Как выглядит дифракционная решетка. A

ОПРЕДЕЛЕНИЕ

Дифракционная решетка - это простейший спектральный прибор, состоящий из системы щелей (прозрачных для света участков), и непрозрачных промежутков, которые сравнимы с длиной волны.

Одномерная дифракционная решетка, состоит из параллельных щелей одинаковой ширины, которые лежат в одной плоскости, разделяемых одинаковыми по ширине непрозрачными для света промежутками. Лучшими считаются отражательные дифракционные решетки. Они состоят из совокупности участков, отражающих свет и участков, которые свет рассеивают. Данные решетки представляют собой отшлифованные металлические пластины, на которые рассеивающие свет штрихи нанесены резцом.

Картиной дифракции на решетке — является результат взаимной интерференции волн, идущих ото всех щелей. С помощью дифракционной решетки реализуется многолучевая интерференция когерентных пучков света, подвергшихся дифракции и которые идут от всех щелей.

Характеристикой дифракционной решетки служит ее период. Периодом дифракционной решетки (d) (ее постоянной) называют величину, равную:

где a — ширина щели; b — ширина непрозрачного участка.

Дифракция на одномерной дифракционной решетке

Допустим, что перпендикулярно к плоскости дифракционной решетки падает световая волна с длиной . Так как щели у решетки расположены на равных расстояниях друг от друга, то разности хода лучей (), идущих от двух соседних щелей, для направления будут одинаковы для всей рассматриваемой дифракционной решетки:

Главные минимумы интенсивности наблюдаются в направлениях, определенных условием:

Кроме главных минимумов, в результате взаимной интерференции лучей света, которые идут от двух щелей, в некоторых направлениях лучи гасят друг друга. В результате возникают дополнительные минимумы интенсивности. Они появляются в тех направлениях, где разность хода лучей составляют нечетное число полуволн. Условием дополнительных минимумов является формула:

где N - количество щелей дифракционной решетки; — целые значения кроме 0, В том случае, если решетка имеет N щелей, то между двумя главными максимумами находятся дополнительный минимум, которые разделяют вторичные максимумы.

Условием главных максимумов для дифракционной решетки является:

Величина синуса не может быть больше единицы, то количество главных максимумов:

Примеры решения задач по теме «Дифракционная решетка»

ПРИМЕР 1

Задание На дифракционную решетку, перпендикулярно ее поверхности падает монохроматический пучок света с длиной волны . На плоский экран картина дифракции проецируется при помощи линзы. Расстояние между двумя максимумами интенсивности первого порядка составляет l. Какова постоянная дифракционной решетки, если линза размещена в непосредственной близости от решетки и расстояние от нее до экрана равно L. Считайте, что


Решение В качестве основы для решения задачи используем формулу, которая связывает постоянную дифракционной решетки, длину волны света и угол отклонения лучей, который соответствует дифракционному максимуму номер m:

По условию задачи Так как угол отклонения лучей можно считать малым (), то примем, что:

Из рис.1 следует, что:

Подставим в формулу (1.1) выражение (1.3) и учтем, что , получим:

Из (1.4) выразим период решетки:

Ответ

ПРИМЕР 2

Задание Используя условия примера 1, и результат решения, найдите количество максимумов, которое даст рассматриваемая решетка.
Решение Для того чтобы определить максимальный угол отклонения лучей света в нашей задаче найдем число максимумов, которое может дать наша дифракционная решетка. Для этого используем формулу:

где положим, что при . Тогда, получим:

Решетка сбоку выглядит подобным образом.

Применение также находят отражательные решетки , которые получены нанесением алмазным резцом на полированную поверхность металла тонких штрихов. Отпечатки на желатине или пластике после такой гравировки называют репликами , но такие дифракционные решетки обычно низкого качества, поэтому применение их ограничено. Хорошими отражательными решетками считаются такие, у которых полная длина составляет около 150 мм , при общем количестве штрихов - 600 шт/мм.

Основные характеристики дифракционной решетки - это общее число штрихов N, густота штриховки n (количество штрихов, приходящееся на 1 мм) и период (постоянная) решетки d, который можно найти как d = 1/n.

Решетка освещена одним фронтом волны и ее N прозрачных штрихов принято рассматривать в качестве N когерентных источников .

Если вспомнить явление интерференции от многих одинаковых источников света, то интенсивность света выражается согласно закономерности:

где i 0 - интенсивность световой волны, которая прошла через одну щель

Исходя из понятия максимальной интенсивности волны , полученного из условия:

β = mπ при m = 0, 1, 2… и т.д.

.

Перейдем от вспомогательного угла β к пространственному углу наблюдения Θ, и тогда:

(π d sinΘ)/ λ = m π,

Главные максимумы появляются при условии:

sinΘ м = m λ/ d, при m = 0, 1, 2… и т.д.

Интенсивность света в главных максимумах можно найти согласно формуле:

I м = N 2 i 0 .

Поэтому нужно изготавливать решетки с малым периодом d, тогда существует возможность получения больших углов рассеяния лучей и широкой дифракционной картины.

Например:

На продолжении предыдущего примера рассмотрим случай, когда в первом максимуме красные лучи (λ кр = 760 нм) отклонятся на угол Θ к = 27 °, а фиолетовые (λ ф = 400 нм) отклонятся на угол Θ ф = 14 °.

Видно, что при помощи дифракционной решетки существует возможность измерения длины волны того или другого цвета . Для этого просто нужно знать период решетки и измерить угол, но который отклонился луч, соответствующим необходимому свету.

Дифракционная решётка

Дифракцией называется любое отклонение распространения света от прямолинейного, не связанное с отражением и преломлением. Качественный метод расчета дифракционной картины предложил Френель. Основной идеей метода является принцип Гюйгенса - Френеля :

Каждая точка, до которой доходит волна, служит источником когерентных вторичных волн, а дальнейшее распространение волны определяется интерференцией вторичных волн.

Геометрическое место точек, для которых колебания имеют одинаковые фазы, называют волновой поверхностью . Волновой фронт также является волновой поверхностью.

Дифракционная решетка представляет собой совокупность большого числа параллельных щелей или зеркал одинаковой ширины и отстоящих друг от друга на одинаковом расстоянии.Периодом решетки ( d) называется расстояние между серединами соседних щелей, или что то же самое сумма ширины щели (а) и непрозрачного промежутка (b)между ними (d = a + b).

Рассмотрим принцип действия дифракционной решетки. Пусть на решетку нормально к её поверхности падает параллельный пучок лучей белого света (рис. 1). На щелях решетки, ширина которых соизмерима с длиной волны света, происходит дифракция.

В результате за дифракционной решеткой согласно принципу Гюйгенса-Френеля от каждой точки щели световые лучи будут распространяться во всех возможных направлениях, которым можно сопоставить углы отклонения φ световых лучей (углы дифракции ) от первоначального направления. Параллельные между собой лучи (дифрагирующие под одинаковым углом φ ) можно сфокусировать, установив за решеткой собирающую линзу. Каждый пучок параллельных лучей соберется в задней фокальной плоскости линзы в определённой точке А. Параллельные лучи, соответствующие другим углам дифракции, соберутся в других точках фокальной плоскости линзы. В этих точках будет наблюдаться интерференция световых волн, исходящих от разных щелей решетки. Если оптическая разность хода между соответствующими лучами монохроматического света будет равна целому числу длин волн , κ = 0, ±1, ±2, …, то в точке наложения лучей будет наблюдаться максимум интенсивности света для данной длины волны, Из рисунка 1 видно, что оптическая разность хода Δ между двумя параллельными лучами, выходящими из соответствующих точек соседних щелей, равна

где φ – угол отклонения луча решеткой.

Следовательно, условие возникновения главных интерференционных максимумов решетки или уравнение дифракционной решетки

, (2)

где λ – длина световой волны.

В фокальной плоскости линзы для лучей, не испытавших дифракции, наблюдается центральный белый максимум нулевого порядка (φ = 0, κ = 0), справа и слева от которого располагаются цветные максимумы (спектральные линии) первого, второго и последующих порядков (рис. 1). Интенсивность максимумов уменьшается с ростом их порядка, т.е. с увеличением угла дифракции.

Одной из основных характеристик дифракционной решетки является её угловая дисперсия. Угловая дисперсия решетки определяет угловое расстояние между направлениями для двух спектральных линий, отличающихся по длине волны на 1 нм ( = 1 нм), и характеризует степень растянутости спектра вблизи данной длины волны:

Формула для расчета угловой дисперсии решетки может быть получена при дифференцировании уравнения (2) . Тогда

. (5)

Из формулы (5) следует, что угловая дисперсия решетки тем больше, чем больше порядок спектра.

Для решеток с разными периодами ширина спектра больше у решетки, характеризующейся меньшим периодом. Обычно в пределах одного порядка меняется незначительно (особенно для решеток с небольшим числом штрихов на миллиметр), поэтому дисперсия в пределах одного порядка почти не меняется. Спектр, полученный при постоянной дисперсии, растянут равномерно во всей области длин волн, что выгодно отличает спектр решетки от спектра, даваемого призмой.

Угловая дисперсия связана с линейной дисперсией . Линей­ную дисперсию можно также вычислить по формуле

, (6) где – линейное расстояние на экране или фотопластинке между спектральными линиями, f фокусное расстояние линзы.

Дифракционная решетка также характеризуется разрешающей способностью . Этавеличина, характеризующая способность дифракционной решетки давать раздельное изображение двух близких спектральных линий

R = , (7)

где l – средняя длина волны разрешаемых спектральных линий; dl – разность длин волн двух соседних спектральных линий.

Зависимость разрешающей способности от числа щелей дифракционной решетки N определяется формулой

R = = kN , (8)

где k – порядок спектра.

Из уравнения для дифракционной решетки (1) можно сделать следующие выводы:

1. Дифракционная решетка будет давать заметную дифракцию (значительные углы дифракции) только в том случае, когда период решетки соизмерим с длиной световой волны, то есть d »l» 10 –4 см. Решетки с периодом меньше длины волны не дают дифракционных максимумов.

2. Положение главных максимумов дифракционной картины зависит от длины волны. Спектральные составляющие излучения немонохроматического пучка отклоняются решеткой на разные углы (дифракционный спектр ). Это позволяет использовать дифракционную решетку в качестве спектрального прибора.

3. Максимальный порядок спектра, при нормальном падении света на дифракционную решетку, определяется соотношением:

k max £ d ¤l.

Дифракционные решетки, используемые в различных областях спектра, отличаются размерами, формой, материалом поверхности, профилем и частотой штрихов, что позволяет перекрыть область спектра от ультрафиолетовой его части (l » 100 нм) до инфракрасной (l » 1 мкм). Широко используются в спектральных приборах гравированные решетки (реплики), которые представляют собой отпечатки решеток на специальных пластмассах с последующим нанесением металлического отражательного слоя.

Дифракционная решётка

Очень большая отражательная дифракционная решётка.

Дифракционная решётка - оптический прибор, работающий по принципу дифракции света, представляет собой совокупность большого числа регулярно расположенных штрихов (щелей, выступов), нанесённых на некоторую поверхность. Первое описание явления сделал Джеймс Грегори , который использовал в качестве решётки птичьи перья.

Виды решёток

  • Отражательные : Штрихи нанесены на зеркальную (металлическую) поверхность, и наблюдение ведется в отражённом свете
  • Прозрачные : Штрихи нанесены на прозрачную поверхность (или вырезаются в виде щелей на непрозрачном экране), наблюдение ведется в проходящем свете.

Описание явления

Так выглядит свет лампы накаливания фонарика, прошедший через прозрачную дифракционную решётку. Нулевой максимум (m =0) соответствует свету, прошедшему сквозь решётку без отклонений. В силу дисперсии решётки в первом (m =±1) максимуме можно наблюдать разложение света в спектр . Угол отклонения возрастает с ростом длины волны (от фиолетового цвета к красному)

Фронт световой волны разбивается штрихами решётки на отдельные пучки когерентного света. Эти пучки претерпевают дифракцию на штрихах и интерферируют друг с другом. Так как для разных длин волн максимумы интерференции оказываются под разными углами (определяемыми разностью хода интерферирующих лучей), то белый свет раскладывается в спектр.

Формулы

Расстояние, через которое повторяются штрихи на решётке, называют периодом дифракционной решётки. Обозначают буквой d .

Если известно число штрихов (), приходящихся на 1 мм решётки, то период решётки находят по формуле: мм.

Условия интерференционных максимумов дифракционной решётки, наблюдаемых под определёнными углами, имеют вид:

- период решётки, - угол максимума данного цвета, - порядок максимума, то есть порядковый номер максимума, отсчитанный от центра картинки, - длина волны.

Если же свет падает на решётку под углом , то:

Характеристики

Одной из характеристик дифракционной решётки является угловая дисперсия. Предположим, что максимум какого-либо порядка наблюдается под углом φ для длины волны λ и под углом φ+Δφ - для длины волны λ+Δλ. Угловой дисперсией решётки называется отношение D=Δφ/Δλ. Выражение для D можно получить если продифференцировать формулу дифракционной решётки

Таким образом, угловая дисперсия увеличивается с уменьшением периода решётки d и возрастанием порядка спектра k .

Изготовление

Хорошие решётки требуют очень высокой точности изготовления. Если хоть одна щель из множества будет нанесена с ошибкой, то решётка будет бракована. Машина для изготовления решёток прочно и глубоко встраивается в специальный фундамент. Перед началом непосредственного изготовления решёток, машина работает 5-20 часов на холостом ходу для стабилизации всех своих узлов. Нарезание решётки длится до 7 суток, хотя время нанесения штриха составляет 2-3 секунды.

Применение

Дифракционную решётку применяют в спектральных приборах, также в качестве оптических датчиков линейных и угловых перемещений (измерительные дифракционные решётки), поляризаторов и фильтров инфракрасного излучения, делителей пучков в интерферометрах и так называемых «антибликовых» очках.

Примеры

Радуга на компакт-диске

Один из простейших и распространённых в быту примеров отражательных дифракционных решёток - компакт-диск или DVD . На поверхности компакт-диска - дорожка в виде спирали с шагом 1,6 мкм между витками. Примерно треть ширины (0,5 мкм) этой дорожки занята углублением (это записанные данные), рассеивающим падающий на него свет, примерно две трети (1,1 мкм) - нетронутая подложка, отражающая свет. Таким образом, компакт диск - отражательная дифракционная решётка с периодом 1,6 мкм.

См. также

  • Фурье-оптика
  • Оптическая решётка

Литература

  • Сивухин Д. В. Общий курс физики. - М .. - Т. IV. Оптика.
  • Тарасов К. И., Спектральные приборы, 1968

Wikimedia Foundation . 2010 .

  • Экономика Польши
  • Экономика Новой Зеландии

Смотреть что такое "Дифракционная решётка" в других словарях:

    Дифракционная решётка - Дифракционная решётка. Схема образования спектров с помощью прозрачной дифракционной решётки, состоящей из щелей: d период решётки; a угол падения лучей на решётку; b угол между нормалью к решётке и направлением распространения дифрагированного… … Иллюстрированный энциклопедический словарь

    ДИФРАКЦИОННАЯ РЕШЁТКА - оптич. прибор, представляющий собой периодич. структуру из большого числа регулярно расположенных элементов, на к рых происходит дифракция света (напр., параллельных и равноотстоящих штрихов, нанесённых на плоскую или вогнутую оптич. поверхность) … Физическая энциклопедия

    ДИФРАКЦИОННАЯ РЕШЁТКА - ДИФРАКЦИОННАЯ РЕШЁТКА, оптический прибор, представляющий собой периодическую структуру из большого числа (300 1200 на 1 мм для ультрафиолетовой и видимой области) регулярно расположенных элементов (щелей в непрозрачном или штрихов на отражающем… … Современная энциклопедия

    ДИФРАКЦИОННАЯ РЕШЁТКА - оптический прибор, представляющий собой систему большого числа параллельных щелей в каком либо непрозрачном экране или параллельных штрихов на оптической поверхности, а также совокупность отражающих зеркальных полосок; при прохождении через такую … Большая политехническая энциклопедия

    дифракционная решётка - difrakcinė gardelė statusas T sritis fizika atitikmenys: angl. diffraction grating vok. Beugungsgitter, n; Diffraktionsgitter, n rus. дифракционная решётка, f pranc. réseau de diffraction, m … Fizikos terminų žodynas

    дифракционная решётка - оптический прибор, представляющий собой периодическую структуру из большого числа регулярно расположенных элементов, на которых происходит дифракция света. Это могут быть параллельные щели в непрозрачном экране или отражающие зеркальные полоски… … Энциклопедический словарь

    Дифракционная решётка - оптический прибор, представляющий собой совокупность большого числа параллельных, равноотстоящих друг от друга штрихов одинаковой формы, нанесённых на плоскую или вогнутую оптическую поверхность. Таким образом, Д. р. представляет собой… … Большая советская энциклопедия

    ДИФРАКЦИОННАЯ РЕШЁТКА - совокупность большого числа сосредоточ. в ограни ч. области пространства элементов, на к рых происходит дифракция света. По структуре Д. р. разделяются на нерегулярные, имеющие хаотически располож. элементы, и регулярные; на одно, двух… … Большой энциклопедический политехнический словарь

    ДИФРАКЦИОННАЯ РЕШЁТКА - оптич. прибор, представляющий собой периодич. структуру из большого числа регулярно расположенных элементов, на к рых происходит дифракция света. Это могут быть параллельные щели в непрозрачном экране или отражающие зеркальные полоски (штрихи),… … Естествознание. Энциклопедический словарь

    дифракционная решётка, сформированная лазерным лучом - lazerio spinduliuotės sukurta difrakcinė gardelė statusas T sritis radioelektronika atitikmenys: angl. laser induced diffraction grating vok. Diffraktionsgitter gebildet durch Laserstrahl, n rus. дифракционная решётка, сформированная лазерным… … Radioelektronikos terminų žodynas

На свойстве дифракции основано устройство дифракционной решетки. Дифракционная решетка - это совокупность очень большого количества узких щелей, которые разделены непрозрачными промежутками.

Общий вид дифракционной решетки представлен на следующем рисунке.

Период решетки и принцип ее работы

Период решетки - это сумма ширины одной щели и одного непрозрачного промежутка. Для обозначения используют букву d. Период дифракционный решетки часто колеблется около 10 мкм. Рассмотрим, как работает и для чего нужна дифракционная решетка.

На дифракционную решетку падает плоская монохроматическая волна. Длина этой волны равняется λ. Вторичные источники, расположенные в щелях решетки, создают световые волны, которые будут распространяться во всех направлениях. Будем искать условия, при которых волны, идущие от различных щелей, будут усиливать друг друга.

Для этого рассмотрим распространение волн, в каком либо одном направлении. Пусть это будут волны, распространяющиеся под углом φ.
Разность хода между волнами будет равна отрезку АС. Если в этом отрезке можно уложить целое число длин волн, то волны из всех щелей, будут накладываться друг на друга, и усиливать друг друга.

Длину Ас можно найти из прямоугольного треугольника АВС.

AC = AB*sin(φ) = d*sin(φ).

Можем записать условие для угла, при котором будут наблюдаться максимумы:

d*sin(φ) = ±k*λ.

Здесь k - любое положительное целое число или 0. Величина, определяющая порядок спектра.

За решеткой располагают собирающую линзу. С помощью нее фокусируются лучи идущие параллельно. Если угол удовлетворяет условию максимума, то на экране он определяет положение главных максимумов. Так как положение максимумов будет зависеть от длины волны, то решетка будет разлагать белый свет в спектр. Это представлено на следующем рисунке.

картинка

картинка

Между максимума будут промежутки минимума освещенности. Чем больше число щелей, тем четче будут очерчены максимумы, и тем больше будет ширина минимумов.

Дифракционная решетка используется для точного определения длины волны. При известном периоде решетки определить длину волны очень легко, достаточно лишь измерить угол φ направления на максимум.



Понравилась статья? Поделитесь с друзьями!