Как определить нерастворимые основания. Что будем делать с полученным материалом

Основания (гидроксиды) – сложные вещества, молекулы которых в своём составе имеют одну или несколько гидрокси-групп OH. Чаще всего основания состоят из атома металла и группы OH. Например, NaOH – гидроксид натрия, Ca(OH) 2 – гидроксид кальция и др.

Существует основание – гидроксид аммония, в котором гидрокси-группа присоединена не к металлу, а к иону NH 4 + (катиону аммония). Гидроксид аммония образуется при растворении аммиака в воде (реакции присоединения воды к аммиаку):

NH 3 + H 2 O = NH 4 OH (гидроксид аммония).

Валентность гирокси-группы – 1. Число гидроксильных групп в молекуле основания зависит от валентности металла и равно ей. Например, NaOH, LiOH, Al (OH) 3 , Ca(OH) 2 , Fe(OH) 3 и т.д.

Все основания – твёрдые вещества, которые имеют различную окраску. Некоторые основания хорошо растворимы в воде (NaOH, KOH и др.). Однако большинство из них в воде не растворяются.

Растворимые в воде основания называются щелочами. Растворы щелочей «мыльные», скользкие на ощупь и довольно едкие. К щелочам относят гидроксиды щелочных и щелочноземельных металлов (KOH, LiOH, RbOH, NaOH, CsOH, Ca(OH) 2 , Sr(OH) 2 , Ba(OH) 2 и др.). Остальные являются нерастворимыми.

Нерастворимые основания – это амфотерные гидроксиды, которые при взаимодействии с кислотами выступают как основания, а со щёлочью ведут себя, как кислоты.

Разные основания отличаются разной способностью отщеплять гидрокси-группы, поэтому признаку они делятся на сильные и слабые основания.

Сильные основания в водных растворах легко отдают свои гидрокси-группы, а слабые – нет.

Химические свойства оснований

Химические свойства оснований характеризуются отношением их к кислотам, ангидридам кислот и солям.

1. Действуют на индикаторы . Индикаторы меняют свою окраску в зависимости от взаимодействия с разными химическими веществами. В нейтральных растворах – они имеют одну окраску, в растворах кислот – другую. При взаимодействии с основаниями они меняют свою окраску: индикатор метиловый оранжевый окрашивается в жёлтый цвет, индикатор лакмус – в синий цвет, а фенолфталеин становится цвета фуксии.

2. Взаимодействуют с кислотными оксидами с образованием соли и воды:

2NaOH + SiO 2 → Na 2 SiO 3 + H 2 O.

3. Вступают в реакцию с кислотами, образуя соль и воду. Реакция взаимодействия основания с кислотой называется реакцией нейтрализации, так как после её окончания среда становится нейтральной:

2KOH + H 2 SO 4 → K 2 SO 4 + 2H 2 O.

4. Реагируют с солями, образуя новые соль и основание:

2NaOH + CuSO 4 → Cu(OH) 2 + Na 2 SO 4.

5. Способны при нагревании разлагаться на воду и основной оксид:

Cu(OH) 2 = CuO + H 2 O.

Остались вопросы? Хотите знать больше об основаниях?
Чтобы получить помощь репетитора – .
Первый урок – бесплатно!

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Однокислотные (NaOH , КОН, NH 4 OH и др.);


Двухкислотные (Са(ОН) 2 , Cu(OH) 2 , Fe(OH) 2 ;


Трехкислотные (Ni(OH) 3 , Со(ОН) 3 , Мn(ОН) 3 .

Классификация по растворимости в воде и степени ионизации:

Растворимые в воде сильные основания,


например:


щелочи - гидроксиды щелочных и щелоч­ноземельных металлов LiOH - гидроксид лития, NaOH - гидроксид натрия (едкий натр), КОН - гадроксид калия (едкое кали), Ва(ОН) 2 - гидроксид бария;


Нерастворимые в воде сильные основания,


например:


Сu(ОН) 2 - гидроксид меди (II), Fe(OH) 2 - гидроксид железа (II), Ni(OH) 3 - гидроксид никеля (III).

Химические свойства

1. Действие на индикаторы


Лакмус - синий;

Метилоранж - жёлтый,

Фенолфталеин - малиновый.


2. Взаимодействие с кислотными оксидами


2KOH + CO 2 = K 2 CO 3 + H 2 O


KOH + CO 2 = KHCO 3


3. Взаимодействие с кислотами (реакция нейтрализации)


NaOH + HNO 3 = NaNO 3 + H 2 O; Cu(OH) 2 + 2HCl = CuCl 2 + 2H 2 O


4. Обменная реакция с солями


Ba(OH) 2 + K 2 SO 4 = 2KOH + BaSO 4


3KOH + Fe(NO 3) 3 = Fe(OH) 3 + 3KNO 3


5. Термический распад


Cu(OH) 2 t = CuO + H 2 O; 2 CuOH = Cu 2 O + Н 2 O


2Со(ОН) 3 = Со 2 O 3 + ЗН 2 O; 2АgОН = Аg 2 O + Н 2 O


6. Гидроксиды, в которых d-металлы имеют низкие с. о., способны окисляться кислоро­дом воздуха,


например:


4Fe(OH) 2 + O 2 + 2Н 2 O = 4Fe(OH) 3


2Мn(OН) 2 + O 2 + 2Н 2 O = 2Мn(ОН) 4


7. Растворы щелочей взаимодействуют c амфотерными гидроксидами:


2КОН + Zn(OH) 2 = К 2


2КОН + Al 2 O 3 + ЗН 2 O = 2К


8. Растворы щелочей взаимодействуют с ме­таллами, образующими амфотерные оксиды игидроксиды (Zn , AI и др.),


например:


Zn + 2 NaOH +2Н 2 O = Na 2 + Н 2


2AI +2КOН + 6Н 2 O= 2КAl(ОН) 4 ] + 3H 2


9. В растворах щелочей некоторые неметаллы диспропорционируют,


например:


Cl 2 + 2NaOH = NaCl + NaCIO + Н 2 O


3S+ 6NaOH = 2Na 2 S+ Na 2 SO 3 + 3H 2 O


4P+ 3KOH + 3H 2 O = PH 3 + 3KH 2 PO 2


10. Растворимые основания широко использу­ются в реакциях щелочного гидролиза раз­личных органических соединений (галогенопроизводных углеводородов, сложных эфиров, жиров и др.),


например:


C 2 H 5 CI + NaOH = С 2 Н 5 ОН + NaCl

Способы получения щелочей и нерастворимых оснований

1. Реакции активных металлов (щелочных и щелочноземельных металлов) с водой:


2Na + 2H 2 O = 2 NaOH + H 2


Ca + 2H 2 O = Ca(OH) 2 + H 2


2. Взаимодействие оксидов активных металлов с водой:


BaO + H 2 O = Ba(OH) 2


3. Электролиз водных растворов солей:


2NaCl + 2H 2 O = 2NaOH + H 2 + Cl 2


CaCI 2 + 2Н 2 O = Са(ОН) 2 +Н 2 + Cl 2


4. Осаждение из растворов соответствующих солей щелочами:


CuSO 4 + 2NaOH = Cu(OH) 2 + Na 2 SO 4


FeCI 3 + 3KOH = Fe(OH) 3 + 3KCI

1. Основание + кислота соль + вода

КОН + HCl
KCl + H 2 O.

2. Основание + кислотный оксид
соль + вода

2KOH + SO 2
K 2 SO 3 + H 2 O.

3. Щелочь + амфотерный оксид/гидроксид
соль + вода

2NaOH (тв) + Al 2 O 3
2NaAlO 2 + H 2 O;

NaOH (тв) + Al(OH) 3
NaAlO 2 + 2H 2 O.


Реакция обмена между основанием и солью протекает только в растворе (и основание, и соль должны быть растворимы) и только в том случае, если хотя бы один из продуктов – осадок или слабый электролит (NH 4 OH, H 2 O)

Ba(OH) 2 + Na 2 SO 4
BaSO 4 + 2NaOH;

Ba(OH) 2 + NH 4 Cl
BaCl 2 + NH 4 OH.


Термостойки только основания щелочных металлов за исключением LiOH

Ca(OH) 2
CaO + H 2 O;

NaOH ;

NH 4 OH
NH 3 + H 2 O.


2NaOH (тв) + Zn
Na 2 ZnO 2 + H 2 .

КИСЛОТЫ

Кислотами с позиции ТЭД называются сложные вещества, диссоциирующие в растворах с образованием иона водорода Н + .

Классификация кислот

1. По числу атомов водорода, способных к отщеплению в водном растворе, кислоты делят на одноосновные (HF, HNO 2), двухосновные (H 2 CO 3 , H 2 SO 4), трехосновные (H 3 PO 4).

2. По составу кислоты делят на бескислородные (HCl, H 2 S) и кислородсодержащие (HClO 4, HNO 3).

3. По способности кислот диссоциировать в водных растворах их делят на слабые и сильные . Молекулы сильных кислот в водных растворах распадаются на ионы полностью и их диссоциация необратима.

Например, HCl
H + + Cl - ;

H 2 SO 4
H + + HSO.

Слабые кислоты диссоциируют обратимо, т.е. их молекулы в водных растворах распадаются на ионы частично, а многоосновные - ступенчато.

СН 3 СООН
СН 3 СОО - + Н + ;

1) H 2 S
HS - + H + , 2) HS -
H + + S 2- .

Часть молекулы кислоты без одного или нескольких ионов водорода Н + называется кислотным остатком . Заряд кислотного остатка всегда отрицательный и определяется числом ионов Н + , отнятых от молекулы кислоты. Например, ортофосфорная кислота H 3 PO 4 может образовать три кислотных остатка: H 2 PO- дигидрофосфат-ион, HPO- гидрофосфат-ион, PO- фосфат-ион.

Названия бескислородных кислот составляют, добавляя к корню русского названия кислотообразующего элемента (или к названию группы атомов, например, CN - - циан) окончание - водородная: HCl – хлороводородная кислота (соляная кислота), H 2 S – сероводородная кислота, HCN – циановодородная кислота (синильная кислота).

Названия кислородсодержащих кислот также образуются от русского названия кислотообразующего элемента с добавлением слова «кислота». При этом название кислоты, в которой элемент находится в высшей степени окисления, оканчивается на «…ная» или «…овая», например, H 2 SO 4 – серная кислота, H 3 AsO 4 – мышьяковая кислота. С понижением степени окисления кислотообразующего элемента окончания изменяются в следующей последовательности: «…ная» (HClO 4 – хлорная кислота), «…оватая» (HClO 3 – хлорноватая кислота), «…истая» (HClO 2 – хлористая кислота), «…оватистая» (HClO- хлорноватистая кислота). Если элемент образует кислоты, находясь только в двух степенях окисления, то название кислоты, отвечающей низшей степени окисления элемента, получает окончание «…истая» (HNO 3 – азотная кислота, HNO 2 – азотистая кислота).

Одному и тому же кислотному оксиду (например, Р 2 О 5) могут соответствовать несколько кислот, содержащих по одному атому данного элемента в молекуле (например, HPO 3 и H 3 PO 4). В подобных случаях к названию кислоты, содержащей наименьшее число атомов кислорода в молекуле, добавляется приставка «мета…», а к названию кислоты, содержащей в молекуле наибольшее число атомов кислорода – приставка «орто…» (HPO 3 – метафосфорная кислота, H 3 PO 4 – ортофосфорная кислота).

Если же молекула кислоты содержит несколько атомов кислотообразующего элемента, то к ее названию добавляется числительная приставка, например, Н 4 Р 2 О 7 – дву фосфорная кислота, Н 2 В 4 О 7 – четырех борная кислота.

Н 2 SO 5 H 2 S 2 O 8

S H – O – S –O – O – S – O - H

H - O - O O O O

Пероксосерная кислота Пероксодвусерная кислота

Химические свойства кислот


HF + KOH
KF + H 2 O.


H 2 SO 4 + CuO
CuSO 4 + H 2 O.


2HCl + BeO
BeCl 2 + H 2 O.


Кислоты взаимодействуют с растворами солей, если при этом образуется нерастворимая в кислотах соль или более слабая (летучая) по сравнению с исходной кислота

H 2 SO 4 + BaCl 2
BaSO 4 +2HCl;

2HNO 3 + Na 2 CO 3
2NaNO 3 + H 2 O + CO 2 .


Н 2 СО 3
Н 2 О + СО 2 .


H 2 SO 4(разб) + Fe
FeSO 4 + H 2 ;

HCl + Cu .

На рисунке 2 показано взаимодействие кислот с металлами.

КИСЛОТА - ОКИСЛИТЕЛЬ

Металл в ряду напряжения после Н 2

+
реакция не идет

Металл в ряду напряжения до Н 2

+
соль металла + Н 2

в min степени

H 2 SO 4 концентриро-

Au, Pt, Ir, Rh, Ta

окисления (с.о.)

+
реакция не идет

/Mq/Zn

от условий

Сульфат металла в max с.о.

+
+ +

Металл (остальные)

+
+ +

HNO 3 концентриро-

Au, Pt, Ir, Rh, Ta

+
реакция не идет

Металл щелочной/ щелочноземельный

Нитрат металла в max с.о.

Металл (остальные; Al,Cr, Fe, Co, Ni при нагревании)

ТN +


+

HNO 3 разбавленная

Au, Pt, Ir, Rh, Ta

+
реакция не идет

Металл щелочной/ щелочноземельный

NH 3 (NH 4 NO 3)

Нитратметал

ла в max с.о.

+
+

Металл (остальные в ярду напряжений до Н 2)

NO/N 2 O/N 2 /NH 3 (NH 4 NO 3)

от условий

+

Металл (остальные в ряду напряжений после Н 2)

Рис.2. ВЗАИМОДЕЙСТВИЕ КИСЛОТ С МЕТАЛЛАМИ

СОЛИ

Соли – это сложные вещества, диссоциирующие в растворах с образованием положителльно заряженных ионов (катионов – основных остатков), за исключением ионов водорода, и отрицательно заряженных ионов (анионов – кислотных остатков), отличных от гидрокисид – ионов.

После прочтения статьи Вы сможете разделять вещества на соли, кислоты и основания. В статье описано, что такое pH раствора, какими общими свойствами обладают кислоты и основания.

Как металлы и неметаллы, кислоты и основания - это разделение веществ по схожим свойствам. Первая теория кислот и оснований принадлежала швецкому учёному Аррениусу. Кислота по Аррениусу - это класс веществ, которые в реакции с водой диссоциируют (распадаются), образовывая катион водорода H + . Основания Аррениуса в водном растворе образуют анионы OH - . Следующая теория в 1923 году была предложена учёными Бренстедом и Лоури. Теория Бренстеда-Лоури определяет кислотами вещества, способные в реакции отдавать протон (протоном в реакциях называют катион водорода). Основания, соответственно, - это вещества, способные принять протон в реакции. Актуальная на данный момент теория - теория Льюиса. Теория Льюиса определяет кислоты как молекулы или ионы, способные принимать электронные пары, тем самым формируя аддукты Льюиса (аддукт - это соединение, образующееся соединением двух реагентов без образования побочных продуктов).

В неорганической химии, как правило, под кислотой имеют ввиду кислоту Бренстеда-Лоури, то есть вещества, способные отдать протон. Если имеют ввиду определение кислоты по Льюису, то в тексте такую кислоту называют кислотой Льюиса. Данные правила справедливы для кислот и оснований.

Диссоциация

Диссоциация – это процесс распада вещества на ионы в растворах или расплавах. Например, диссоциация соляной кислоты - это распад HCl на H + и Cl - .

Свойства кислот и оснований

Основания, как правило, мыльные на ощупь, кислоты, в большинстве своём, имеют кислый вкус.

При реакции основания со многими катионами формируется осадок. При реакции кислоты с анионами, как правило, выделяется газ.

Часто используемые кислоты:
H 2 O, H 3 O + , CH 3 CO 2 H, H 2 SO 4 , HSO 4 − , HCl, CH 3 OH, NH 3
Часто используемые основания:
OH − , H 2 O, CH 3 CO 2 − , HSO 4 − , SO 4 2− , Cl −

Сильные и слабые кислоты и основания

Сильные кислоты

Такие кислоты, которые полностью диссоциируют в воде, производя катионы водорода H + и анионы. Пример сильной кислоты - соляная кислота HCl:

HCl (р-р) + H 2 O (ж) → H 3 O + (р-р) + Cl - (р-р)

Примеры сильных кислот: HCl, HBr, HF, HNO 3 , H 2 SO 4 , HClO 4

Список сильных кислот

  • HCl - соляная кислота
  • HBr - бромоводород
  • HI - йодоводород
  • HNO 3 - азотная кислота
  • HClO 4 - хлорная кислота
  • H 2 SO 4 - серная кислота

Слабые кислоты

Растворяются в воде только частично, например, HF:

HF (р-р) + H2O (ж) → H3O + (р-р) + F - (р-р) - в такой реакции более 90% кислоты не диссоциирует:
= < 0,01M для вещества 0,1М

Сильную и слабую кислоту можно различить измеряя проводимость растворов: проводимость зависит от количества ионов, чем сильнее кислота тем она более диссоциирована, поэтому чем сильнее кислота тем выше проводимость.

Список слабых кислот

  • HF фтороводородная
  • H 3 PO 4 фосфорная
  • H 2 SO 3 сернистая
  • H 2 S сероводородная
  • H 2 CO 3 угольная
  • H 2 SiO 3 кремниевая

Сильные основания

Сильные основания полностью диссоциируют в воде:

NaOH (р-р) + H 2 O ↔ NH 4

К сильным основаниям относятся гидроксиды металлов первой (алкалины, щелочные металы) и второй (алкалинотеррены, щёлочноземельные металлы) группы.

Список сильных оснований

  • NaOH гидроксид натрия (едкий натр)
  • KOH гидроксид калия (едкое кали)
  • LiOH гидроксид лития
  • Ba(OH) 2 гидроксид бария
  • Ca(OH) 2 гидроксид кальция (гашеная известь)

Слабые основания

В обратимой реакции в присутствии воды образует ионы OH - :

NH 3 (р-р) + H 2 O ↔ NH + 4 (р-р) + OH - (р-р)

Большинство слабых оснований - это анионы:

F - (р-р) + H 2 O ↔ HF (р-р) + OH - (р-р)

Список слабых оснований

  • Mg(OH) 2 гидроксид магния
  • Fe(OH) 2 гидроксид железа (II)
  • Zn(OH) 2 гидроксид цинка
  • NH 4 OH гидроксид аммония
  • Fe(OH) 3 гидроксид железа (III)

Реакции кислот и оснований

Сильная кислота и сильное основание

Такая реакция называется нейтрализацией: при количестве реагентов достаточном для полной диссоциации кислоты и основания, результирующий раствор будет нейтральным.

Пример:
H 3 O + + OH - ↔ 2H 2 O

Слабое основание и слабая кислота

Общий вид реакции:
Слабое основание (р-р) + H 2 O ↔ Слабая кислота (р-р) + OH - (р-р)

Сильное основание и слабая кислота

Основание полностью диссоциирует, кислота диссоциирует частично, результирующий раствор имеет слабые свойства основания:

HX (р-р) + OH - (р-р) ↔ H 2 O + X - (р-р)

Сильная кислота и слабое основание

Кислота полностью диссоциирует, основание диссоциирует не полностью:

Диссоциация воды

Диссоциация - это распад вещества на составляющие молекулы. Свойства кислоты или основания зависят от равновесия, которое присутствует в воде:

H 2 O + H 2 O ↔ H 3 O + (р-р) + OH - (р-р)
K c = / 2
Константа равновесия воды при t=25°: K c = 1.83⋅10 -6 , также имеет место следующее равенство: = 10 -14 , что называется константой диссоциации воды. Для чистой воды = = 10 -7 , откуда -lg = 7.0.

Данная величина (-lg) называется pH - потенциал водорода. Если pH < 7, то вещество имеет кислотные свойства, если pH > 7, то вещество имеет основные свойства.

Способы определения pH

Инструментальный метод

Специальный прибор pH-метр - устройство, трансформирующее концентрацию протонов в растворе в электрический сигнал.

Индикаторы

Вещество, которое изменяет цвет в некотором интервале значений pH в зависимости от кислотности раствора, используя несколько индикаторов можно добиться достаточно точного результата.

Соль

Соль - это ионное соединение образованное катионом отличным от H + и анионом отличным от O 2- . В слабом водном растворе соли полностью диссоциируют.

Что бы определить кислотно-щелочные свойства раствора соли , необходимо определить, какие ионы присутствуют в растворе и рассмотреть их свойства: нейтральные ионы, образованные из сильных кислот и оснований не влияют на pH: не отдают ионы ни H + , ни OH - в воде. Например, Cl - , NO - 3 , SO 2- 4 , Li + , Na + , K + .

Анионы, образованные из слабых кислот, проявляют щелочные свойства (F - , CH 3 COO - , CO 2- 3), катионов с щелочными свойствами не существует.

Все катионы кроме металлов первой и второй группы имеют кислотные свойства.

Буфферный раствор

Растворы, которые сохраняют уровень pH при добавлении небольшого количества сильной кислоты или сильного основания, в основном состоят из:

  • Смесь слабой кислоты, соответствующей соли и слабого основания
  • Слабое основание, соответствующая соль и сильная кислота

Для подготовки буфферного раствора определённой кислотности необходимо смешать слабую кислоту или основание с соответствующей солью, при этом необходимо учесть:

  • Интервал pH в котором буфферный раствор будет эффективен
  • Ёмкость раствора - количество сильной кислоты или сильного основания, которые можно добавить не повлияв на pH раствора
  • Не должно происходить нежелаемых реакций, которые могут изменить состав раствор

Тест:

Разделение оснований на группы по различным признакам представлено в таблице 11.

Таблица 11
Классификация оснований

Все основания, кроме раствора аммиака в воде, представляют собой твёрдые вещества, имеющие различную окраску. Например, гидроксид кальция Са(ОН) 2 белого цвета, гидроксид меди (II) Сu(ОН) 2 голубого цвета, гидроксид никеля (II) Ni(OH) 2 зелёного цвета, гидроксид железа (III) Fe(OH) 3 красно-бурого цвета и т. д.

Водный раствор аммиака NH 3 Н 2 O, в отличие от других оснований, содержит не катионы металла, а сложный однозарядный катион аммония NH - 4 и существует только в растворе (этот раствор вам известен под названием нашатырного спирта). Он легко разлагается на аммиак и воду:

Однако, какими бы разными ни были основания, все они состоят из ионов металла и гидроксогрупп, число которых равно степени окисления металла.

Все основания, и в первую очередь щёлочи (сильные электролиты), образуют при диссоциации гидроксид-ионы ОН - , которые и обусловливают ряд общих свойств: мылкость на ощупь, изменение окраски индикаторов (лакмуса, метилового оранжевого и фенолфталеина), взаимодействие с другими веществами.

Типичные реакции оснований

Первая реакция (универсальная) была рассмотрена в § 38.

Лабораторный опыт № 23
Взаимодействие щелочей с кислотами

    Запишите два молекулярных уравнения реакций, сущность которых выражается следующим ионным уравнением:

    H + + ОН - = Н 2 O.

    Проведите реакции, уравнения которых вы составили. Вспомните, какие вещества (кроме кислоты и щёлочи) необходимы для наблюдения за этими химическими реакциями.

Вторая реакция протекает между щелочами и оксидами неметаллов, которым соответствуют кислоты, например,

Соответствует

и т.д.

При взаимодействии оксидов с основаниями образуются соли соответствующих кислот и вода:


Рис. 141.
Взаимодействие щёлочи с оксидом неметалла

Лабораторный опыт № 24
Взаимодействие щелочей с оксидами неметаллов

Повторите опыт, который вы проделывали раньше. В пробирку налейте 2-3 мл прозрачного раствора известковой воды.

Поместите в неё соломинку для сока, которая выполняет роль газоотводной трубки. Осторожно пропускайте через раствор выдыхаемый воздух. Что наблюдаете?

Запишите молекулярное и ионное уравнения реакции.

Рис. 142.
Взаимодействие щелочей с солями:
а - с образованием осадка; б - с образованием газа

Третья реакция является типичной реакцией ионного обмена и протекает только в том случае, если в результате образуется осадок или выделяется газ, например:

Лабораторный опыт № 25
Взаимодействие щелочей с солями

    В трёх пробирках слейте попарно по 1-2 мл растворов веществ: 1-я пробирка - гидроксида натрия и хлорида аммония; 2-я пробирка - гидроксида калия и сульфата железа (III); 3-я пробирка - гидроксида натрия и хлорида бария.

    Нагрейте содержимое 1-й пробирки и определите по запаху один из продуктов реакции.

    Сформулируйте вывод о возможности взаимодействия щелочей с солями.

Нерастворимые основания разлагаются при нагревании на оксид металла и воду, что нехарактерно для щелочей, например:

Fe(OH) 2 = FeO + Н 2 O.

Лабораторный опыт № 26
Получение и свойства нерастворимых оснований

В две пробирки налейте по 1 мл раствора сульфата или хлорида меди (II). В каждую пробирку добавьте по 3-4 капли раствора гидроксида натрия. Опишите образовавшийся гидроксид меди (II).

Примечание . Оставьте пробирки с полученным гидроксидом меди (II) для проведения следующих опытов.

Составьте молекулярное и ионные уравнения проведённой реакции. Укажите тип реакции по признаку «число и состав исходных веществ и продуктов реакции».

Добавьте в одну из пробирок с полученным в предыдущем опыте гидроксидом меди (II) 1-2 мл соляной кислоты. Что наблюдаете?

Используя пипетку, поместите 1-2 капли полученного раствора на стеклянную или фарфоровую пластину и, используя тигельные щипцы, осторожно выпарьте его. Рассмотрите образующиеся кристаллы. Отметьте их цвет.

Составьте молекулярное и ионные уравнения проведённой реакции. Укажите тип реакции по признаку «число и состав исходных веществ и продуктов реакции», «участие катализатора» и «обратимость химической реакции».

Нагрейте одну из пробирок с полученным ранее или выданным учителем гидроксидом меди () (рис. 143). Что наблюдаете?

Рис. 143.
Разложение гидроксида меди (II) при нагревании

Составьте уравнение проведённой реакции, укажите условие её протекания и тип реакции по признакам «число и состав исходных веществ и продуктов реакции», «выделение или поглощение теплоты» и «обратимость химической реакции».

Ключевые слова и словосочетания

  1. Классификация оснований.
  2. Типичные свойства оснований: взаимодействие их с кислотами, оксидами неметаллов, солями.
  3. Типичное свойство нерастворимых оснований: разложение при нагревании.
  4. Условия протекания типичных реакций оснований.

Работа с компьютером

  1. Обратитесь к электронному приложению. Изучите материал урока и выполните предложенные задания.
  2. Найдите в Интернете электронные адреса, которые могут служить дополнительными источниками, раскрывающими содержание ключевых слов и словосочетаний параграфа. Предложите учителю свою помощь в подготовке нового урока - сделайте сообщение по ключевым словам и словосочетаниям следующего параграфа.

Вопросы и задания




Понравилась статья? Поделитесь с друзьями!