках Земли, межпланетных и орбитальных ав-томатических станциях.


С явлением фотоэффекта связаны фотохимиче-ские процессы, протекающие под действием света в фотографических материалах.

Темы кодификатора ЕГЭ : гипотеза М.Планка о квантах, фотоэффект, опыты А.Г.Столетова, уравнение Эйнштейна для фотоэффекта.

Фотоэффект - это выбивание электронов из вещества падающим светом. Явление фотоэффекта было открыто Генрихом Герцем в 1887 году в ходе его знаменитых экспериментов по излучению электромагнитных волн.
Напомним, что Герц использовал специальный разрядник (вибратор Герца) - разрезанный пополам стержень с парой металлических шариков на концах разреза. На стержень подавалось высокое напряжение, и в промежутке между шариками проскакивала искра. Так вот, Герц обнаружил, что при облучении отрицательно заряженного шарика ультрафиолетовым светом проскакивание искры облегчалось.

Герц, однако, был поглощён исследованием электромагнитных волн и не принял данный факт во внимание. Год спустя фотоэффект был независимо открыт русским физиком Александром Григорьевичем Столетовым. Тщательные экспериментальные исследования, проведённые Столетовым в течение двух лет, позволили сформулировать основные законы фотоэффекта.

Опыты Столетова

В своих знаменитых экспериментах Столетов использовал фотоэлемент собственной конструкции (Фотоэлементом называется любое устройство, позволяющее наблюдать фотоэффект). Его схема изображена на рис. 1 .

Рис. 1. Фотоэлемент Столетова

В стеклянную колбу, из которой выкачан воздух (чтобы не мешать лететь электронам), введены два электрода: цинковый катод и анод . На катод и анод подаётся напряжение, величину которого можно менять с помощью потенциометра и измерять вольтметром .

Сейчас на катод подан «минус», а на анод - «плюс», но можно сделать и наоборот (и эта перемена знака - существенная часть опытов Столетова). Напряжению на электродах приписывается тот знак, который подан на анод (Поэтому поданное на электроды напряжение часто называют анодным напряжением ). В данном случае, например, напряжение положительно.

Катод освещается ультрафиолетовыми лучами УФ через специальное кварцевое окошко, сделанное в колбе (стекло поглощает ультрафиолет, а кварц пропускает). Ультрафиолетовое излучение выбивает с катода электроны , которые разгоняются напряжением и летят на анод. Включённый в цепь миллиамперметр регистрирует электрический ток. Этот ток называется фототоком , а выбитые электроны, его создающие, называются фотоэлектронами .

В опытах Столетова можно независимо варьировать три величины: анодное напряжение, интенсивность света и его частоту.

Зависимость фототока от напряжения

Меняя величину и знак анодного напряжения, можно проследить, как меняется фототок. График этой зависимости, называемый характеристикой фотоэлемента , представлен на рис. 2 .

Рис. 2. Характеристика фотоэлемента

Давайте обсудим ход полученной кривой. Прежде всего заметим, что электроны вылетают из катода с различными скоростями и в разных направлениях; максимальную скорость, которую имеют фотоэлектроны в условиях опыта, обозначим .

Если напряжение отрицательно и велико по модулю, то фототок отсутствует. Это легко понять: электрическое поле, действующее на электроны со стороны катода и анода, является тормозящим (на катоде «плюс», на аноде «минус») и обладает столь большой величиной, что электроны не в состоянии долететь до анода. Начального запаса кинетической энергии не хватает - электроны теряют свою скорость на подступах к аноду и разворачиваются обратно на катод. Максимальная кинетическая энергия вылетевших электронов оказывается меньше, чем модуль работы поля при перемещении электрона с катода на анод:

Здесь кг - масса электрона, Кл - его заряд.

Будем постепенно увеличивать напряжение, т.е. двигаться слева направо вдоль оси из далёких отрицательных значений.

Поначалу тока по-прежнему нет, но точка разворота электронов становится всё ближе к аноду. Наконец, при достижении напряжения , которое называется задерживающим напряжением , электроны разворачиваются назад в момент достижения анода (иначе говоря, электроны прибывают на анод с нулевой скоростью). Имеем:

(1)

Таким образом, величина задерживающего напряжения позволяет определить максимальную кинетическую энергию фотоэлектронов .

При небольшом превышении задерживающего напряжения появляется слабый фототок. Его формируют электроны, вылетевшие с максимальной кинетической энергией почти точно вдоль оси колбы (т.е. почти перпендикулярно катоду): теперь электронам хватает этой энергии, чтобы добраться до анода с ненулевой скоростью и замкнуть цепь. Остальные электроны, которые имеют меньшие скорости или полетели в сторону от анода, на анод не попадают.

При повышении напряжения фототок увеличивается. Анода достигает большее количество электронов, вылетающих из катода под всё большими углами к оси колбы. Обратите внимание, что фототок присутствует при нулевом напряжении!

Когда напряжение выходит в область положительных значений, фототок продолжает возрастать. Оно и понятно: электрическое поле теперь разгоняет электроны, поэтому всё большее их число получают шанс оказаться на аноде. Однако достигают анода пока ещё не все фотоэлектроны. Например, электрон, вылетевший с максимальной скоростью перпендикулярно оси колбы (т.е. вдоль катода), хоть и развернётся полем в нужном направлении, но не настолько сильно, чтобы попасть на анод.

Наконец, при достаточно больших положительных значениях напряжения ток достигает своей предельной величины , называемой током насыщения , и дальше возрастать перестаёт.

Почему? Дело в том, что напряжение, ускоряющее электроны, становится настолько велико, что анод захватывает вообще все электроны, выбитые из катода - в каком бы направлении и с какими бы скоростями они не начинали движение. Стало быть, дальнейших возможностей увеличиваться у фототока попросту нет - ресурс, так сказать, исчерпан.

Законы фотоэффекта

Величина тока насыщения - это, по существу, количество электронов, выбиваемых из катода за одну секунду. Будем менять интенсивность света, не трогая частоту. Опыт показывает, что ток насыщения меняется пропорционально интенсивности света.

Первый закон фотоэффекта . Число электронов, выбиваемых из катода за секунду, пропорционально интенсивности падающего на катод излучения (при его неизменной частоте) .

Ничего неожиданного в этом нет: чем больше энергии несёт излучение, тем ощутимее наблюдаемый результат. Загадки начинаются дальше.

А именно, будем изучать зависимость максимальной кинетической энергии фотоэлектронов от частоты и интенсивности падающего света. Сделать это несложно: ведь в силу формулы (1) нахождение максимальной кинетической энергии выбитых электронов фактически сводится к измерению задерживающего напряжения.

Сначала меняем частоту излучения при фиксированной интенсивности. Получается такой график (рис. 3 ):

Рис. 3. Зависимость энергии фотоэлектронов от частоты света

Как видим, существует некоторая частота , называемая красной границей фотоэффекта , разделяющая две принципиально разные области графика. Если , то фотоэффекта нет.

Если же class="tex" alt="\nu > \nu_0"> , то максимальная кинетическая энергия фотоэлектронов линейно растёт с частотой.

Теперь, наоборот, фиксируем частоту и меняем интенсивность света. Если при этом , то фотоэффект не возникает, какова бы ни была интенсивность! Не менее удивительный факт обнаруживается и при class="tex" alt="\nu > \nu_0"> : максимальная кинетическая энергия фотоэлектронов от интенсивности света не зависит.

Все эти факты нашли отражение во втором и третьем законах фотоэффекта.

Второй закон фотоэффекта . Максимальная кинетическая энергия фотоэлектронов линейно возрастает с частотой света и не зависит от его интенсивности .

Третий закон фотоэффекта . Для каждого вещества существует красная граница фотоэффекта - наименьшая частота света , при которой фотоэффект ещё возможен. При фотоэффект не наблюдается ни при какой интенсивности света .

Трудности классического объяснения фотоэффекта

Как можно было бы объяснить фотоэффект с точки зрения классической электродинамики и волновых представлений о свете?

Известно, что для вырывания электрона из вещества требуется сообщить ему некоторую энергию , называемую работой выхода электрона. В случае свободного электрона в металле это работа по преодолению поля положительных ионов кристаллической решётки, удерживающего электрон на границе металла. В случае электрона, находящегося в атоме, работа выхода есть работа по разрыву связи электрона с ядром.

В переменном электрическом поле световой волны электрон начинает совершать колебания.

И если энергия колебаний превысит работу выхода, то электрон будет вырван из вещества.

Однако в рамках таких представлений невозможно понять второй и третий законы фотоэффекта . Действительно, почему кинетическая энергия выбитых электронов не зависит от интенсивности излучения? Ведь чем больше интенсивность, тем больше напряжённость электрического поля в электромагнитной волне, тем больше сила, действующая на электрон, тем больше энергия его колебаний и с тем большей кинетической энергией электрон вылетит из катода. Логично? Логично. Но эксперимент показывает иное.

Далее, откуда берётся красная граница фотоэффекта? Чем «провинились» низкие частоты? Казалось бы, с ростом интенсивности света растёт и сила, действующая на электроны; поэтому даже при низкой частоте света электрон рано или поздно будет вырван из вещества - когда интенсивность достигнет достаточно большого значения. Однако красная граница ставит жёсткий запрет на вылет электронов при низких частотах падающего излучения.

Кроме того, неясна безынерционность фотоэффекта. Именно, при освещении катода излучением сколь угодно слабой интенсивности (с частотой выше красной границы) фотоэффект начинается мгновенно - в момент включения освещения. Между тем, казалось бы, электронам требуется некоторое время для «расшатывания» связей, удерживающих их в веществе, и это время «раскачки» должно быть тем больше, чем слабее падающий свет. Аналогия такая: чем слабее вы толкаете качели, тем дольше придётся их раскачивать до заданной амплитуды.

Выглядит опять-таки логично, но опыт - единственный критерий истины в физике! - этим доводам противоречит.

Так на рубеже XIX и XX столетий в физике возникла тупиковая ситуация: электродинамика, предсказавшая существование электромагнитных волн и великолепно работающая в диапазоне радиоволн, отказалась объяснять явление фотоэффекта.

Выход из этого тупика был найден Альбертом Эйнштейном в 1905 году. Он нашёл простое уравнение, описывающее фотоэффект. Все три закона фотоэффекта оказались следствиями уравнения Эйнштейна.

Главная заслуга Эйнштейна состояла в отказе от попыток истолковать фотоэффект с позиций классической электродинамики. Эйнштейн привлёк к делу смелую гипотезу о квантах, высказанную Максом Планком пятью годами ранее.

Гипотеза Планка о квантах

Классическая электродинамика отказалась работать не только в области фотоэффекта. Она также дала серьёзный сбой, когда её попытались использовать для описания излучения нагретого тела (так называемого теплового излучения).

Суть проблемы состояла в том, что простая и естественная электродинамическая модель теплового излучения приводила к бессмысленному выводу: любое нагретое тело, непрерывно излучая, должно постепенно потерять всю свою энергию и остыть до абсолютного нуля. Как мы прекрасно знаем, ничего подобного не наблюдается.

В ходе решения этой проблемы Макс Планк высказал свою знаменитую гипотезу.

Гипотеза о квантах . Электромагнитная энергия излучается и поглощается не непрерывно, а отдельными неделимыми порциями - квантами. Энергия кванта пропорциональна частоте излучения :

(2)

Cоотношение (2) называется формулой Планка , а коэффициент пропорциональности - постоянной Планка .

Принятие этой гипотезы позволило Планку построить теорию теплового излучения, прекрасно согласующуюся с экспериментом. Располагая известными из опыта спектрами теплового излучения, Планк вычислил значение своей постоянной:

Дж·с. (3)

Успешность гипотезы Планка наводила на мысль, что законы классической физики неприменимы к малым частицам вроде атомов или электронов, а также к явлениям взаимодействия света и вещества. Подтверждением данной мысли как раз и послужило явление фотоэффекта.

Уравнение Эйнштейна для фотоэффекта

Гипотеза Планка говорила о дискретности излучения и поглощения электромагнитных волн, то есть о прерывистом характере взаимодействия света с веществом. При этом Планк считал, что распространение света - это непрерывный процесс, происходящий в полном соответствии с законами классической электродинамики.

Эйнштейн пошёл ещё дальше: он предположил, что свет в принципе обладает прерывистой структурой: не только излучение и поглощение, но также и распространение света происходит отдельными порциями - квантами, обладающими энергией .

Планк рассматривал свою гипотезу лишь как математический трюк и не решился опровергнуть электродинамику применительно к микромиру. Физической реальностью кванты стали благодаря Эйнштейну.

Кванты электромагнитного излучения (в частности, кванты света) стали впоследствии называться фотонами . Таким образом, свет состоит из особых частиц - фотонов, движущихся в вакууме со скоростью .

Каждый фотон монохроматического света, имеющего частоту , несёт энергию .

Фотоны могут обмениваться энергией и импульсом с частицами вещества (об импульсе фотона речь пойдёт в следующем листке); в таком случае мы говорим о столкновении фотона и частицы. В частности, происходит столкновение фотонов с электронами металла катода.

Поглощение света - это поглощение фотонов, то есть неупругое столкновение фотонов с частицами (атомами, электронами). Поглощаясь при столкновении с электроном, фотон передаёт ему свою энергию. В результате электрон получает кинетическую энергию мгновенно, а не постепенно, и именно этим объясняется безынерционность фотоэффекта.

Уравнение Эйнштейна для фотоэффекта есть не что иное, как закон сохранения энергии. На что идёт энергия фотона ? при его неупругом столкновении с электроном? Она расходуется на совершение работы выхода по извлечению электрона из вещества и на придание электрону кинетической энергии :

(4)

Слагаемое оказывается максимальной кинетической энергией фотоэлектронов. Почему максимальной? Этот вопрос требует небольшого пояснения.

Электроны в металле могут быть свободными и связанными. Свободные электроны «гуляют» по всему металлу, связанные электроны «сидят» внутри своих атомов. Кроме того, электрон может находиться как вблизи поверхности металла, так и в его глубине.

Ясно, что максимальная кинетическая энергия фотоэлектрона получится в том случае, когда фотон попадёт на свободный электрон в поверхностном слое металла - тогда для выбивания электрона достаточно одной лишь работы выхода.

Во всех других случаях придётся затрачивать дополнительную энергию - на вырывание связанного электрона из атома или на «протаскивание» глубинного электрона к поверхности.

Эти лишние затраты приведут к тому, что кинетическая энергия вылетевшего электрона окажется меньше.

Замечательное по простоте и физической ясности уравнение (4) содержит в себе всю теорию фотоэффекта. Давайте посмотрим, какое объяснение получают законы фотоэффекта с точки зрения уравнения Эйнштейна.

1. Число выбиваемых электронов пропорционально числу поглощённых фотонов. С увеличением интенсивности света количество фотонов, падающих на катод за секунду, возрастает.

Стало быть, пропорционально возрастает число поглощённых фотонов и, соответственно, число выбитых за секунду электронов.

2. Выразим из формулы (4) кинетическую энергию:

Действительно, кинетическая энергия выбитых электронов линейно растёт с частотой и не зависит от интенсивности света.

Зависимость кинетической энергии от частоты имеет вид уравнения прямой, проходящей через точку . Этим полностью объясняется ход графика на рис. 3 .

3. Для того, чтобы начался фотоэффект, энергии фотона должно хватить как минимум на совершение работы выхода: . Наименьшая частота , определяемая равенством

как раз и будет красной границей фотоэффекта. Как видим, красная граница фотоэффекта определяется только работой выхода, т.е. зависит лишь от вещества облучаемой поверхности катода.

Если , то фотоэффекта не будет - сколько бы фотонов за секунду не падало на катод. Следовательно, интенсивность света роли не играет; главное - хватает ли отдельному фотону энергии, чтобы выбить электрон.

Уравнение Эйнштейна (4) даёт возможность экспериментального нахождения постоянной Планка. Для этого надо предварительно определить частоту излучения и работу выхода материала катода, а также измерить кинетическую энергию фотоэлектронов.

В ходе таких опытов было получено значение , в точности совпадающее с (3) . Такое совпадение результатов двух независимых экспериментов - на основе спектров теплового излучения и уравнения Эйнштейна для фотоэффекта - означало, что обнаружены совершенно новые «правила игры», по которым происходит взаимодействие света и вещества. В этой области классическая физика в лице механики Ньютона и электродинамики Максвелла уступает место квантовой физике - теории микромира, построение которой продолжается и сегодня.

Внутренний фотоэффект был открыт в 1873 году американцем У.Смитом и англичанином Дж.Мейем. То есть ранее, чем внешний фотоэффект.

Для наблюдения внутреннего фотоэффекта в школьных условиях можно воспользоваться фотодиодом (не путать со светодиодом) или старым транзистором, у которого аккуратно спилена металлическая крышечка, чтобы открыть доступ света к полупроводниковому кристаллу. Если его присоединить к выпрямителю и гальванометру, вы сможете наблюдать, как даже при дневном освещении проводимость кристалла резко возрастает. Такая проводимость называется фотопроводимостью.

Законы внутреннего фотоэффекта намного сложнее законов внешнего, и здесь мы не будем их рассматривать. Однако отметим, что они опираются на известные вам из химии понятия валентности, электронных уровней и др., и позволяют объяснить возникновение фотоэффекта в полупроводниках.

Внешний фотоэффект нашёл применение в технике ещё в первой половине XX века. Это, конечно же, голос прежде немого кинематографа. Фотоэлемент позволяет превратить звук, «сфотографированный» на киноплёнке, в слышимый. Свет обычной лампы проходил через звуковую дорожку киноплёнки, изменялся и попадал на фотоэлемент (см. фото). Чем больше света проходило через дорожку, тем громче был звук в динамике. В неживой природе внешний фотоэффект проявляется миллионы лет в планетарных масштабах. Мощное солнечное излучение, воздействуя на атомы и молекулы земной атмосферы, выбивает из них электроны, то есть ионизирует верхние слои атмосферы.

Внутренний фотоэффект в настоящее время в технике используется гораздо чаще внешнего. Например, он превращает свет в электрический ток в фотоэлементах и огромных солнечных батареях космических кораблей. Фотоэффект «работает» и в специальных светочувствительных приборах, таких как, фоторезисторы, фотодиоды, фототранзисторы. Благодаря этому можно считать детали на конвейере или производить автоматическое включение и выключение различных механизмов (маяки, уличное освещение, автоматическое открывание дверей и др.). Также благодаря внутреннему фотоэффекту можно преобразовывать изображение в электрические сигналы и передавать на расстояние (телевидение).

Наиболее крупномасштабное применение фотоэффекта сегодня – это уже построенные солнечные электростанции, а также проекты строительства новых таких станций мощностью до нескольких сотен мегаватт. По оценкам специалистов, в 2020 году до 20% мировой электроэнергии будет производиться за счет фотоэлектрического преобразования солнечной энергии на Земле и в космосе.


(C) 2012. Люкина Татьяна Витальевна (Кемеровская область, г.Ленинск-Кузнецкий)



Понравилась статья? Поделитесь с друзьями!