Как научиться решать задачи по физике: советы педагогов. Задачки по физике не решаются - откуда у проблемы ноги растут

Во-первых, соберитесь с духом, имейте в виду – чтобы научиться легко решать задачи вашего текущего уровня знаний и соображалки, потребуется время. Главное в решении задач по физике – это регулярность. Надо их делать каждый день.

2 шаг

Теперь по делу: сейчас напишу немного странную и очевидную фразу, не подумайте что я идиот. Что бы легко решать задачи определенного уровня сложности, вам надо научиться решать еще более сложные задачи. Приведу пример: есть школьные задачки, олимпиадные, задачи из ЕГЭ в части C и, наконец, самые сложные – задачи из задачника Иродова, на данный момент это самый сложный учебник.

Покупаете или скачиваете учебники за 10 и 11 класс по физике (“Классический курс” издательство просвещение), учебник Савельева “Курс физики.Механика.Молекулярная физика.”-это его первый том, и обязательно УЧЕБНИК Иродова, тоже первый том.

3 шаг

Полностью прочитываете 10 и 11 классы.
Покупаете или скачиваете задачники Чертова, Иродова и задачи из ЕГЭ.

4 шаг

Что ж, приступайте решать задач Чертова – задачник достаточно простой, только знай формулы, да подставляй. Проблем возникнуть не должно, порешайте задачи из кинематики, постарайтесь решить побольше, если вдруг не получается решить задачу, ищете в интернете решение, внимательно его читаете, важно понять принцип решения задачи. После этого вновь решаете эту же задачу, которую у вас не получилось решить, если вы действительно осознали как она решается, то решите её без проблем.

5 шаг

Ровным счетом то же самое с задачами из ЕГЭ. Теперь самая сложная часть – Иродов. Перед тем как открывать его задачник, обязательно почитайте Савельева, затем пособие самого Иродова. Далее откройте задачник Иродова и вперед, попробуйте в той же кинематике порешать задачи, начните с самой первой. Первая достаточно простая(она на фото). Свои ответы к первой задаче пишите в комментарии,если никто не решит правильно, напишу правильный ответ, если очень интересно каким образом она решается, пишите в личные сообщения-объясню.

6 шаг

Гарантирую, что как только вы научитесь решать большую часть задач из Иродова, любой другой задачник покажется вам ну очень простым!!!

Я приводил в качестве примера кинематику, ко всем остальным разделам это относится ровно в такой же степени.

Эта небольшая инструкция действует для задач любых разделов физики: динамики, кинематики, электродинамики и любых других. Кроме того, чтобы правильно решить задачу - нужно помнить о правилах оформления решения. Может случиться так, что преподаватель просто не поймет ваше решение. Нижеописанные правила помогут вам не запутаться в простых вещах при решении задач по физике.

1. Внимательно прочитайте условия вашей задачи по физике. Разберитесь, на какую тему задача, о чем, вообще, идет речь - о динамике изменения температуры, или о силе трения - в общем, какие физические явления и процессы рассматриваются в предложенном вам варианте. Помните, что каждое слово в условии играет важную роль!

2. Запишите краткие условия, это будет знакомое всем из школы «Дано». Его нужно записывать кратко: буква обозначения величины и ее значение из условия. Не забывайте про единицы измерения! Так же нужно помнить, что условие задачи по физике может содержать «скрытые» данные. Например, фраза «в котле кипит вода» означает, что нужно записать температуру кипения воды как исходные данные. То есть, в секции «Дано» написать tk = 100o C. Не забудьте и про то что надо найти. Эту неизвестную величину пишут в секции «Найти».

3. Помните про систему СИ! Часто бывает так, что в условии задачи указаны в других единицах измерения, нежели СИ. Это обычно приводит к ерунде в ответе, и мнении о неправильном решение - хотя оно то как раз оказывается верным!

4. Чертеж. Ряд задач невозможно решить без схематичного рисунка. К таким можно отнести задачи на движения - различные перемещения твердых тел, ускорения и наклонные плоскости с блоками и нитями. Вообще, рисунок помогает лучше понять суть задачи, физического процесса или явления. Часто они наталкивают на верное решение!
Таким образом, важный этап подготовки к решению завершен.

5. Пришло время для решения! Тут тоже есть несколько важных правил. Первое из них - перед любыми численными расчетами необходимо написать формулу. Кроме того, не забывайте писать все единицы измерения, чтобы не «потерять» что-нибудь в итоговом ответе.

6. Следует знать о подходах к решению. Первый вариант - решать задачу по действиям - вычисляя цифровой ответ для каждой формулы. Этот вариант не предпочтителен, и используется очень редко. Второй вариант - решение в общем виде - вывод окончательной формулы, а уже потом численный расчет.

7. Если нет совсем никаких идей, как подойти к решению - попробуйте начать с конца. Подумайте, как рассчитать величину, которую требуется найти, а затем посмотреть, чего не хватает для ее расчета. Часто этот подход помогает.

8. Не забудьте проверить ответ! Сначала исходя из простой логики - например, машина не может ехать с космической скоростью, а самолет весить пару граммов. Кроме того, обязательно укажите единицы измерения ответа.

На этом все, небольшая инструкция по решению физических задач завершена.
Конечно же, вам покажется, что это никак не поможет в решении - но спешим вас заверить, что только так можно научиться решать задачи по физике! Волшебной инструкции, по которой можно будет сходу и за 5 секунд решить любую задачу - увы - не существует.

Чтобы научить решать задачи,
надо их решать.
Д.Пойа

После введения цикличности в школьном курсе физики, возникла серьезная проблема: на изучение механики отводился один год, в данный момент одна четверть. В первые два года приходилось тратить на этот раздел все первое полугодие, что приводило к проблемам с изучением материала в конце учебного года.

В итоге решение проблемы было найдено в следующем виде:

  • единый подход к решению всех физических задач;
  • алгоритмы на типовые задачи.

Решение любой физической задачи может быть разбито на четыре этапа:

  1. На основе анализа физического процесса составляется система уравнений.
  2. Математическое решение системы уравнений. (Предварительно решить вопрос о совместности уравнений).
  3. Анализ полученных результатов с точки зрения физики процесса.
  4. Вычисления и оценка реальности результатов.

С другой стороны все задачи можно разделить на задачи двух типов:

  1. Тренировочные задачи. Условие такой задачи содержит все необходимые величины и четко сформулированный вопрос. Проблема решения такой задачи – проблема выполнения определенного алгоритма действий.
  2. Задачи, требующие анализа, результатом которого является разбиение условия на конечное число подзадач 1 типа. Уровень сложности такой задачи определяется соотношением между объемами аналитической и алгоритмической части.

Особое положение занимают «эвристические» задачи, решение которых не может быть сведено к выполнению конечного числа алгоритмов.

В данном материале мы будем рассматривать базовые алгоритмы раздела «Механика».

Решение тренировочных задач темы «Равноускоренное движение»

В идеале задачи этой темы должны решаться на основе только двух формул:

которая используется, если скорость тела в интересующий нас промежуток времени не изменяла своего направления. Решение задачи начинаться с задания начальных условий (Н.У.) движения (r, v, a при t = 0) и с выбора системы отсчета (если она не задана в условии задачи).

Но это в идеале. За один, два урока при данном подходе с проблемой не справиться, тем более что задача отягощается математическими проблемами при выводе формул и заданием Н.У.

Решим проблему с начальными условиями:

Пример 1. Мячик бросили вертикально вверх с высоты h 0 = 6 м со скоростью v 0 = 20 м/с. Определите, через сколько секунд мячик окажется на высоте h = 1 м.

Опустим начало решения и запишем закон движения в проекции на ось Oy:

Зачеркиванием введем Н.У. и при необходимости К.У.

в итоге получаем частный случай закона движения для нашей задачи:

Разрешить проблему времени позволяет алгоритм, в основе которого лежат шесть формул:

Формула №1 используется в редких случаях, если в условии задачи задается положение тела.

Формулу № 6 необходимо пробовать в первую очередь если выполняется условие . Для случая v 0 = 0 это очевидное следствие формулы №3. Для случая v = 0 требует вывода.


При краткой записи условия необходимо обратить особое внимание на скрытые условия, т.е. величины заданные вербально. На первых этапах достаточно при чтении условия делать остановки в трудных местах условия.

Рисунок необходим для определения знака ускорения через выбор системы координат и проекцию. Проще на этом этапе рисунок заменить комментарием: «разгон», «торможение» или «равноускоренное движение», «равнозамедленное движение». Но во многих методических источниках не рекомендуется использовать термин «равнозамедленное движение» т.к. он сужает границы применения термина «равноускоренное движение» и приводит к невозможности единого описания некоторых видов движения, например движения под действием силы тяжести. При дальнейшей работе возникают следующие проблемы: учащиеся делят движение под действием силы тяжести на два участка и не воспринимают его как единое целое, описываемое с точки зрения математики одним уравнением, т.е. данный подход не удается обобщить и тему приходится изучать с «нуля».

Анализ краткой записи условия проще объяснить на примере.

Пример 2. На пути 45 метров скорость тела изменилась от 10 м/с до 40 м/с. Определите ускорение тела.

Математическое решение. Не первоначальном этапе изучения физики много времени приходится уделять математической обработки результатов. В основном возникают следующие проблемы:

Мы обычно ругаем математиков за недостаточную подготовку, но некоторые действия, допустимые при решении задач по физике, недопустимы в общей математической практике. Например, с уравнениями можно производить те же действия, что и с числами: сложение, вычитание, умножение и деление. Операция деления ограничена условием – делитель не может быть нулевым, но с точки зрения физического смысла мы уверены, что функция не может быть нулевой или нули функции нам не нужны.

Пример 3.

быстрее, чем выразить и подставить.

Те же проблемы возникают и при решении квадратных уравнений. Часто до квадратного уравнения можно не доводить, теряя, отрицательные корни, не имеющие физического смысла. Т.е. с учетом физического смысла можно сильно сузить ОДЗ и упростить решение.

Пример 4. Определите внутреннее сопротивление источника тока, если при сопротивлении R 1 во внешней цепи выделяется такая же мощность, как и при сопротивлении R 2 .

т.к. P 1 = P 2 , следовательно

Анализ полученного результата включает в себя:

  • проверку размерности как проверку правильности полученной формулы;
  • анализ зависимости искомой величины от данных особенно при их критических значениях;
  • оценку реальности результата.

Вычисления значительно упрощаются при освоении инженерного калькулятора:

  • набора чисел в форме x × 10 n ;
  • вычисления прямых и обратных тригонометрических функций;
  • вычисления на калькуляторе без дополнительных записей в тетради.

В профильном классе в обязательном порядке проводится зачет, основным вопросом которого является доказательство формул №1–№6.

Алгоритм решения задач на применение законов Ньютона

Алгоритм II.

  • Краткая запись условия;
  • первичный рисунок;
  • Как движется тело? – рисуем скорость и ускорение;
  • С какими телами взаимодействует? – рисуем силы;
  • Если в условии задачи рассматривается вес тела:

Опора – «по 3 з. Ньютона Р = N»

Подвес – «по 3 з. Ньютона P = T»

Невесомость – «по 3 з. Ньютона P = 0 = T или Р = 0 = N»

  • Есть ли ускорение?

Да – «по 2 з. Ньютона »

Нет – «по 1 з. Ньютона »

  • Сколько на рисунке сил?
  • Запись векторная 1 или 2 з. Ньютона (расширенная).
  • Выбор СО (системы отсчета).
  • Если есть силы не параллельные осям – рисунок их проекций
  • Запись законов Ньютона в проекции на оси СК

F оси – знак не меняем

F ↓ оси – знак меняем

F оси – не пишем (проекция равна нулю)

Или смотри рисунок.

  • При необходимости применение закона Гука, закона всемирного тяготения, частных формул для сил….
  • Если в условии есть скорость путь время, применяем формулы кинематики.
  • математическое решение.
  • анализ полученного результата.
  • вычисления.
  • ответ.

Первичный рисунок – на этом этапе часто на рисунке изображаются детали, отсутствующие в условии задачи.

Пример 5. В первых задачах на применение второго закона Ньютона в условии часто написано «На тело массой mдействует сила F». Учащиеся рисуют опору и силу тяжести, хотя в условии их нет и происхождение силы не оговаривается.

Неверно

Верно

На рисунке желательно придать силе произвольное направление, что подчеркнет свободное условие задачи и даст повод обсудить связь между силой, ускорением и скоростью с точки зрения причинно – следственной связи.

Пример 6. Тело под действием силы F поднимается вверх с ускорением а.

Не верно

Верно

(очень распространенная ошибка).

Данные примеры подчеркивают необходимость выполнения рисунка в строгом соответствии с условием задачи и отступления не допустимы.

Рисунок должен занимать не менее трети тетрадного листа.

Сила – это величина, характеризующая взаимодействие тел. Здесь возможны следующие нюансы:

  • Взаимодействие может осуществляется без непосредственного контакта (на первоначальном этапе только взаимодействие с Землей – сила тяжести). По сути это действие на тело гравитационного поля. На профильном уровне имеет смысл ввести понятие поля вместе с понятием силы, рассмотрев теории близкодействия и дальнодействия. Тогда вопрос, «С какими телами взаимодействует тело?» можно сразу разбить на два:
  1. С какими телами взаимодействует тело?
  2. В каких полях находится тело?

В 10 классе возможно рассмотреть гравитационное и электромагнитное поле и подчеркнуть, что взаимодействие при непосредственном контакте на макроуровне это на микроуровне так же действие поля на микрообъект (в случае сил упругости и сил трения – взаимодействия электромагнитного поля одной молекулы с другой молекулой как системой зарядов).

  • Взаимодействие при непосредственном контакте тел.

Есть контакт – есть взаимодействие – есть сила.

Итоги

Описанные алгоритмы, при их активном использовании на уроках позволяют существенно сократить время на приобретения учащимися навыка решения задач. Алгоритмы универсальны и могут применяться в любой теме, что позволяет провести единую линию решения задач по всему школьному курсу физики. Позволяет один раз, затратив учебное время на обучение решению задач, в дальнейшем вводить только новые законы и закономерности подчеркивая единые способы и методы их применения в задачах.

В основе выше приведенного материала лежат следующие общеизвестные технологии:

  • Технология обучения математике на основе решения задач (Р.Г. Хазанкин)
  • Проблемное обучение.
  • Уровневая дифференциация обучения на основе обязательных результатов (В.В. Фирсов)

(В этом разделе мы планируем размещать советы и рекомендации для школьников, которые хотят научиться решать задачи по физике. Поэтому если у вас есть вопросы общетеоретического характера, если вы хотели бы что-то уточнить, смело спрашивайте в комментариях. При необходимости мы напишем еще статью, и не одну.)

Следует помнить, что задачи по физике в моделях отражают физическую реальность окружающего мира. Приступая к решению очередной задачи, пусть даже самой простой, попытайтесь распознать явление, представить его мысленно , обсудить его протекание (если есть с кем), а уж затем приступать к поиску ответа на поставленный вопрос задачи.

Если Вам трудно представить себе, как протекает физическое явление, попробуйте посмотреть интерактивные модели по физике . Это flash-анимация, которая помогает глубже понять суть явления и смоделировать его при разных условиях.

  1. Оформлять задачу можно традиционно:
    • краткая запись условия , где необходимо отразить не только данные числовые значения, но и все дополнительные условия, которые следуют из текста задачи (хотя, это не всегда очевидно, а возникает по ходу решения). Неизменность или кратность каких-либо параметров, их граничные значения, условия, которые определяются физическим содержанием задачи (например, отсутствие трения, постоянство ускорения и т. п.).
    • оформление задачи рисунком : сделать к задаче рисунок, на котором отображается ситуация описанная в задаче, нанести все данные условия задачи, и сформулировать вопрос задачи.

      Рисунок особенно необходим, если используемые уравнения заданы в векторной форме . В этом случае надо нарисовать систему координат, относительно которой следует записать векторное уравнение в проекциях. Рисунок в большинстве случаев сильно облегчает процесс решения любой задачи, не только по физике.

      Рисунок также необходим, если тело движется или находится под углом .

  2. Очень важно правильно поставить вопрос к задаче . Возможны следующие варианты:
    • вопрос задачи сформулирован четко и понятно, например, найти значение какого-либо параметра (при постановке такого вопроса трудностей не возникает);
    • на сколько или во сколько одна величина отличается от другой. Здесь надо найти разность двух значений одного параметра (скорости, силы и т. д.) или найти отношение физических величин.

      Пример: НА СКОЛЬКО увеличилась скорость? Изменение скорости = конечная скорость минус начальная :

      Будьте внимательны!

      Другой пример: ВО СКОЛЬКО раз уменьшилась масса тела? Надо узнать:

    • если стоит вопрос: «Как изменился какой-либо параметр? », то нужно самому выбрать НА СКОЛЬКО или ВО СКОЛЬКО (во сколько раз.. ?) в зависимости от данных задачи. Если изменение относительно небольшое, выбирайте на сколько . Если параметр может отличаться в несколько раз, лучше выбрать во сколько раз .

      В ответе на вопрос «Как изменилась скорость.. ?» всегда вычитают из конечного значения начальное:

      При этом если скорость увеличивалась, то:

      Практический вывод: если скорость увеличилась, а вы получили ΔV < 0, хорошенько задумайтесь. И наоборот.

  3. Надо проверить, все ли заданные величины в задаче находятся в одной системе единиц (СИ, СГС и других). Если величины даны в разных системах, их следует выразить в единицах системы, принятой Вами для решения . Предпочтение отдается системе СИ, но не всегда.

    Итак, условие задачи оформлено, теперь можно приступать к решению задачи.

  4. Обдумываем физическое содержание задачи , выясняем, к какому разделу она относится, и какие законы в ней надо использовать. Задачи могут быть комбинированные, решение их требует использования законов нескольких разделов физики. В задачах механики обычно первый вопрос, который надо поставить перед собой: каков характер движения?
  5. Далее следует записать формулы, соответствующие используемым в задаче законам , не следует сразу искать неизвестную величину; надо посмотреть, все ли параметры в формуле известны. Если число неизвестных больше числа уравнений, надо добавить уравнения, следующие из условия и рисунка. Общий принцип: сколько сколько неизвестных, столько должно быть и формул . Далее останется только решить систему уравнений , то есть свести задачу от физической к математической.

    Пример подобной задачи:

    Наблюдатель, стоящий на платформе, определил, что первый вагон электропоезда прошёл мимо него в течение 4 с , а второй — в течение 5 с . После этого передний край поезда остановился на расстоянии 75 м от наблюдателя. Считая движение поезда равнозамедленным, определить его ускорение.

    Эта задача (в несколько ином виде) была размещена в разделе Решаем вместе . Решается она путем составления системы из 3 уравнений. Попробуйте решить ее самостоятельно, если не сможете — ищите решение на нашем портале.

  6. Распространенная ошибка: неполное понимание смысла параметров в формуле. Школьники вполне могут решить задачу по физике, но зачастую путаются в своих обозначениях.

    Пример реальной задачи, которая оказалась сложной для 10-классницы:

    Спортсмен пробежал 100 метров за 10 секунд , из которых 2 секунды он потратил на разгон. Остальное время он двигался равномерно. Чему равна его скорость равномерного движения?

    Проблема с решением здесь возникла потому, что школьница запуталась в своих обозначениях: 10 с, 2 с, 8 с. Если не продумать обозначения, над этой простой задачей можно просидеть не один час. Кстати, задача имеет 2 способа решения: аналитический (формулой) и графический.

  7. Решение задачи чаще всего следует выполнять в общем виде , то есть в буквенных обозначениях.
    • Решение «по действиям» может не получиться, так как некоторые неизвестные побочные параметры могут сократиться лишь при решении до конца в общем виде .
    • Еще одна из причин общего (буквенного решения) состоит в том, что при решении по действиям возникает погрешность конечного результата , что, особенно в тестах , может сослужить плохую службу. И решил задачу, а ответ выбрал неверный. Поэтому не надо бояться вводить параметры, не фигурирующие в условии задачи. Если же преобразования очень громоздки, то можно произвести промежуточные числовые расчеты, при этом стараться уходить от округлений, а оставлять в дробях , таким образом, удастся избежать погрешностей.
  8. Получив решение в общем виде, нужно проверить размерность полученной величины . Для этого в формулу подставить не числа, а размерности входящих в нее величин. Ответ должен соответствовать размерности искомой величины, это гарантия правильного решения задачи. После проверки формулы на размерность следует подставить численные значения входящих в нее величин и произвести расчет .

    Пример проверки размерности. Решая задачу, где спрашивалось про силы натяжения нити (измеряется в Н ), мы получили такой ответ:

    Действительно, получили размерность силы. Может возникнуть вопрос: а если я не помню размерности w и F ? Выход есть, но проверка немного усложняется. Вспомните основные формулы: w = 2πν , где ν — количество полных оборотов в секунду, поэтому размерности w и ν совпадают. Вторая формула: F = ma , написав входящие в нее размерности, вы увидите, что 1 Н = 1 кг.м/с 2 . Что и требовалось доказать.

    Проверять размерность следует после длинных сложных преобразований , где легко ошибиться. По разным размерностям вы быстро увидите неправильный ответ, но (учтите!) совпадение размерностей не гарантирует, что задача решена правильно .

  9. Далее нужно проанализировать и сформулировать ответ . Если спрашивалось «как изменилось...», то нужно указать и направление изменения (увеличилось, уменьшилось, замедлилось и т.д.)

Вот, собственно и все, задача решена. Успехов!

P.S. Мы советуем регулярно решать задачи по физике. Спортсмены, готовясь к соревнованиям, занимаются по несколько раз в день. Начните решать задачи ежедневно и через некоторое время вы почувствуете, что каждую последующую задачу Вы можете решить быстрее и с меньшими усилиями. Вы научитесь их "видеть" изнутри даже без рисунка. Но этот навык нарабатывается только регулярными тренировками . Умение быстро решать задачи пригодится не только при сдаче экзаменационных тестов , но и при учебе в ВУЗе. Проверено. Поэтому: ни дня без решенной задачи!



Понравилась статья? Поделитесь с друзьями!