Какие вредные явления вызывают вихревые токи. Токи Фуко

Поместим виток провода в переменное магнитное поле. Виток замкнут, при этом в цепи отсутствует гальванометр, который мог бы показать наличие тока индукции в нашем контуре. Но ток можно обнаружить, так как проводник будет нагреваться при прохождении по нему тока. Если, не изменяя остальные размеры витка, увеличить только толщину провода, из которого сделан контур, то ЭДС индукции ($\varepsilon_i\sim \frac{\Delta Ф}{\Delta t}$) не изменится, так как останется прежней скорость изменения магнитного потока. Однако уменьшится сопротивление витка ($R\sim \frac{1}{S}$). Как результат, сила тока индукции увеличится ($I_i$). Мощность, которая выделяется в контуре в виде тепла, прямо пропорциональна $I_i \varepsilon_i$, следовательно, температура проводника увеличится. И так, опыт показывает, что кусок металла при помещении его в магнитное поле нагревается, что указывает на возникновение индукционных токов в массивных проводниках при изменении магнитного потока. Такие токи называют вихревыми токами или токами Фуко.

Определение токов Фуко

Определение

Токами Фуко называют вихревые индукционные объемные электрические токи, которые появляются в проводниках при помещении проводников в переменное магнитное поле.

Свойства токов Фуко

По своей природе вихревые токи не отличаются от токов индукции, которые возникают в проводах.

Направление и сила токов Фуко зависят от формы металлического проводника, от направления переменного магнитного потока, свойств металла, скорости изменения магнитного потока. Распределение токов Фуко в металле может быть очень сложным.

В проводниках, которые имеют большие размеры в направлении перпендикулярном к направлению тока индукции, вихревые токи могут быть весьма велики, что приводит к значительному повышению температуры тела.

Свойства вихревых токов нагревать проводник применяют в индукционных печах для плавления металлов.

Токи Фуко, как и другие токи индукции, подчиняются правилу Ленца, то есть они имеют такое направление, что взаимодействие их с первичным магнитным полем тормозит то движение, которым вызвана индукция.

Примеры задач с решением

Пример 1

Задание. Что такое «магнитное успокоение», которое применяют в электроизмерительных приборах?

Решение. Рассмотрим следующий эксперимент. Легкую магнитную стрелку подвесим к нити (рис.1).

Если эта стрелка предоставлена самой себе, она в положении равновесия устанавливается в направлении с севера на юг. При отклонении ее из положения равновесия, она будет долго совершать колебания, если трение в подвесе небольшое. Разместим под стрелкой на малом расстоянии от нее большую медную пластину значительной массы. Затухание колебаний стрелки в этом случае произойдет очень быстро, сделав одно - два качания стрелка займет положение равновесия. Причина заключается в том, что при движении магнитной стрелки в медном проводнике индуцируются токи Фуко, взаимодействие которых с магнитным полем в соответствии с правилом Ленца затормаживает движение магнита. Кинетическая энергия, которая была сообщена магнитной стрелке в момент толчка, благодаря вихревым токам, превращается во внутреннюю энергию меди, повышая ее температуру. Это явление называют «магнитным успокоением».

Пример 2

Задание. Металлическая монета падает между полюсами электромагнита. Первый раз магнит выключен, второй раз магнит включен. В каком случае скорость падения монеты будет меньше?

Решение. Если между полюсами электромагнита есть магнитное поле, то монета будет медленно опускаться вниз, как - будто она движется в вязкой жидкости, а не в атмосферном воздухе. Монета тормозится силами, которые действуют со стороны магнитного поля на вихревые токи, индуцированные в монете при его падении в магнитном поле. Скорость ее движения будет существенно меньше, чем при выключенном магнитном поле.

Ответ. Скорость падения меньше при включенном магните.

Вихревые или цикличные токи имеют как позитивное, так и негативное значение для человека. С одной стороны, они являются причиной утрат энергии в массивном проводнике или катушке. В то же время явление вихревого тока можно применять и с пользой – например,создание индукционных печей. Но обо всем по порядку.

Открытие вихревых токов

Вихревые электрические токи были открыты французским ученым Араго Д.Ф. Ученый экспериментировал с медным диском и стрелкой, которая была намагничена.

Она крутилась вокруг диска, в какой-то момент времени он начал повторять движения стрелки. Тогдашние ученые объяснение явлению не нашли – это странное движение назвали «явление Араго». Загадка ждала своего времени.

Через несколько лет вопросом заинтересовался Максвелл Фарадей, на тот момент, открывший свой знаменитый закон электромагнитной индукции.

Согласно закону, М. Фарадей выдвинул предположение, что движимое магнитное поле имеет влияние на атомную металлическую решетку медного проводника.

Электрический ток, возникший в результате направленного движения электронов, всегда создает магнитное поле по всему периметру проводника. Детально описал вихревые токи, опираясь на работы Араго и Фарадея – физик-экспериментатор Фуко, откуда они и получили свое второе название.

Какова природа вихревых токов?

Замкнутые циклические токи способны возникать в проводниках, в тех случаях, когда магнитное поле вокруг этих проводников не стабильно, то есть постоянно меняющееся во времени или динамично вращающееся.

Таким образом, сила вихревого тока прямо зависит от скорости изменения магнитного потока, пронзающего проводник. Известно, что электроны в проводнике двигаются линейно вследствие разницы потенциалов, таким образом электрический ток прямо направлен.

Токи Фуко проявляют себя иначе и замыкаются прямо в теле проводника, образуя вихреобразные цикличные контуры. Они способны взаимодействовать с магнитным полем, вследствие действия которого они и возникли. (рис 1)

Вихревые токи в проводнике

На рисунке можно хорошо рассмотреть, как интересующие нас токи увеличиваются при повышении уровня индукции (показаны пунктирными направляющими) в середине катушки, которая подключена к переменному току.

Исследуя вихревые токи Фуко русский ученый Ленц сделал вывод, что собственное магнитное поле этих токов не дает магнитному потоку, причиной коих они и являются, изменится. Характер направления силовых линий вихревого электрического тока совпадает с вектором направления индукционного тока.

Значение и применение

В момент движения тела в создаваемых магнитных полях токи Фуко являются причиной физического замедления тела в этих полях. Эта способность давно реализована в конструкции бытового электросчетчика. Суть заключается в том, что замедляется алюминиевый диск, вращающийся под действием магнита. (рис2)

Рисунок изображает диск счетчика электрической энергии, где сплошной стрелкой указано направление вращения самого диска, а пунктирными – вихревые потоки


Эти же взаимодействия помогли реализовать идею создания насоса для перекачки расплавленных металлов. Токи Фуко провоцируют возникновение скин - эффекта. В результате их действия КПД проводника уменьшается, поскольку посредине сечения проводника ток фактические отсутствует, а преобладает на его периферии.

Для уменьшения потерь электроэнергии, особенно при передаче на длительные дистанции, используют многоканальный кабель, каждая жила в котором имеет свою изоляцию. Вихревые токи, а именно индукционные печи, сконструированные на их основе, нашли широкое применение в металлургии.

Их использую для плавки металлов, их перекачивания и закалки поверхности. А также свойства вихревых токов используются для замедления и остановки металлического диска в индукционных тормозах. В современных вычислительных приборах и аппаратах токи Фуко способствуют замедлению движущихся частиц.

В 1824 году французский физик Даниэль Араго впервые наблюдал действие вихревых токов на медный диск, расположенный под магнитной стрелкой на одной оси. При вращении стрелки в диске наводились вихревые токи, приводя его в движение. Это явление получило название «эффекта Араго» в честь его первооткрывателя.

Исследования вихревых токов были продолжены французским физиком Жаном Фуко. Он подробно описал их природу и принцип действия, а также наблюдал явление нагрева ферромагнетика, вращаемого в статическом магнитном поле. Токи новой природы были тоже названы в честь исследователя.

Природа вихревых токов

Токи Фуко могут иметь место при воздействии на проводник переменного магнитного поля, либо при перемещении проводника в статическом магнитном поле. Природа вихревых токов аналогична индукционным, которые возникают в линейных проводах при прохождении через них электрического тока. Направление вихревых токов замкнуто по кругу и противоположно вызывающей их силе.

Токи Фуко в хозяйственной деятельности человека

Самый простой пример проявления токов Фуко в обыденной жизни - их воздействие на магнитопровод обмоточного трансформатора. Из-за воздействия наведенных токов появляется низкочастотная вибрация (трансформатор гудит), способствующая сильному нагреву. В этом случае энергия тратится впустую, а КПД установки падает. Для предотвращения значительных потерь сердечники трансформаторов не изготовляют цельными, а набирают из тонких полос электротехнической стали с низкой удельной электропроводностью. Полосы изолированы между собой электротехническим лаком или слоем окалины. Появление ферритовых элементов позволило выполнять малогабаритные магнитопроводы цельными.

Эффект от действия вихревых токов используется повсеместно в промышленности и машиностроении. Поезда на магнитной подвеске используют токи Фуко для торможения, высокоточные приборы имеют систему демпфирования указывающей стрелки, основанной на действии вихревых токов. В металлургии широко распространены индукционные печи, имеющие целый комплекс преимуществ перед аналогичными установками. В индукционной печи нагреваемый металл можно поместить в безвоздушное пространство, добиваясь его полной дегазации. Индукционная плавка черных металлов также получила широкое распространение в металлургии ввиду высокой экономичности установок.

До сих пор мы рассматривали индукционные токи в линейных проводниках. Но индукционные токи будут возникать и в толще сплошных проводников при изменении в них потока вектора магнитной индукции . Они будут циркулировать в веществе проводника (напомним, что линии – замкнуты). Так как электрическое поле вихревое, то и токи называются вихревыми токами, или токами Фуко .

Если медную пластину отклонить от положения равновесия и отпустить так, чтобы она вошла со скоростью υ в пространство между полосами магнита, то пластина практически остановится в момент ее вхождения в магнитное поле (рис. 3.8).

Рис. 3.8 Рис. 3.9

Замедление движения связано с возбуждением в пластине вихревых токов, препятствующих изменению потока вектора магнитной индукции. Поскольку пластина обладает конечным сопротивлением, токи индукции постепенно затухают и пластина медленно двигается в магнитном поле. Если электромагнит отключить, то медная пластина будет совершать обычные колебания, характерные для маятника.

Сила и расположение вихревых токов очень чувствительны к форме пластины. Если заменить сплошную медную пластину «гребенкой» – медной пластиной с пропилами, то вихревые токи в каждой части пластины возбуждаются меньшими потоками. Индукционные токи уменьшаются, уменьшается и торможение (рис. 3.9). Маятник в виде гребенки колеблется в магнитном поле почти без сопротивления. Этим опытом объясняется, почему сердечники электромагнитов, трансформаторов делают не из сплошного куска железа, а набранными из тонких пластин, изолированных друг от друга. В результате уменьшаются токи Фуко и выделяемое ими тепло.

Если взять медный диск диаметром » 5 см и толщиной » 5 мм и уронить его между полюсами электромагнита, то при выключенном магните диск падает с обычным ускорением. При включении магнитного поля » 1 Тл падение диска резко замедляется и его движение напоминает падение тела в очень вязкой среде.

Тормозящее действие тока Фуко используется для создания магнитных успокоителей – демпферов. Если под качающейся в горизонтальной плоскости магнитной стрелкой расположить массивную медную пластину, то возбуждаемые в медной пластине токи Фуко будут тормозить колебание стрелки. Магнитные успокоители такого рода используются в сейсмографах, гальванометрах и других приборах.

Токи Фуко применяются в электрометаллургии для плавки металлов. Металл помещают в переменное магнитное поле, создаваемое током частотой 500 – 2000 Гц. В результате индуктивного разогрева металл плавится, а тигль, в котором он находится, при этом остается холодным. Например, при подведенной мощности 600 кВт тонна металла плавится за 40–50 минут.

Токи Фуко это токи, которые возникают в массивном проводнике, находящемся в переменном магнитном поле. Токи Фуко имеют вихревой характер. Если обычные индукционные токи движутся по тонкому замкнутому проводнику, то вихревые токи замыкаются внутри толщи массивного проводника. Хотя при этом они больше не чем не отличаются от обычных индукционных токов.

Токи Фуко замыкаются в толще проводника в виде круговых контуров маленьких вихрей. Величина этих токов тем выше, чем выше скорость изменения магнитного потока. Это может быть переменное магнитное поле либо сам массивный проводник может, двигается в неизменном магнитном поле.

Направление токов Фуко определяется по правилу Ленца также как и направление обычных токов возникших вследствие электромагнитной индукции. Они всегда направлены встречно потоку, вызвавшему их, и стремятся ему противодействовать.

Можно провести такой эксперимент. Создать постоянный магнитный поток. Например, между двумя постоянными магнитами. И вносить в поле между ними медную или алюминиевую пластину. Будет видно, что пластина движется с усилием. Поскольку в ней при движении возникают токи Фуко, которые взаимодействуют с полем магнитов. Поскольку поле этих токов будет направлено встречно внешнему полю, то они будут отталкиваться друг от друга. Рекомендуется брать именно медную или алюминиевую пластины, так как у этих материалов мало удельное сопротивление. Следовательно сила тока в них будет большей и эффект проявится более явно.

Рисунок 1 — схема опыта

Такое проявление вихревых токов используется в технике. Например, в асинхронном электродвигателе. Статор, которого создает вращающееся магнитное поле. А ротор выполнен в виде массивной болванки. В результате, когда вокруг болванки начинает вращаться магнитное поле, она как бы цепляется за него и тоже начинает вращаться вслед за ним.

Поскольку сопротивление проводника, конечно, то токи, текущие в его толще приводят к нагреву проводника. Это явление используется для плавки металлов в металлургии. Металл помещают в тигель вокруг которого находится индуктор, по которому пропускают переменный ток большой силы. Магнитное поле, которое возникает в контуре, пронизывает металл, который в свою очередь плавится.

Но кроме полезного тепла при плавке токи Фуко приносят и вред в других электрических машинах. Например, в трансформаторах или электродвигателях. В которых энергия магнитного поля не должна расходоваться на тепло. Для борьбы с вихревыми токами ферромагнитные сердечники выполняют шихтованными, то есть набирают из тонких пластин изолированных между собой. При этом магнитный поток должен быть направлен перпендикулярно плоскости пластин. Таким образом, минимизируются потери энергии на нагрев.



Понравилась статья? Поделитесь с друзьями!