Комплексные числа: определение и основные понятия. Просто о сложном: комплексные числа

В современной математике комплексное число является одним из фундаментальнейших понятий, находящее применение и в «чистой науке», и в прикладных областях. Понятно, что так было далеко не всегда. В далекие времена, когда даже обычные отрицательные числа казались странным и сомнительным нововведением, необходимость расширения на них операции извлечения квадратного корня была вовсе неочевидной. Тем не менее, в середине XVI века математик Рафаэль Бомбелли вводит комплексные (в данном случае точнее сказать, мнимые) числа в оборот. Собственно, предлагаю посмотреть, в чем была суть затруднений, доведших в итоге солидного итальянца до подобных крайностей.

Существует распространенное заблуждение, что комплексные числа потребовались для того, чтобы решать квадратные уравнения. На самом деле, это совершенно не так: задача поиска корней квадратного уравнения никоим образом введение комплексных чисел не мотивирует. Вот совершенно.

Давайте убедимся сами. Всякое квадратное уравнение можно представить в виде:
.
Геометрически, это означает, что мы хотим найти точки пресечения некоторой прямой и параболы
Я тут даже картинку сделал, для иллюстрации.


Как нам всем хорошо известно из школы, корни квадратного уравнения (в указанных выше обозначениях) находятся по следующей формуле:

Оказываются возможными 3 варианта:
1. Подкоренное выражение положительно.
2. Подкоренное выражение равно нулю.
3. Подкоренное выражение отрицательно.

В первом случае имеются 2 различных корня, во втором два совпадающих, в третьем уравнение «не решается». Все эти случаи имеют вполне наглядную геометрическую интерпретацию:
1. Прямая пересекает параболу (синяя прямая на рисунке).
2. Прямая касается параболы.
3. Прямая не имеет с параболой общих точек (сиреневая прямая на рисунке).

Ситуация проста, логична, непротиворечива. Пытаться извлекать квадратный корень из отрицательного числа нет совершенно никаких оснований. Никто и не пытался.

Обстановка существенно изменилась, когда пытливая математическая мысль добралась до кубических уравнений. Чуть менее очевидно, используя некоторую несложную подстановку , всякое кубическое уравнение можно свести к виду: . С геометрической точки зрения ситуация похожа на предыдущую: мы ищем точку пересечения прямой и кубической параболы.
Взгляните на картинку:

Существенное отличие от случая квадратного уравнения в том, что какую бы прямую мы не взяли, она всегда пересечет параболу. Т.е., уже из чисто геометрических соображений, кубическое уравнение всегда имеет хотя бы одно решение.
Найти его можно воспользовавшись формулой Кардано:

где
.
Немного громоздко, но пока, вроде бы, все в порядке. Или нет?

Вообще, формула Кардано - это яркий пример «принципа Арнольда» в действии. И что характерно, Кардано никогда на авторство формулы не претендовал.

Вернемся, однако, к нашим баранам. Формула замечательная, без преувеличение великое достижение математики начала-середины XVI века. Но есть у нее один нюанс.
Возьмем классический пример, который рассматривал еще Бомбелли:
.
Внезапно,
,
и, соответственно,
.
Приплыли. А формулу жалко, а формула-то хорошая. Тупик. При том, что решение у уравнения, безусловно, есть.

Идея Рафаэля Бомбелли заключалась в следующем: давайте прикинемся шлангом и сделаем вид, что корень из отрицательного - это какое-то число. Мы, конечно, знаем, что таких чисел нет, но тем не менее, давайте представим, что оно существует и его, как обычные числа, можно складывать с другими, умножать, возводить в степень и т.п.

Используя подобный подход, Бомбелли установил, в частности, что
,
и
.
Давайте проверим:
.
Заметьте, в выкладках никаких предположений о свойствах квадратных корней из отрицательных чисел не предполагалось, кроме упомянутого выше допущения, что они ведут себя как «обычные» числа.

В сумме получаем . Что вполне себе правильный ответ, который элементарно проверяется прямой подстановкой. Это был настоящий прорыв. Прорыв в комплексную плоскость.

Тем не менее, подобные выкладки выглядят как некоторая магия, математический фокус. Отношение к ним, как к некоему трюку, сохранялось среди математиков еще очень долго. Собственно, придуманное Рене Декартом для корней из отрицательных название «мнимые числа» вполне отражает отношение математиков тех времен к таким развлечениям.

Однако, время шло, «трюк» применялся с неизменным успехом, авторитет «мнимых чисел» в глазах математического общества рос, сдерживаемый, однако, неудобством их использования. Лишь получение Леонардом Эйлером (кстати, это именно он ввел ныне общеупотребительное обозначение для мнимой единицы) знаменитой формулы

открыло комплексным числам дорогу в самые различные области математики и ее приложений. Но это уже совсем другая история.

Комплексные числа

Мнимые и комплексные числа. Абсцисса и ордината

комплексного числа. Сопряжённые комплексные числа.

Операции с комплексными числами. Геометрическое

представление комплексных чисел. Комплексная плоскость.

Модуль и аргумент комплексного числа. Тригонометрическая

форма комплексного числа. Операции с комплексными

числами в тригонометрической форме. Формула Муавра.

Начальные сведения о мнимых и комплексных числах приведены в разделе «Мнимые и комплексные числа». Необходимость в этих числах нового типа появилась при решении квадратных уравнений для случая D < 0 (здесь D – дискриминант квадратного уравнения). Долгое время эти числа не находили физического применения, поэтому их и назвали «мнимыми» числами. Однако сейчас они очень широко применяются в различных областях физики

и техники: электротехнике, гидро- и аэродинамике, теории упругости и др.

Комплексные числа записываются в виде: a + bi . Здесь a и b действительные числа , а i мнимая единица, т. e . i 2 = –1. Число a называется абсциссой , a b – ординатой комплексного числа a + bi . Два комплексных числа a + bi и a – bi называются сопряжёнными комплексными числами.

Основные договорённости:

1. Действительное число а может быть также записано в форме комплексного числа: a + 0 i или a – 0 i . Например, записи 5 + 0 i и 5 – 0 i означают одно и то же число 5 .

2. Комплексное число 0+ bi называется чисто мнимым числом . Запись bi означает то же самое, что и 0+ bi .

3. Два комплексных числа a + bi и c + di считаются равными, если a = c и b = d . В противном случае комплексные числа не равны.

Сложение. Суммой комплексных чисел a + bi и c + di называется комплексное число (a + c ) + (b + d ) i . Таким образом, при сложении комплексных чисел отдельно складываются их абсциссы и ординаты.

Это определение соответствует правилам действий с обычными многочленами.

Вычитание. Разностью двух комплексных чисел a + bi (уменьшаемое) и c + di (вычитаемое) называется комплексное число ( a – c ) + (b – d ) i .

Таким образом, при вычитании двух комплексных чисел отдельно вычитаются их абсциссы и ординаты.

Умножение. Произведением комплексных чисел a + bi и c + di называется комплексное число:

( ac – bd ) + (ad + bc ) i . Это определение вытекает из двух требований:

1) числа a + bi и c + di должны перемножаться, как алгебраические двучлены,

2) число i обладает основным свойством: i 2 = 1.

П р и м е р . (a+ bi )( a – bi ) = a 2 + b 2 . Следовательно, произведение

двух сопряжённых комплексных чисел равно действительному

положительному числу.

Деление. Разделить комплексное число a + bi (делимое) на другое c + di (делитель) - значит найти третье число e + f i (чатное), которое будучи умноженным на делитель c + di , даёт в результате делимое a + bi .

Если делитель не равен нулю, деление всегда возможно.

П р и м е р. Найти (8 + i ) : (2 – 3 i ) .

Р е ш е н и е. Перепишем это отношение в виде дроби:

Умножив её числитель и знаменатель на 2 + 3 i

И выполнив все преобразования, получим:

Геометрическое представление комплексных чисел. Действительные числа изображаются точками на числовой прямой:

Здесь точка A означает число –3, точка B – число 2, и O – ноль. В отличие от этого комплексные числа изображаются точками на координатной плоскости. Выберем для этого прямоугольные (декартовы) координаты с одинаковыми масштабами на обеих осях. Тогда комплексное число a + bi будет представлено точкой Р с абсциссой а и ординатой b (см. рис.). Эта система координат называется комплексной плоскостью .

Модулем комплексного числа называется длина вектора OP , изображающего комплексное число на координатной (комплексной ) плоскости. Модуль комплексного числа a + bi обозначается | a + bi | или буквой r

New Page 1

Комплексные числа для чайников.Урок 1. Что это такое и с чем их "едят". Мнимая единица.

Для того, что бы понять, что такое комплексные числа, давайте вспомним про обычные числа и всесторонне их рассмотрим. И так, самое простое - это натуральные числа. Они называются натуральными, потому что через них можно что то выразить "в натуре", то есть, что то сосчитать. Вот есть два яблока. Их можно сосчитать. Имеется пять коробок конфет. Их можем можно сосчитать. Иными словами, натуральные числа - это числа, при помощи которых мы можем считать конкретные предметы. Вы прекрасно знаете, что эти числа можно складывать, вычитать, умножать и делить. Со сложением и умножением все понятно. Было два яблока, добавили три, стало пять. Взяли три коробки конфет по 10 штук в каждой, значит, всего тридцать конфет. А вот теперь перейдем к целым числам. Если натуральные числа обозначают конкретное количество предметов, то во множество целых чисел вводятся абстракции. Это нуль и отрицательные числа. почему это абстракции? Нуль - это отсутствие чего либо. Но можем ли мы потрогать, пощупать того, чего нет. Вот два яблока мы можем пощупать, вот они. Мы их можем даже съесть. А что значит нуль яблок? Мы можем потрогать, пощупать этот нуль? Нет, не можем. Значит, это абстракция . Надо же как то обозначать отсутствие чего либо. Вот и обозначили цифрой нуль. Но зачем это как то обозначать? Давайте представим, что у нас было два яблока. Мы съели два. Сколько у нас осталось? Правильно, нисколько. Эту операцию (съели два яблока) мы запишем как вычитание 2-2. И что в итоге то у нас полупилось? Как нам обозначить результат? Только введя новую абстракцию (нуль), которая обозначат, что в результате вычитания (съедения) получилось, что у нас не осталось ни одного яблока. Но мы из двух можем вычесть не 2, а 3. Казалось бы, эта операция бессмысленна. Если у нас только два яблока, как мы сможем съесть три?

Рассмотрим другой пример. Мы идем в магазин за пивом. У нас с собой 100 рублей. Пиво стоит 60 рублей за бутылку. Нам хочется купить две бутылки, но денег у нас не хватает. Нам надо 120 рублей. И тут мы встречаем своего давнего приятеля и занимаем у него двадцатку. Покупаем пиво. Вопрос. Сколько у нас осталось денег? Здравый смысл подсказывает, что нисколько. Но с точки зрения математики это будет абсурд. Почему? Потому что для того, что бы получить в результате нуль, нужно из 100 отнять 100. А мы делаем 100-120. Тут у нас должно получиться что то другое. А что у нас получилось? А то, что мы еще должны приятелю 20 рублей. В следующий раз, когда у нас будет с собой 140 рублей, мы придем в магазин за пивом, встретим приятеля, рассчитаемся с ним по долгам и сможем купить еще две бутылки пива. В итоге у нас получается 140-120-20=0. Обратите внимание на -20. Это очередная абстракция - отрицательное число . То есть, наш долг перед приятелем - это число со знаком минус, потому, что когда мы долг отдаем, мы эту сумму вычитаем. Скажу больше, это еще большая абстракция, чем нуль. Нуль обозначат чего то, чего нет. А отрицательное число - это как бы то, что у нас будет отнято в будущем.

И так, на примере я показал, как в математике рождаются абстракции. И, что, казалось бы, при всей нелепости подобных абстракций (типа отнять больше, чем было), они находят применение в реальной жизни. В случае деления целых чисел возникает еще одна абстракция - дробные числа. На них я подробно останавливается не будут, и так понятно, что они нужны в том случае, когда у нас целы числа не делятся на цело. К примеру, у нас четыре яблока, а надо их разделить на три человека. Тут понятно, что одно оставшееся яблоко делим на три части и получаем дроби.

Теперь очень так плавненько доберемся до сами комплексных чисел. Но, сначала вспомним, что при умножении двух отрицательных числе получается положительное. Кто то спросить - а почему так? Давайте сначала разберемся с умножением отрицательного числа на положительное. Допустим, -20 умножаем на 2. То есть, нам надо сложить -20+-20. В итоге получается -40, так как прибавление отрицательного числа - это вычитание. Почему вычитание - см. выше, отрицательное число - это долг, когда мы отнимем его у нас что то отнимается. Есть и другой житейский смысл. Что будет, если долг увеличился? Например, в том случае, когда нам дали в долг под проценты? В итоге осталось тоже число со знаком минус, то, что после минуса стало больше. А что значит умножить на отрицательное число? Что значит 3*-2? Это значит, что число три нужно взять минус два раза. То есть, поставить минус перед результатом умножения. Кстати, это тоже самое, что -3*2, так как от перестановки множителей произведение не меняется. А теперь внимание. Умножаем -3 на -2. Мы число -3 берем минус два раза. Если мы возьмем число -3 два раза, то в итоге будет -6, это вы поняли. А если взять минус два раза? Но что значит минус взять минус раз? Если взять положительное число минус раз, то в итоге получиться отрицательное, у него меняется знак. В случае если мы отрицательное число берем минус раз, то у него меняется знак и оно становиться положительное.

Для чего мы рассуждали об умножении минус на минус? А для того, что бы рассмотреть еще одну абстракцию, на этот раз она имеет непосредственное отношение к комплексным числам. Это мнимая единица . Мнимая единица равна квадратному корню из минус 1:

Напомню, что такое квадратный корень. Это операция, обратная возведению в квадрат. А возведение в квадрат - это умножение числа само на себя. Таким образом, квадратный корень из 4 равен 2, потому что 2*2=4. Квадратный корень из 9 - это 3, так как 3*3=9. Квадратный корень из единицы так же получается единица, из нуля нуль. Но как нам извлечь квадратный корень из минус единицы? Какое число надо умножить на себя, что бы получить -1? А нет такого числа! Если мы умножим -1 саму на себя, то в итоге получим 1. Если 1 умножим на 1, то получим 1. А минус -1 мы таким образом никак не получим. Но, тем не менее, мы можем столкнуться с ситуацией, когда под корнем окажется отрицательное число. Что же делать? Можно, конечно сказать, что решения нет. Это как при делении на нуль. Все мы до какого то времени считали, что на нуль делить нельзя. Но потом узнали о такой абстракции, как бесконечность , и оказалось, что делить на нуль все таки можно. Более того, такие абстракции, как деление на нуль, или неопределенность, получаемая при делении нуля на нуль или бесконечности на бесконечность, а так же другие подобные операции, широко применяются в вышей математике (), а высшая математика - это основа многих точных наук, которые двигают вперед технический прогресс.Так может и в мнимой единице есть какой то тайный смысл? Есть. И вы его поймете, читая дальнейшие мои уроки по комплексным числам. А пока я расскажу о некоторых сферах, где комплексные числа (числа, в составе которых есть мнимая единица) применяются.

И так, вот перечень областей, где применяются комплексные числа:

    Электротехника. Расчет цепей переменного тока. Использование комплексных чисел в данном случае очень упрощает расчет, без них пришлось бы применять дифференциальные и интегральные уравнения.

    Квантовая механика. Вкратце - в квантовой механике есть такое понятие как волновая функция, которая сама по себе комплекснозначна и квадрат которой (уже действительное число) равен плотности вероятности нахождения частицы в данной точке. См. так же цикл уроков

    Цифровая обработка сигналов. Теория цифровой обработки сигналов включает такое понятие, как z- преобразование, которое очень облегчает различные вычисления, связные с расчетом характеристик различных сигналов, таких как частотная и амплитудная характеристика и прочее.

    Описание процессов плоского течения жидкостей.

    Обтекание профилей жидкостью.

    Волновые движения жидкости.

И это далеко не исчерпывающий перечень, где применяют комплексные числа. На этом первое знакомство с комплексными числами закончено, до новых встреч.

Комплексные или мнимые числа впервые появились в известном сочинении Кардано «Великое искусство, или об алгебраических правилах» 1545 года. По мнению автора, эти числа не были пригодны к употреблению. Однако это утверждение было позднее опровергнуто. В частности, Бомбелли в 1572 году при решении кубического уравнения обосновал пользу мнимых чисел. Он составил основные правила действий с комплексными числами.

И все же долгое время в математическом мире не было единого представления о сущности комплексных чисел.

Впервые символ мнимых чисел был предложен выдающимся математиком Эйлером. Предложенная символика выглядела следующим образом: i = sqr -1 , где i - imaginarius , что означает фиктивный. В заслугу Эйлера также входит идея об алгебраической замкнутости поля комплексных чисел.

Итак, необходимость в числах нового типа появилась при решении квадратных уравнений для случая D < 0 (где D - дискриминант квадратного уравнения). В настоящее время комплексные числа нашли широкое применение в физике и технике, гидро- и аэродинамике, теории упругости и т.п.

Графическая запись комплексных чисел имеет вид: a + bi , где a и b - действительные числа, а i - мнимая единица, т.e. i 2 = -1 . Число a называется абсциссой, a b - ординатой комплексного числа a + bi . Два комплексных числа a + bi и a - bi называются сопряжёнными комплексными числами.

Существует ряд правил, связанных с комплексными числами:

  • Во-первых, действительное число а может быть записано в форме комплексного числа: a+ 0 i или a - 0 i . К примеру, 5 + 0 i и 5 - 0 i означают одно и то же число 5 .
  • Во-вторых, комплексное число 0+ bi называется чисто мнимым числом. Запись bi означает то же самое, что и 0+ bi .
  • В третьих, два комплексных числа a + bi и c + di считаются равными, если a = c и b = d . В ином случае комплексные числа не равны.

К основным действиям над комплексными числами относятся:


В геометрическом представлении комплексные числа в отличие от действительных, которые изображаются на числовой прямой точками, отмечаются точками на координатной плоскости. Возьмем для этого прямоугольные (декартовы) координаты с одинаковыми масштабами на осях. В этом случае комплексное число a + bi будет представлено точкой Р с абсциссой а и ординатой b . Такая система координат называется комплексной плоскостью .

Модулем комплексного числа является длина вектора OP, изображающего комплексное число комплексной плоскости. Модуль комплексного числа a + bi записывается в виде |a + bi| или буквой r и равен: r = |a + ib| = sqr a 2 + b 2 .

У сопряженных комплексных чисел имеется одинаковый модуль.



Понравилась статья? Поделитесь с друзьями!