Кто доказал теорема ферма. Ферма великая теорема

Григорий Перельман. Отказник

Василий Максимов

В августе 2006 года были объявлены имена лучших математиков планеты, получивших престижнейшую Медаль Филдса – своеобразный аналог Нобелевской премии, которой математики, по прихоти Альфреда Нобеля, были лишены. Премия Fields Medal – помимо почетного знака, лауреатам вручается чек на пятнадцать тысяч канадских долларов – присуждается Международным конгрессом математиков раз в четыре года. Она учреждена канадским ученым Джоном Чарльзом Филдсом и впервые вручена в 1936 году. С 1950 года Fields Medal вручается регулярно лично королем Испании за вклад в развитие математической науки. Лауреатами премии могут стать от одного до четырех ученых в возрасте до сорока лет. Премию уже получили сорок четыре математика, среди которых восемь россиян.

Григорий Перельман. Анри Пуанкаре.

В 2006 году лауреатами стали француз Венделин Вернер, австралиец Теренс Тао и двое россиян – работающий в США Андрей Окуньков и ученый из Петербурга Григорий Перельман. Однако в последний момент стало известно, что Перельман отказался от этой престижной награды – как объявили организаторы, «по принципиальным соображениям».

Столь экстравагантный поступок российского математика не стал неожиданностью для знающих его людей. Он уже не в первый раз отказывается от математических наград, объясняя свое решение тем, что не любит торжественные мероприятия и излишнюю шумиху вокруг своего имени. Еще десять лет назад, в 1996 году, Перельман отказался от премии Европейского математического конгресса, сославшись на то, что не закончил работу над номинированной на награду научной проблемой, и это был не последний случай. Российский математик словно сделал целью своей жизни удивлять людей, идя наперекор общественному мнению и научной общественности.

Григорий Яковлевич Перельман родился 13 июня 1966 года в Ленинграде. С юных лет увлекался точными науками, с блеском окончил знаменитую 239-ю среднюю школу с углубленным изучением математики, побеждал на многочисленных математических олимпиадах: так, в 1982 году в составе команды советских школьников участвовал в Международной математической олимпиаде, проходившей в Будапеште. Перельман без экзаменов был зачислен на мехмат Ленинградского университета, где учился на «отлично», продолжая побеждать в математических соревнованиях всех уровней. Окончив университет с красным дипломом, он поступил в аспирантуру при Петербургском отделении Математического института имени В. А. Стеклова. Его научным руководителем был известный математик академик Александров. Защитив кандидатскую диссертацию, Григорий Перельман остался в институте, в лаборатории геометрии и топологии. Известны его работы по теории пространств Александрова, он сумел найти доказательства к ряду важных гипотез. Несмотря на многочисленные предложения от ведущих западных университетов, Перельман предпочитает работать в России.

Самым громким его успехом стало решение в 2002 году знаменитой гипотезы Пуанкаре, опубликованной в 1904 году и с тех пор остававшейся не доказанной. Перельман работал над нею восемь лет. Гипотеза Пуанкаре считалась одной из величайших математических загадок, а ее решение – важнейшим достижением в математической науке: оно моментально продвинет вперед исследования проблем физико-математических основ мироздания. Виднейшие умы планеты прогнозировали ее решение лишь через несколько десятилетий, а Институт математики Клея в Кембридже, штат Массачусетс, внес проблему Пуанкаре в число семи наиболее интересных нерешенных математических проблем тысячелетия, за решение каждой из которых была обещана премия в миллион долларов (Millennium Prize Problems).

Гипотеза (иногда называемая задачей) французского математика Анри Пуанкаре (1854–1912) формулируется так: любое замкнутое односвязное трехмерное пространство гомеоморфно трехмерной сфере. Для пояснения используют наглядный пример: если обмотать яблоко резиновой лентой, то в принципе, стягивая ленту, можно сжать яблоко в точку. Если же обмотать такой же лентой бублик, то в точку его сжать нельзя без разрыва или бублика, или резины. В таком контексте яблоко называют «односвязной» фигурой, бублик же не односвязен. Почти сто лет назад Пуанкаре установил, что двумерная сфера односвязна, и предположил, что трехмерная сфера тоже односвязна. Доказать эту гипотезу не могли лучшие математики мира.

Чтобы претендовать на приз Института Клея, Перельману нужно было всего лишь опубликовать свое решение в одном из научных журналов, и если в течение двух лет никто не сможет найти ошибку в его вычислениях, то решение будут считать верным. Однако Перельман с самого начала отступил от правил, опубликовав свое решение на сайте препринтов Лос-Аламосской научной лаборатории. Возможно, он опасался того, что в его расчеты вкралась ошибка – подобная история уже происходила в математике. В 1994 году английский математик Эндрю Уайлз предложил решение знаменитой теоремы Ферма, а спустя несколько месяцев выяснилось, что в его расчеты вкралась ошибка (правда, впоследствии она была исправлена, и сенсация всё же состоялась). Официальной публикации доказательства гипотезы Пуанкаре нет до сих пор – зато есть авторитетное мнение лучших математиков планеты, подтверждающих верность расчетов Перельмана.

Медаль Филдса Григорию Перельману была присуждена именно за решение проблемы Пуанкаре. Но российский ученый отказался от премии, которой он без сомнения достоин. «Григорий сказал мне, что чувствует себя изолированным от международного математического сообщества, вне этого сообщества, поэтому не хочет получать награду», – заявил на пресс-конференции в Мадриде президент Всемирного союза математиков (ВСМ) англичанин Джон Болл.

Ходят слухи, что Григорий Перельман и вовсе собирается уйти из науки: еще полгода назад он уволился из родного Математического института имени Стеклова, и говорят, будто он не будет больше заниматься математикой. Возможно, российский ученый считает, что, доказав знаменитую гипотезу, он сделал для науки всё, что мог. А впрочем, кто возьмется рассуждать о ходе мыслей столь яркого ученого и неординарного человека?.. От любых комментариев Перельман отказывается, а газете The Daily Telegraph он заявил: «Ничто из того, что я могу сказать, не представляет ни малейшего общественного интереса». Однако ведущие научные издания были единодушны в своих оценках, когда сообщили, что «Григорий Перельман, разрешив теорему Пуанкаре, встал в один ряд с величайшими гениями прошлого и настоящего».

Ежемесячный литературно-публицистический журнал и издательство.

Завистники утверждают, что французский математик Пьер Ферма вписал свое имя в историю всего одной фразой. На полях рукописи с формулировкой знаменитой теоремы в 1637 году он сделал пометку: "Я нашел удивительное решение, но здесь маловато места, чтобы его поместить". Тогда и началась удивительная математическая гонка, в которую наряду с выдающимися учеными включилась армия дилетантов.

В чем коварство задачи Ферма? На первый взгляд, она понятна даже школьнику.

В основе - известная каждому теорема Пифагора: в прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов: х 2 + у 2 = z 2 . Ферма утверждал: уравнение при любых степенях больше двух не имеет решения в целых числах.

Казалось бы, просто. Протяни руку, и вот ответ. Неудивительно, что академии разных стран, научные институты, даже редакции газет были завалены десятками тысяч доказательств. Их число беспрецедентно, уступает разве что проектам "вечных двигателей". Но если эти сумасшедшие идеи серьезная наука давно не рассматривает, то работы "фермистов" честно и заинтересованно изучает. И, увы, находит ошибки. Говорят, что за три с лишним века образовалось целое математическое кладбище решений теоремы.

Не зря говорят: близок локоть, а не укусишь. Проходили года, десятилетия, века, и задача Ферма представлялась все более удивительной и заманчивой. Вроде бы простенькая, она оказалась не по зубам стремительно наращивающему мускулы прогрессу. Человек уже расщепил атом, добрался до гена, ступил на Луну, а Ферма не давался, продолжая манить потомков ложными надеждами.

Однако попытки одолеть научную вершину не прошли даром. Первый шаг сделал великий Эйлер, доказав теорему для четвертой степени, затем для третьей. В конце XIX века немец Эрнст Куммер довел число степеней до ста. Наконец, вооружившись компьютерами, ученые увеличили эту цифру до 100 тысяч. Но Ферма-то говорил о любых степенях. В этом состояла вся загвоздка.

Конечно, мучились ученые над задачей не из-за спортивного интереса. Знаменитый математик Давид Гильберт говорил, что теорема - это пример, как вроде бы малозначительная проблема может оказать на науку огромное влияние. Работая над ней, ученые открыли совершенно новые математические горизонты, например, были заложены фундаменты теории чисел, алгебры, теории функций.

И все же Великая теорема была в 1995 году покорена. Ее решение представил американец из Принстонского университета Эндрю Уайлс, и оно официально признано научным сообществом. Более семи лет жизни отдал он, чтобы найти доказательство. По мнению ученых, эта выдающаяся работа свела воедино труды многих математиков, восстановив утраченные связи между разными ее разделами.

Итак, вершина взята, и наука ответ получила, - сказал корреспонденту "РГ" ученый секретарь Отделения математики Российской академии наук, доктор технических наук Юрий Вишняков. - Теорема доказана, пусть и не простейшим способом, на чем настаивал сам Ферма. А теперь желающие могут печатать свои варианты.

Однако семейство "фермистов" вовсе не собирается признавать доказательство Уайлса. Нет, они не опровергают решение американца, ведь оно очень сложное, а потому понятно лишь узкому кругу специалистов. Но не проходит недели, чтобы в Интернете ни появилось новое откровение очередного энтузиаста, "наконец-то поставившего точку в многолетней эпопее".

Кстати, буквально вчера в редакцию "РГ" позвонил один из старейших в нашей стране "фермистов" Всеволод Ярош: "А вы знаете, что теорему Ферма я доказал еще до Уайлса. Более того, потом нашел у него ошибку, о чем написал выдающемуся нашему математику академику Арнольду с просьбой напечатать об этом в научном журнале. Теперь жду ответа. Переписываюсь по этому поводу и с французской академией наук".

И вот только что, как сообщается в ряде СМИ, с "легким изяществом раскрыл великую тайну математики", еще один энтузиаст - бывший генеральный конструктор ПО "Полет" из Омска, доктор технических наук Александр Ильин. Решение оказалось настолько простым и коротким, что поместилось на маленьком участке газетной площади одного из центральных изданий.

Редакция "РГ" обратилась в ведущий в стране Институт математики им. Стеклова РАН с просьбой оценить это решение. Ученые были категоричны: нельзя комментировать газетную публикацию. Но после долгих уговоров и учитывая повышенный интерес к знаменитой задаче, согласились. По их словам, в опубликованном очередном доказательстве допущено несколько принципиальных ошибок. Кстати, их вполне мог бы заметить даже студент математического факультета.

И все же редакция хотела получить информацию из первых рук. Тем более что вчера в академии авиации и воздухоплавания Ильин должен был представить свое доказательство. Однако оказалось, что о такой академии мало кто знает даже среди специалистов. А когда все-таки с величайшим трудом удалось разыскать телефон ученого секретаря этой организации, то, как выяснилось, он даже не подозревал, что именно у них должно состояться столь историческое событие. Словом, корреспонденту "РГ" стать свидетелем мировой сенсации так и не удалось.

Итак, Великая теорема Ферма (нередко называемая послед­ней теоремой Ферма), сформулированная в 1637 году блестя­щим французским математиком Пьером Ферма, очень проста по своей сути и понятна любому человеку со средним образова­нием. Она гласит, что формула а в степени n + b в степени n = c в степени n не имеет натуральных (то есть не дробных) решений для n > 2. Вроде все просто и понятно, но лучшие ученые-математики и простые любители бились над поиском решения более трех с половиной веков.


Почему она так знаменита? Сейчас узнаем...



Мало ли доказанных, недоказанных и пока не доказанных теорем? Тут все дело в том, что Великая теорема Ферма являет собой самый большой контраст между простотой формулировки и сложностью доказательства. Великая теорема Ферма – задача невероятно трудная, и тем не менее ее формулировку может понять каждый с 5-ю классами средней школы, а вот доказательство – даже далеко не всякий математик-профессионал. Ни в физике, ни в химии, ни в биологии, ни в той же математике нет ни одной проблемы, которая формулировалась бы так просто, но оставалась нерешенной так долго. 2. В чем же она состоит?

Начнем с пифагоровых штанов Формулировка действительно проста – на первый взгляд. Как известно нам с детства, «пифагоровы штаны на все стороны равны». Проблема выглядит столь простой потому, что в основе ее лежало математическое утверждение, которое всем известно, – теорема Пифагора: в любом прямоугольном треугольнике квадрат, построенный на гипотенузе, равен сумме квадратов, построенных на катетах.

В V веке до н.э. Пифагор основал пифагорейское братство. Пифагорейцы, помимо прочего, изучали целочисленные тройки, удовлетворяющие равенству x²+y²=z². Они доказали, что пифагоровых троек бесконечно много, и получили общие формулы для их нахождения. Наверное, они пробовали искать тройки и более высоких степеней. Убедившись, что это не получается, пифагорейцы оставили бесполезные попытки. Члены братства были больше философами и эстетами, чем математиками.


То есть легко подобрать множество чисел, которые прекрасно удовлетворяют равенству x²+y²=z²

Начиная с 3, 4, 5 – действительно, младшекласснику понятно, что 9+16=25.

Или 5, 12, 13: 25 + 144 = 169. Замечательно.

Ну и так далее. А если взять похожее уравнение x³+y³=z³ ? Может, тоже есть такие числа?




И так далее (рис.1).

Так вот, оказывается, что их НЕТ. Вот тут начинается подвох. Простота – кажущаяся, потому что трудно доказать не наличие чего-то, а наоборот, отсутствие. Когда надо доказать, что решение есть, можно и нужно просто привести это решение.

Доказать отсутствие сложнее: например, некто говорит: такое-то уравнение не имеет решений. Посадить его в лужу? легко: бац – а вот оно, решение! (приведите решение). И все, оппонент сражен. А как доказать отсутствие?

Сказать: «Я не нашел таких решений»? А может, ты плохо искал? А вдруг они есть, только очень большие, ну очень, такие, что даже у сверхмощного компьютера пока не хватает силенок? Вот это-то и сложно.

В наглядном виде это можно показать так: если взять два квадратика подходящих размеров и разобрать на единичные квадратики, то из этой кучки единичных квадратиков получается третий квадратик (рис. 2):


А проделаем то же с третьим измерением (рис. 3) – не получается. Не хватает кубиков, или остаются лишние:





А вот математик XVII века француз Пьер де Ферма с увлечением исследовал общее уравнение x n +y n =z n . И, наконец, сделал вывод: при n>2 целочисленных решений не существует. Доказательство Ферма безвозвратно утеряно. Рукописи горят! Осталось лишь его замечание в «Арифметике» Диофанта: «Я нашел поистине удивительное доказательство этого предложения, но поля здесь слишком узки для того, чтобы вместить его».

Вообще-то, теорема без доказательства называется гипотезой. Но за Ферма закрепилась слава, что он никогда не ошибается. Даже если он не оставлял доказательства какого-нибудь утверждения, впоследствии оно подтверждалось. К тому же, Ферма доказал свой тезис для n=4. Так гипотеза французского математика вошла в историю как Великая теорема Ферма.

После Ферма над поиском доказательства работали такие ве­ликие умы, как Леонард Эйлер (в 1770 году им было предложено решение для n = 3),

Адриен Лежандр и Иоганн Дирихле (эти ученые в 1825 году совместно нашли доказательство для n = 5), Габриель Ламе (нашедший доказательство для n = 7) и многие другие. К середине 80-х годов прошлого века стало понятно, что ученый мир находится на пути к окончательному решению Великой теоремы Ферма, однако только в 1993 году математики увидели и поверили, что трехвековая эпопея по поиску доказа­тельства последней теоремы Ферма практически закончилась.

Легко показывается, что теорему Ферма достаточно доказать только для простых n: 3, 5, 7, 11, 13, 17, … При составных n доказательство остаётся в силе. Но и простых чисел бесконечно много…

В 1825 году, применив метод Софи Жермен, женщины-математика, Дирихле и Лежандр независимо друг от друга доказали теорему для n=5. В 1839 году тем же методом француз Габриель Ламе показал истинность теоремы для n=7. Постепенно теорему доказали почти для всех n, меньших ста.


Наконец, немецкий математик Эрнст Куммер в блестящем исследовании показал, что методами математики XIX века теорему в общем виде доказать нельзя. Премия Французской Академии Наук, учреждённая в 1847 году за доказательство теоремы Ферма, осталась невручённой.

В 1907 году богатый немецкий промышленник Пауль Вольфскель из-за неразделённой любви решил свести счёты с жизнью. Как истинный немец он назначил дату и время самоубийства: ровно в полночь. В последний день он составил завещание и написал письма друзьям и родственникам. Дела закончились раньше полночи. Надо сказать, что Пауль интересовался математикой. От нечего делать он пошёл в библиотеку и принялся читать знаменитую статью Куммера. Неожиданно ему показалось, что Куммер в ходе рассуждений совершил ошибку. Вольфскель стал с карандашом в руках разбирать это место статьи. Полночь миновала, наступило утро. Пробел в доказательстве был восполнен. Да и сам повод для самоубийства теперь выглядел совершенно нелепым. Пауль разорвал прощальные письма и переписал завещание.

Вскоре он умер естественной смертью. Наследники были изрядно удивлены: 100 000 марок (более 1 000 000 нынешних фунтов стерлингов) передавались на счёт Королевского научного общества Гёттингена, которое в том же году объявило о проведении конкурса на соискание премии Вольфскеля. 100 000 марок полагались доказавшему теорему Ферма. За опровержение теоремы не полагалось ни пфеннига…


Большинство профессиональных математиков считали поиск доказательства Великой теоремы Ферма безнадёжным делом и решительно отказывались тратить время на такое бесполезное занятие. Зато любители порезвились на славу. Через несколько недель после объявления на Гёттингенский университет обрушилась лавина «доказательств». Профессор Э. М. Ландау, в обязанность которого входил разбор присланных доказательств, раздал своим студентам карточки:


Уважаемый(ая) . . . . . . . .

Благодарю Вас за присланную Вами рукопись с доказательством Великой теоремы Ферма. Первая ошибка находится на стр. ... в строке... . Из-за неё всё доказательство утрачивает силу.
Профессор Э. М. Ландау











В 1963 году Пауль Коэн, опираясь на выводы Гёделя, доказал неразрешимость одной из двадцати трех проблем Гильберта — гипотезы континуума. А что, если Великая теорема Ферма тоже неразрешима?! Но истинных фанатиков Великой теоремы это ничуть не разочаровало. Появление компьютеров неожиданно дало математикам новый метод доказательства. После Второй мировой войны группы программистов и математиков доказали Великую теорему Ферма при всех значениях n до 500, затем до 1 000, а позже до 10 000.

В 80-е годы Сэмюэль Вагстафф поднял предел до 25 000, а в 90-ых математики заявили, что Великая теорема Ферма верна при всех значениях n до 4 миллионов. Но если от бесконечности отнять даже триллион триллионов, она не станет меньше. Математиков не убеждает статистика. Доказать Великую теорему значило доказать её для ВСЕХ n, уходящих в бесконечность.




В 1954 году два молодых японских друга-математика занялись исследованием модулярных форм. Эти формы порождают ряды чисел, каждая - свой ряд. Случайно Танияма сравнил эти ряды с рядами, порождаемыми эллиптическими уравнениями. Они совпадали! Но модулярные формы – геометрические объекты, а эллиптические уравнения – алгебраические. Между столь разными объектами никогда не находили связи.

Тем не менее, друзья после тщательной проверки выдвинули гипотезу: у каждого эллиптического уравнения существует двойник – модулярная форма, и наоборот. Именно эта гипотеза стала фундаментом целого направления в математике, но до тех пор, пока гипотеза Таниямы–Симуры не была доказана, всё здание могло рухнуть в любой момент.

В 1984 году Герхард Фрей показал, что решение уравнения Ферма, если оно существует, можно включить в некоторое эллиптическое уравнение. Двумя годами позже профессор Кен Рибет доказал, что это гипотетическое уравнение не может иметь двойника в модулярном мире. Отныне Великая теорема Ферма была нерасторжимо связана с гипотезой Таниямы–Симуры. Доказав, что любая эллиптическая кривая модулярна, мы делаем вывод, что эллиптического уравнения с решением уравнения Ферма не существует, и Великая теорема Ферма была бы тотчас же доказана. Но в течение тридцати лет доказать гипотезу Таниямы–Симуры не удавалось, и надежд на успех оставалось всё меньше.

В 1963 году, когда ему было всего десять лет, Эндрю Уайлс уже был очарован математикой. Когда он узнал о Великой теореме, то понял, что не сможет отступиться от неё. Школьником, студентом, аспирантом он готовил себя к этой задаче.

Узнав о выводах Кена Рибета, Уайлс с головой ушёл в доказательство гипотезы Таниямы–Симуры. Он решил работать в полной изоляции и секретности. «Я понимал, что всё, что имеет какое-то отношение к Великой теореме Ферма, вызывает слишком большой интерес… Слишком много зрителей заведомо мешают достижению цели». Семь лет упорной работы принесли плоды, Уайлс наконец завершил доказательство гипотезы Таниямы–Симуры.

В 1993 году английский математик Эндрю Уайлс представил миру свое доказательство Великой теоремы Ферма (Уайльс прочитал свой сенсационный доклад на конференции в Институте сэра Исаака Ньютона в Кембридже.) , работа над которым продолжалась более семи лет.







Пока в печати продолжалась шумиха, началась серьёзная работа по проверке доказательства. Каждый фрагмент доказательства должен быть тщательно изучен прежде, чем доказательство может быть признано строгим и точным. Уайлс провёл беспокойное лето в ожидании отзывов рецензентов, надеясь, что ему удастся получить их одобрение. В конце августа эксперты нашли недостаточно обоснованное суждение.

Оказалось, что данное решение содержит грубую ошибку, хотя в целом и верно. Уайлс не сдался, призвал на помощь известного специалиста в теории чисел Ричарда Тейлора, и уже в 1994 году они опубликовали исправлен­ное и дополненное доказательство теоремы. Самое удивительное, что эта работа заняла целых 130 (!) полос в математическом журнале «Annals of Mathematics». Но и на этом история не закончилась — последняя точка была поставлена только в следующем, 1995 году, когда в свет вышел окончательный и «идеальный», с математи­ческой точки зрения, вариант доказательства.

«…через полминуты после начала праздничного обеда по случаю её дня рождения, я подарил Наде рукопись полного доказательства» (Эндрю Уальс). Я ещё не говорил, что математики странные люди?






На этот раз никаких сомнений в доказательстве не было. Две статьи были подвергнуты самому тщательному анализу и в мае 1995 года были опубликованы в журнале «Annals of Mathematics».

С того момента прошло немало времени, однако в обществе до сих пор бытует мнение о неразрешимости Великой теоремы Фер­ма. Но даже те, кто знает о найденном доказательстве, продолжают работу в этом направлении — мало кого устраивает, что Великая теорема требует решения в 130 страниц!

Поэтому сейчас силы очень многих математиков (в основном это любители, а не профессио­нальные ученые) брошены на поиски простого и лаконичного до­казательства, однако этот путь, скорее всего, не приведет никуда...

Пьер Ферма, читая «Арифметику» Диофанта Александрийского и размышляя над её задачами, имел привычку записывать на полях книги результаты своих размышлений в виде кратких замечаний. Против восьмой задачи Диофанта на полях книги, Ферма записал: «Наоборот, невозможно разложить ни куб на два куба, ни биквадрат на два биквадрата, и, вообще, никакую степень, большую квадрата на две степени с тем же показателем. Я открыл этому поистине чудесное доказательство, но эти поля для него слишком узки » /Э.Т.Белл «Творцы математики». М.,1979, стр.69 /. Предлагаю Вашему вниманию элементарное доказательство теоремы ферма, которое может понять любой старшеклассник, увлекающийся математикой.

Сравним комментарий Ферма к задаче Диофанта с современной формулировкой великой теоремы Ферма, имеющей вид уравнения.
«Уравнение

x n + y n = z n (где n – целое число большее двух)

не имеет решений в целых положительных числах »

Комментарий находится с задачей в логической связи, аналогичной логической связи сказуемого с подлежащим. То, что утверждается задачей Диофанта, наоборот утверждается комментарием Ферма.

Комментарий Ферма можно так трактовать: если квадратное уравнение с тремя неизвестными имеет бесконечное множество решений на множестве всех троек пифагоровых чисел, то, наоборот, уравнение с тремя неизвестными в степени, большей квадрата

В уравнении нет даже намека на его связь с задачей Диофанта. Его утверждение требует доказательства, но при нём нет условия, из которого следует, что оно не имеет решений в целых положительных числах.

Известные мне варианты доказательства уравнения сводятся к следующему алгоритму.

  1. Уравнение теоремы Ферма принимается за её заключение, в справедливости которого убеждаются при помощи доказательства.
  2. Это же уравнение называют исходным уравнением, из которого должно исходить его доказательство.

В результате образовалась тавтология: «Если уравнение не имеет решений в целых положительных числах, то оно не имеет решений в целых положительных числах ».Доказательство тавтологии заведомо является неправильным и лишенным всякого смысла. Но её доказывают методом от противного.

  • Принимается предположение, противоположное тому, что утверждается уравнением, которое требуется доказать. Оно не должно противоречить исходному уравнению, а оно ему противоречит. Доказывать то, что принято без доказательства, и принимать без доказательства то, что требуется доказать, не имеет смысла.
  • На основании принятого предположения выполняются абсолютно правильные математические операции и действия, чтобы доказать, что оно противоречит исходному уравнению и является ложным.

Поэтому вот уже 370 лет доказательство уравнения великой теоремы Ферма остаётся неосуществимой мечтой специалистов и любителей математики.

Я принял уравнение за заключение теоремы, а восьмую задачу Диофанта и её уравнение — за условие теоремы.


«Если уравнение x 2 + y 2 = z 2 (1) имеет бесконечное множество решений на множестве всех троек пифагоровых чисел, то, наоборот, уравнение x n + y n = z n , где n > 2 (2) не имеет решений на множестве целых положительных чисел.»

Доказательство.

А) Всем известно, что уравнение (1) имеет бесконечное множество решений на множестве всех троек пифагоровых чисел. Докажем, что ни одна тройка пифагоровых чисел, являющаяся решением уравнения (1), не является решением уравнения (2).

На основании закона обратимости равенства, стороны уравнения (1) поменяем местами. Пифагоровы числа (z, х, у ) могут быть истолкованы как длины сторон прямоугольного треугольника, а квадраты ( x 2 , y 2 , z 2 ) могут быть истолкованы как площади квадратов, построенных на его гипотенузе и катетах.

Площади квадратов уравнения (1) умножим на произвольную высоту h :

z 2 h = x 2 h + y 2 h (3)

Уравнение (3) можно трактовать как равенство объема параллелепипеда сумме объёмов двух параллелепипедов.

Пусть высота трех параллелепипедов h = z :

z 3 = x 2 z + y 2 z (4)

Объем куба разложился на два объема двух параллелепипедов. Объём куба оставим без изменений, а высоту первого параллелепипед уменьшим до x и высоту второго параллелепипеда уменьшим до y . Объём куба больше суммы объёмов двух кубов:

z 3 > x 3 + y 3 (5)

На множестве троек пифагоровых чисел (х, у, z ) при n = 3 не может быть ни одного решения уравнения (2). Следовательно, на множестве всех троек пифагоровых чисел невозможно куб разложить на два куба.

Пусть в уравнении (3) высота трёх параллелепипедов h = z 2 :

z 2 z 2 = x 2 z 2 + y 2 z 2 (6)

Объем параллелепипеда разложился на сумму объёмов двух параллелепипедов.
Левую сторону уравнения (6) оставим без изменения. На правой его стороне высоту z 2 уменьшим до х в первом слагаемом и до у 2 во втором слагаемом.

Уравнение (6) обратилось в неравенство:

Объем параллелепипеда разложился на два объема двух параллелепипедов.

Левую сторону уравнения (8) оставим без изменения.
На правой стороне высоту z n-2 уменьшим до x n-2 в первом слагаемом и уменьшим до y n-2 во втором слагаемом. Уравнение (8) обращается в неравенство:

z n > x n + y n (9)

На множестве троек пифагоровых чисел не может быть ни одного решения уравнения (2).

Следовательно, на множестве всех троек пифагоровых чисел при всех n > 2 уравнение (2) не имеет решений.

Получено «постине чудесное доказательство», но только для троек пифагоровых чисел . В этом заключается недостаток доказательства и причина отказа П. Ферма от него.

B) Докажем, что уравнение (2) не имеет решений на множестве троек непифагоровых чисел, представляющем сбой семейство произвольно взятой тройки пифагоровых чисел z = 13, x = 12, y = 5 и семейство произвольно взятой тройки целых положительных чисел z = 21, x = 19, y = 16

Обе тройки чисел являются членами своих семейств:

(13, 12, 12); (13, 12,11);…; (13, 12, 5) ;…; (13,7, 1);…; (13,1, 1) (10)
(21, 20, 20); (21, 20, 19);…;(21, 19, 16);…;(21, 1, 1) (11)

Число членов семейства (10) и (11) равно половине произведения 13 на 12 и 21 на 20, т. е. 78 и 210.

В каждом члене семейства (10) присутствует z = 13 и переменные х и у 13 > x > 0 , 13 > y > 0 1

В каждом члене семейства (11) присутствует z = 21 и переменные х и у , которые принимают значения целых чисел 21 > x >0 , 21 > y > 0 . Переменные последовательно убывают на 1 .

Тройки чисел последовательности (10) и (11) можно представить в виде последовательности неравенств третьей степени:

13 3 < 12 3 + 12 3 ;13 3 < 12 3 + 11 3 ;…; 13 3 < 12 3 + 8 3 ; 13 3 > 12 3 + 7 3 ;…; 13 3 > 1 3 + 1 3
21 3 < 20 3 + 20 3 ; 21 3 < 20 3 + 19 3 ; …; 21 3 < 19 3 + 14 3 ; 21 3 > 19 3 + 13 3 ;…; 21 3 > 1 3 + 1 3

и в виде неравенств четвертой степени:

13 4 < 12 4 + 12 4 ;…; 13 4 < 12 4 + 10 4 ; 13 4 > 12 4 + 9 4 ;…; 13 4 > 1 4 + 1 4
21 4 < 20 4 + 20 4 ; 21 4 < 20 4 + 19 4 ; …; 21 4 < 19 4 + 16 4 ;…; 21 4 > 1 4 + 1 4

Правильность каждого неравенства удостоверяется возвышением чисел в третью и в четвертую степень.

Куб большего числа невозможно разложить на два куба меньших чисел. Он или меньше, или больше, суммы кубов двух меньших чисел.

Биквадрат большего числа невозможно разложить на два биквадрата меньших чисел. Он или меньше, или больше, суммы биквадратов меньших чисел.

С возрастанием показателя степени все неравенства, кроме левого крайнего неравенства, имеют одинаковый смысл:

Неравенств они все имеют одинаковый смысл: степень большего числа больше суммы степеней меньших двух чисел с тем же показателем:

13 n > 12 n + 12 n ; 13 n > 12 n + 11 n ;…; 13 n > 7 n + 4 n ;…; 13 n > 1 n + 1 n (12)
21 n > 20 n + 20 n ; 21 n > 20 n + 19 n ;…; ;…; 21 n > 1 n + 1 n (13)

Левый крайний член последовательностей (12) (13) представляет собой наиболее слабое неравенство. Его правильность определяет правильность всех последующих неравенств последовательности (12) при n > 8 и последовательности (13) при n > 14 .

Среди них не может быт ни одного равенства. Произвольно взятая тройка целых положительных чисел (21,19,16) не является решением уравнения (2) великой теоремы Ферма. Если произвольно взятая тройка целых положительных чисел не является решением уравнения, то уравнение не имеет решений на множестве целых положительных чисел, что и требовалось доказать.

С) В комментарии Ферма к задаче Диофанта утверждается, что невозможно разложить «вообще, никакую степень, большую квадрата, на две степени с тем же показателем ».

Целую степень, большую квадрата, действительно невозможно разложить на две степени с тем же показателем. Нецелую степень, большую квадрата можно разложить на две степени с тем же показателем.

Любая произвольно взятая тройка целых положительных чисел (z, x, y) может принадлежать семейству, каждый член которого состоит из постоянного числа z и двух чисел, меньших z . Каждый член семейства может быть представлен в форме неравенства, а все полученные неравенства — в виде последовательности неравенств:

z n < (z — 1) n + (z — 1) n ; z n < (z — 1) n + (z — 2) n ; …; z n > 1 n + 1 n (14)

Последовательность неравенств (14) начинается неравенствами, у которых левая сторона меньше правой стороны, а оканчивается неравенствами, у которых правая сторона меньше левой стороны. С возрастанием показателя степени n > 2 число неравенств правой стороны последовательности (14) увеличивается. При показателе степени n = k все неравенства левой стороны последовательности изменяют свой смысл и принимают смысл неравенств правой стороны неравенств последовательности (14). В результате возрастания показателя степени у всех неравенств левая сторона оказывается больше правой стороны:

z k > (z-1) k + (z-1) k ; z k > (z-1) k + (z-2) k ;…; z k > 2 k + 1 k ; z k > 1 k + 1 k (15)

При дальнейшем возрастании показателя степени n > k ни одно из неравенств не изменяет своего смысла и не обращается в равенство. На этом основании можно утверждать, что любая произвольно взятая тройка целых положительных чисел (z, x, y) при n > 2 , z > x , z > y

В произвольно взятой тройке целых положительных чисел z может быть сколь угодно большим натуральным числом. Для всех натуральных чисел, которые не больше z , большая теорема Ферма доказана.

D) Каким бы ни было большим число z , в натуральном ряду чисел до него имеется большое, но конечное множество целых чисел, а после него – бесконечное множество целых чисел.

Докажем, что все бесконечное множество натуральных чисел, больших z , образуют тройки чисел, которые не являются решениями уравнения большой теоремы Ферма, например, произвольно взятая тройка целых положительных чисел (z + 1, x ,y) , в которой z + 1 > x и z + 1 > y при всех значениях показателя степени n > 2 не является решением уравнения большой теоремы Ферма.

Произвольно взятая тройка целых положительных чисел (z + 1, x, y) может принадлежать семейству троек чисел, каждый член которого состоят из постоянного числа z + 1 и двух чисел х и у , принимающих различные значения, меньшие z + 1 . Члены семейства могут быть представлены в форме неравенств, у которых постоянная левая сторона меньше, или больше, правой стороны. Неравенства можно упорядоченно расположить в виде последовательности неравенств:

При дальнейшем возрастании показателя степени n > k до бесконечности ни одно из неравенств последовательности (17) не изменяет своего смысла и не обращается в равенство. В последовательности (16) неравенство, образованное из произвольно взятой тройки целых положительных чисел (z + 1, x, y) , может находиться в её правой части в виде (z + 1) n > x n + y n или находиться в её левой части в виде (z + 1) n < x n + y n .

В любом случае тройка целых положительных чисел (z + 1, x, y) при n > 2 , z + 1 > x , z + 1 > y в последовательности (16) представляет собой неравенство и не может представлять собой равенства, т. е. не может представлять собой решения уравнения большой теоремы Ферма.

Легко и просто понять происхождение последовательности степенных неравенств (16), в которой последнее неравенство левой стороны и первое неравенство правой стороны являются неравенствами противоположного смысла. Наоборот, нелегко и непросто школьникам, старшекласснику и старшекласснице, понять, каким образом из последовательности неравенств (16) образуется последовательность неравенств (17), в которой все неравенства одинакового смысла.

В последовательности (16) увеличение целой степени неравенств на 1 единицу обращает последнее неравенство левой стороны в первое неравенство противоположного смысла правой стороны. Таким образом, количество неравенств девой стороны последовательности уменьшается, а количество неравенств правой стороны увеличивается. Между последним и первым степенными неравенствами противоположного смысла в обязательном порядке находится степенное равенство. Его степень не может быть целым числом, так как между двумя последовательными натуральными числами находятся только нецелые числа. Степенное равенство нецелой степени, по условию теоремы, не может считаться решением уравнения (1).

Если в последовательности (16) продолжать увеличение степени на 1 единицу, то последнее неравенство её левой стороны обратится в первое неравенство противоположного смысла правой стороны. В результате не останется ни одного неравенства левой стороны и останутся только неравенства правой стороны, которые представят собой последовательность усиливающихся степенных неравенств (17). Дальнейшее увеличение их целой степени на 1 единицу лишь усиливает её степенные неравенства и категорически исключает возможность появления равенства в целой степени.

Следовательно, вообще, никакую целую степень натурального числа (z+1) последовательности степенных неравенств (17) невозможно разложить на две целых степени с тем же показателем. Поэтому уравнение (1) не имеет решений на бесконечном множестве натуральных чисел, что и требовалось доказать.

Следовательно, большая теорема Ферма доказана во всей всеобщности:

  • в разделе А) для всех троек (z, x, y) пифагоровых чисел (открытое Ферма поистине чудесное доказательство),
  • в разделе В) для всех членов семейства любой тройки (z, x, y) пифагоровых чисел,
  • в разделе С) для всех троек чисел (z, x, y) , не больших числа z
  • в разделе D) для всех троек чисел (z, x, y) натурального ряда чисел.

Изменения внесены 05.09.2010 г.

Какие теоремы можно и какие нельзя доказать от противного

В толковом словаре математических терминов дано определение доказательству от противного теоремы, противоположной обратной теореме.

«Доказательство от противного – метод доказательства теоремы (предложения), состоящий в том, что доказывают не саму теорему, а ей равносильную (эквивалентную), противоположную обратной (обратную противоположной) теорему. Доказательство от противного используют всякий раз, когда прямую теорему доказать трудно, а противоположную обратной легче. При доказательстве от противного заключение теоремы заменяется её отрицанием, и путём рассуждения приходят к отрицанию условия, т.е. к противоречию, к противному (противоположному тому, что дано; это приведение к абсурду и доказывает теорему».

Доказательство от противного очень часто применяется в математике. Доказательство от противного основано на законе исключённого третьего, заключающегося в том, что из двух высказываний (утверждений) А и А (отрицание А) одно из них истинно, а другое ложно». /Толковый словарь математических терминов: Пособие для учителей/О. В. Мантуров [и др.]; под ред. В. А. Диткина.- М.: Просвещение, 1965.- 539 с.: ил.-C.112/.

Не лучше было бы открыто заявить о том, что метод доказательства от противного не является математическим методом, хотя и используется в математике, что он является логическим методом и принадлежит логике. Допустимо ли утверждать, что доказательство от противного «используют всякий раз, когда прямую теорему доказать трудно», когда на самом деле его используют тогда, и только тогда, когда ему нет замены.

Заслуживает особого внимания и характеристика отношения друг к другу прямой и обратной ей теорем. «Обратная теорема для данной теоремы (или к данной теореме) — теорема, в которой условием является заключение, а заключением – условие данной теоремы. Данная теорема по отношению к обратной теореме называется прямой теоремой (исходной). В то же время обратная теорема к обратной теореме будет данной теоремой; поэтому прямая и обратная теоремы называются взаимно обратными. Если прямая (данная) теорема верна, то обратная теорема не всегда верна. Например, если четырёхугольник – ромб, то его диагонали взаимно перпендикулярны (прямая теорема). Если в четырёхугольнике диагонали взаимно перпендикулярны, то четырёхугольник есть ромб – это неверно, т. е. обратная теорема неверна». /Толковый словарь математических терминов: Пособие для учителей/О. В. Мантуров [и др.]; под ред. В. А. Диткина.- М.: Просвещение, 1965.- 539 с.: ил.-C.261 /.

Данная характеристика отношения прямой и обратной теорем не учитывает того, что условие прямой теоремы принимается как данное, без доказательства, так что его правильность не имеет гарантии. Условие обратной теоремы не принимается как данное, так как оно является заключением доказанной прямой теоремы. Его правильность засвидетельствована доказательством прямой теоремы. Это существенное логическое различие условий прямой и обратной теорем оказывается решающим в вопросе какие теоремы можно и какие нельзя доказать логическим методом от противного.

Допустим, что на примете имеется прямая теорема, которую доказать обычным математическим методом можно, но трудно. Сформулируем её в общем виде в краткой форме так: из А следует Е . Символ А имеет значение данного условия теоремы, принятого без доказательства. Символ Е имеет значение заключения теоремы, которое требуется доказать.

Доказывать прямую теорему будем от противного, логическим методом. Логическим методом доказывается теорема, которая имеет не математическое условие, а логическое условие. Его можно получить, если математическое условие теоремы из А следует Е , дополнить прямо противоположным условием из А не следует Е .

В результате получилось логическое противоречивое условие новой теоремы, заключающее в себе две части: из А следует Е и из А не следует Е . Полученное условие новой теоремы соответствует логическому закону исключённого третьего и соответствует доказательству теоремы методом от противного.

Согласно закону, одна часть противоречивого условия является ложной, другая его часть является истинной, а третье – исключено. Доказательство от противного имеет совей задачей и целью установить, именно какая часть из двух частей условия теоремы является ложной. Как только будет определена ложная часть условия, так будет установлено, что другая часть является истинной частью, а третье — исключено.

Согласно толковому словарю математических терминов, «доказательство есть рассуждение, в ходе которого устанавливается истинность или ложность какого-либо утверждения (суждения, высказывания, теоремы)» . Доказательство от противного есть рассуждение, в ходе которого устанавливается ложность (абсурдность) заключения, вытекающего из ложного условия доказываемой теоремы.

Дано: из А следует Е и из А не следует Е .

Доказать: из А следует Е .

Доказательство : Логическое условие теоремы заключает в себе противоречие, которое требует своего разрешения. Противоречие условия должно найти своё разрешение в доказательстве и его результате. Результат оказывается ложным при безупречном и безошибочном рассуждении. Причиной ложного заключения при логически правильном рассуждении может быть только противоречивое условие: из А следует Е и из А не следует Е .

Нет и тени сомнения в том, что одна часть условия является ложной, а другая в этом случае является истинной. Обе части условия имеют одинаковое происхождение, приняты как данные, предположенные, одинаково возможные, одинаково допустимые и т. д. В ходе логического рассуждения не обнаружено ни одного логического признака, который отличал бы одну часть условия от другой. Поэтому в одной и той же мере может быть из А следует Е и может быть из А не следует Е . Утверждение из А следует Е может быть ложным , тогда утверждение из А не следует Е будет истинным. Утверждение из А не следует Е может быть ложным, тогда утверждение из А следует Е будет истинным.

Следовательно, прямую теорему методом от противного доказать невозможно.

Теперь эту же прямую теорему докажем обычным математическим методом.

Дано: А .

Доказать: из А следует Е .

Доказательство.

1. Из А следует Б

2. Из Б следует В (по ранее доказанной теореме)).

3. Из В следует Г (по ранее доказанной теореме).

4. Из Г следует Д (по ранее доказанной теореме).

5. Из Д следует Е (по ранее доказанной теореме).

На основании закона транзитивности, из А следует Е . Прямая теорема доказана обычным методом.

Пусть доказанная прямая теорема имеет правильную обратную теорему: из Е следует А .

Докажем её обычным математическим методом. Доказательство обратной теоремы можно выразить в символической форме в виде алгоритма математических операций.

Дано: Е

Доказать: из Е следует А .

Доказательство.

1. Из Е следует Д

2. Из Д следует Г (по ранее доказанной обратной теореме).

3. Из Г следует В (по ранее доказанной обратной теореме).

4. Из В не следует Б (обратная теорема неверна). Поэтому и из Б не следует А .

В данной ситуации продолжать математическое доказательство обратной теоремы не имеет смысла. Причина возникновения ситуации – логическая. Неверную обратную теорему ничем заменить невозможно. Следовательно, данную обратную теорему доказать обычным математическим методом невозможно. Вся надежда – на доказательство данной обратной теоремы методом от противного.

Чтобы её доказать методом от противного, требуется заменить её математическое условие логическим противоречивым условием, заключающим в себе по смыслу две части – ложную и истинную.

Обратная теорема утверждает: из Е не следует А . Её условие Е , из которое следует заключение А , является результатом доказательства прямой теоремы обычным математическим методом. Это условие необходимо сохранить и дополнить утверждением из Е следует А . В результате дополнения получается противоречивое условие новой обратной теоремы: из Е следует А и из Е не следует А . Исходя из этого логически противоречивого условия, обратную теорему можно доказать посредством правильного логического рассуждения только, и только, логическим методом от противного. В доказательстве от противного любые математические действия и операции подчинены логическим и поэтому в счёт не идут.

В первой части противоречивого утверждения из Е следует А условие Е было доказано доказательством прямой теоремы. Во второй его части из Е не следует А условие Е было предположено и принято без доказательства. Какое-то из них одно является ложным, а другое – истинным. Требуется доказать, какое из них является ложным.

Доказываем посредством правильного логического рассуждения и обнаруживаем, что его результатом является ложное, абсурдное заключение. Причиной ложного логического заключения является противоречивое логическое условие теоремы, заключающее в себе две части – ложную и истинную. Ложной частью может быть только утверждение из Е не следует А , в котором Е было принято без доказательства. Именно этим оно отличается от Е утверждения из Е следует А , которое доказано доказательством прямой теоремы.

Следовательно, истинным является утверждение: из Е следует А , что и требовалось доказать.

Вывод : логическим методом от противного доказывается только та обратная теорема, которая имеет доказанную математическим методом прямую теорему и которую математическим методом доказать невозможно.

Полученный вывод приобретает исключительное по важности значение в отношении к методу доказательства от противного великой теоремы Ферма. Подавляющее большинство попыток её доказать имеет в своей основе не обычный математический метод, а логический метод доказательства от противного. Доказательство большой теоремы Ферма Уайлса не является исключением.

Дмитрий Абраров в статье «Теорема Ферма: феномен доказательств Уайлса» опубликовал комментарий к доказательству большой теоремы Ферма Уайлсом. По Абрарову, Уайлс доказывает большую теорему Ферма с помощью замечательной находки немецкого математика Герхарда Фрея (р. 1944), связавшего потенциальное решение уравнения Ферма x n + y n = z n , где n > 2 , с другим, совершенно непохожим на него, уравнением. Это новое уравнение задаётся специальной кривой (названной эллиптической кривой Фрея). Кривая Фрея задаётся уравнением совсем несложного вида:
.

«А именно Фрей сопоставил всякому решению (a, b, c) уравнение Ферма, то есть числам, удовлетворяющим соотношению a n + b n = c n , указанную выше кривую. В этом случае отсюда следовала бы великая теорема Ферма». (Цитата по: Абраров Д. «Теорема Ферма: феномен доказательств Уайлса»)

Другими словами, Герхард Фрей предположил, что уравнение большой теоремы Ферма x n + y n = z n , где n > 2 , имеет решения в целых положительных числах. Этими же решения являются, по предположению Фрея, решениями его уравнения
y 2 + x (x — a n) (y + b n) = 0 , которое задаётся его эллиптической кривой.

Эндрю Уайлс принял эту замечательную находку Фрея и с её помощью посредством математического метода доказал, что этой находки, то есть эллиптической кривой Фрея, не существует. Поэтому не существует уравнения и его решений, которые задаются несуществующей эллиптической кривой, Поэтому Уайлсу следовало бы принять вывод о том, что не существует уравнения большой теоремы Ферма и самой теоремы Ферма. Однако им принимается более скромное заключение том, что уравнение большой теоремы Ферма не имеет решений в целых положительных числах.

Неопровержимым фактом может являться то, что Уайлсом принято предположение, прямо противоположное по смыслу тому, что утверждается большой теоремой Ферма. Оно обязывает Уайлса доказывать большую теорему Ферма методом от противного. Последуем и мы его примеру и посмотрим, что из этого примера получается.

В большой теореме Ферма утверждается, что уравнение, x n + y n = z n , где n > 2 , не имеет решений в целых положительных числах.

Согласно логическому методу доказательства от противного, это утверждение сохраняется, принимается как данное без доказательства, и затем дополняется противоположным по смыслу утверждением: уравнение x n + y n = z n , где n > 2 , имеет решения в целых положительных числах.

Предположенное утверждение так же принимается как данное, без доказательства. Оба утверждения, рассматриваемые с точки зрения основных законов логики, являются одинаково допустимыми, равноправными и одинаково возможными. Посредством правильного рассуждения требуется установить, именно какое из них является ложным, чтобы затем установить, что другое утверждение является истинным.

Правильное рассуждение завершается ложным, абсурдным заключением, логической причиной которого может быть только противоречивое условие доказываемой теоремы, заключающее в себе две части прямо противоположного смысла. Они и явились логической причиной абсурдного заключения, результата доказательства от противного.

Однако в ходе логически правильного рассуждения не было обнаружено ни одного признака, по которому можно было бы установить, какое именно утверждение является ложным. Им может быть утверждение: уравнение x n + y n = z n , где n > 2 , имеет решений в целых положительных числах. На этом же основании им может быть утверждение: уравнение x n + y n = z n , где n > 2 , не имеет решений в целых положительных числах.

В итоге рассуждения вывод может быть только один: большую теорему Ферма методом от противного доказать невозможно .

Было бы совсем другое дело, если бы большая теорема Ферма была обратной теоремой, которая имеет прямую теорему, доказанную обычным математическим методом. В этом случае её можно было доказать от противного. А так как она является прямой теоремой, то её доказательство должно иметь в своей основе не логический метод доказательства от противного, а обычный математический метод.

По словам Д. Абрарова, самый известный из современных российских математиков академик В. И. Арнольд на доказательство Уайлса отреагировал «активно скептически». Академик заявил: «это не настоящая математика – настоящая математика геометрична и сильна связями с физикой».(Цитата по: Абраров Д. «Теорема Ферма: феномен доказательств Уайлса». Заявление академика выражает самую сущность нематематического доказательства Уайлса большой теоремы Ферма.

Методом от противного невозможно доказать ни того, что уравнение большой теоремы Ферма не имеет решений, ни того, что оно имеет решения. Ошибка Уайлса не математическая, а логическая — использование доказательства от противного там, где его использование не имеет смысла и большой теоремы Ферма не доказывает.

Не доказывается большая теорема Ферма и с помощью обычного математического метода, если в ней дано: уравнение x n + y n = z n , где n > 2 , не имеет решений в целых положительных числах, и если в ней требуется доказать: уравнение x n + y n = z n , где n > 2 , не имеет решений в целых положительных числах. В такой форме имеется не теорема, а тавтология, лишённая смысла.

Примечание. Моё доказательство БТФ обсуждалось на одном из форумов. Один из участников Trotil, специалист в теории чисел, сделал следующее авторитетное заявление под названием: «Краткий пересказ того, что сделал Миргородский». Привожу его дословно:

«А. Он доказал, что если z 2 = x 2 + y , то z n > x n + y n . Это хорошо известный и вполне очевидный факт.

В. Он взял две тройки — пифагорову и не пифагорову и показал простым перебором, что для конкретного, определённого семейства троек (78 и 210 штук) БТФ выполняется (и только для него).

С. А затем автором опущен тот факт, что из < в последующей степени может оказаться = , а не только > . Простой контрпример — переход n = 1 в n = 2 в пифагоровой тройке.

D. Этот пункт ничего существенного в доказательство БТФ не вносит. Вывод: БТФ не доказана».

Рассмотрю его заключение по пунктам.

А. В нём доказана БТФ для всего бесконечного множества троек пифагоровых чисел. Доказана геометрическим методом, который, как я полагаю, мной не открыт, а переоткрыт. А открыт он был, как я полагаю, самим П. Ферма. Именно его мог иметь в виду Ферма, когда писал:

«Я открыл этому поистине чудесное доказательство, но эти поля для него слишком узки». Данное моё предположение основано на том, что в задаче Диофанта, против которой, на полях книги, писал Ферма, речь идёт о решениях диофантова уравнения, которыми являются тройки пифагоровых чисел.

Бесконечное множество троек пифагоровых чисел является решениями диофатова уравнения, а в теореме Ферма, наоборот, ни одно из решений не может быть решением уравнения теоремы Ферма. И к этому факту поистине чудесное доказательство Ферма имеет непосредственное отношение. Позже Ферма мог распространить свою теорему на множество всех натуральных чисел. На множестве всех натуральных чисел БТФ не относится к «множеству исключительно красивых теорем». Это — моё предположение, которое ни доказать, ни опровергнуть невозможно. Его можно и принимать и отвергать.

В. В данном пункте мной доказывается, что как семейство произвольно взятой пифагоровой тройки чисел, так и семейство произвольно взятой не пифагоровой тройки чисел БТФ выполняется, Это — необходимое, но недостаточное и промежуточное звено в моём доказательстве БТФ. Взятые мной примеры семейства тройки пифагоровых чисел и семейства тройки не пифагоровых чисел имеют значение конкретных примеров, предполагающих и не исключающих существование аналогичных других примеров.

Утверждение Trotil, что я «показал простым перебором, что для конкретного, определённого семейства троек (78 и 210 штук) БТФ выполняется (и только для него) лишено основания. Он не может опровергнуть того факта, что я с таким же успехом могу взять другие примеры пифагоровой и не пифагоровой тройки для получения конкретного определённого семейства одной и другой тройки.

Какую пару троек я ни взял бы, проверка их пригодности для решения задачи может быть осуществлена, на мой взгляд, только методом «простого перебора». Какой-то другой метод мне не известен и не требуется. Если он пришёлся не по вкусу Trotil, то ему следовало бы предложить другой метод, чего он не делает. Не предлагая ничего взамен, осуждать «простой перебор», который в данном случае незаменим, некорректно.

С. Мною опущено = между < и < на основании того, что в доказательстве БТФ рассматривается уравнение z 2 = x 2 + y (1), в котором степень n > 2 целое положительное число. Из равенства, находящегося между неравенствами следует обязательное рассмотрение уравнения (1) при нецелом значении степени n > 2 . Trotil, считая обязательным рассмотрение равенства между неравенствами, фактически считает необходимым в доказательстве БТФ рассмотрение уравнения (1) при нецелом значении степени n > 2 . Я это сделал для себя и обнаружил, что уравнение (1) при нецелом значении степени n > 2 имеет решением тройку чисел: z, (z-1), (z-1) при нецелом показателе степени.

Судя по популярности запроса "теорема Ферма - краткое доказательство", эта математическая проблема действительно многих интересует. Эта теорема была впервые высказана Пьером де Ферма в 1637 году на краю копии "Арифметики", где он утверждал, что у него было ее решение, оно было слишком велико для того, чтобы поместиться на краю.

Первое успешное доказательство было опубликовано в 1995 году - это было полное доказательство теоремы Ферма, осуществленное Эндрю Уайлсом. Оно было описано как «ошеломляющий прогресс», и привело Уайлса к получению премии Абеля в 2016 году. Будучи описанным относительно кратко, доказательство теоремы Ферма также доказало большую часть теоремы модульности и открыло новые подходы к многочисленным другим проблемам и эффективным методам подъема модульности. Эти свершения продвинули математику на 100 лет вперед. Доказательство малой теоремы Ферма сегодня не является чем-то из ряда вон выходящим.

Неразрешенная проблема стимулировала развитие алгебраической теории чисел в XIX веке и поиск доказательства теоремы модульности в XX веке. Это одна из самых заметных теорем в истории математики и до полного доказательства великой теоремы Ферма методом деления она была в Книге рекордов Гиннеса как «самая сложная математическая проблема», одной из особенностей которой является то, что она имеет наибольшее количество неудачных доказательств.

Историческая справка

Пифагорейское уравнение x 2 + y 2 = z 2 имеет бесконечное число положительных целочисленных решений для x, y и z. Эти решения известны как троицы Пифагора. Примерно в 1637 году Ферма написал на краю книги, что более общее уравнение a n + b n = c n не имеет решений в натуральных числах, если n является целым числом, большим чем 2. Хотя сам Ферма утверждал, что имеет решение своей задачи, он не оставил никаких подробностей о ее доказательстве. Элементарное доказательство теоремы Ферма, заявленное ее создателем, скорее было его хвастливой выдумкой. Книга великого французского математика была обнаружена спустя 30 лет после его смерти. Это уравнение, получившее название «Последняя теорема Ферма», в течение трех с половиной столетий оставалось нерешенным в математике.

Теорема в конечном итоге стала одной из самых заметных нерешенных проблем математики. Попытки доказать это вызвали существенное развитие теории чисел, и с течением времени последняя теорема Ферма получила известность как нерешенная проблема математики.

Краткая история доказательств

Если n = 4, что доказано самим Ферма, достаточно доказать теорему для индексов n, которые являются простыми числами. В течение следующих двух столетий (1637-1839) гипотеза была доказана только для простых чисел 3, 5 и 7, хотя Софи Жермен обновляла и доказывала подход, который имел отношение ко всему классу простых чисел. В середине 19 века Эрнст Куммер расширил это и доказал теорему для всех правильных простых чисел, в результате чего нерегулярные простые числа анализировались индивидуально. Основываясь на работе Куммера и, используя сложные компьютерные исследования, другие математики смогли расширить решение теоремы, имея цель охватить все основные показатели до четырех миллионов, но док-во для всех экспонентов по-прежнему было недоступным (это означает, что математики обычно считали решение теоремы невозможным, чрезвычайно сложным, или недостижимым с современными знаниями).

Работа Шимуры и Таниямы

В 1955 году японские математики Горо Шимура и Ютака Танияма подозревали, что существует связь между эллиптическими кривыми и модульными формами, двумя совершенно разными областями математики. Известная в то время, как гипотеза Танияма-Шимура-Вейля и (в конечном счете) как теорема модульности, она существовала сама по себе, без видимой связи с последней теоремой Ферма. Она сама по себе широко рассматривалась как важная математическая теорема, но при этом считалась (как и теорема Ферма) невозможной для доказательства. В то же время доказательство великой теоремы Ферма (методом деления и применения сложных математических формул) было осуществлено лишь полвека спустя.

В 1984 году Герхард Фрей заметил очевидную связь между этими двумя ранее не связанными и нерешенными проблемами. Полное подтверждение того, что две теоремы были тесно связаны, было опубликовано в 1986 году Кеном Рибетом, который основывался на частичном доказательстве Жана-Пьера Серра, который доказал все, кроме одной части, известной как «гипотеза эпсилона». Проще говоря, эти работы Фрея, Серра и Рибе показали, что если бы теорема о модульности могла быть доказана, по крайней мере, для полустабильного класса эллиптических кривых, то и доказательство последней теоремы Ферма также рано или поздно будет открыто. Любое решение, которое может противоречить последней теореме Ферма, может также использоваться, чтобы противоречить теореме модульности. Поэтому, если теорема о модульности оказалась истинной, то по определению не может существовать решение, противоречащее последней теореме Ферма, а значит она вскоре должна была быть доказана.

Хотя обе теоремы были сложными проблемами для математики, считающимися нерешаемыми, работа двух японцев стала первым предположением о том, как последняя теорема Ферма могла бы быть продолжена и доказана для всех чисел, а не только для некоторых. Важным для исследователей, выбравших тему исследования, был тот факт, что в отличие от последней теоремы Ферма, теорема модульности была основной активной областью исследований, для которой было разработано доказательство, а не только исторической странностью, поэтому время, затраченное на ее работу, могло быть оправдано с профессиональной точки зрения. Однако общее мнение заключалось в том, что решение гипотезы Таниямы-Шимуры оказалось нецелесообразным.

Великая теорема Ферма: доказательство Уайлса

Узнав, что Рибет доказал правильность теории Фрея, английский математик Эндрю Уайлс, с детства интересующийся последней теоремой Ферма и имеющий опыт работы с эллиптическими кривыми и смежными областями, решил попытаться доказать гипотезу Таниямы-Шимуры, как способ доказать последнюю теорему Ферма. В 1993 году, спустя шесть лет после объявления о своей цели, тайно работая над проблемой решения теоремы, Уайльсу удалось доказать смежную гипотезу, что, в свою очередь, помогло бы ему доказать последнюю теорему Ферма. Документ Уайлса был огромным по размеру и масштабу.

Недостаток был обнаружен в одной части его оригинальной статьи во время рецензирования и потребовал еще один год сотрудничества с Ричардом Тейлором, чтобы совместно решить теорему. В результате окончательное доказательство Уайлсом великой теоремы Ферма не заставило долго себя ждать. В 1995 году оно было опубликовано в куда меньшем масштабе, чем предыдущая математическая работа Уайлса, наглядно показывая, он не ошибся в своих предыдущих выводах о возможности доказательства теоремы. Достижение Уайлса было широко растиражировано в популярной прессе и популяризировано в книгах и телевизионных программах. Остальные части гипотезы Танияма-Шимура-Вейля, которые теперь были доказаны и известны как теорема о модульности, впоследствии были доказаны другими математиками, которые основывались на работе Уайлса в период между 1996 и 2001 годами. За свое достижение Уайлс был удостоен чести и получил многочисленные награды, в том числе, премию Абеля 2016 года.

Доказательство Уайлсом последней теоремы Ферма является частным случаем решения теоремы модульности для эллиптических кривых. Тем не менее, это самый известный случай столь масштабной математической операции. Вместе с решением теоремы Рибе, британский математик также получил доказательство последней теоремы Ферма. Последняя теорема Ферма и теорема о модульности почти повсеместно считались недоказуемыми современными математиками, но Эндрю Уайлс смог доказать всему научному миру, что даже ученые мужи способны заблуждаться.

Уайлс впервые объявил о своем открытии в среду 23 июня 1993 года на лекции в Кембридже под названием «Модульные формы, эллиптические кривые и представления Галуа». Однако в сентябре 1993 года было установлено, что его расчеты содержат ошибку. Год спустя, 19 сентября 1994 года, в том, что он назвал бы «самым важным моментом его трудовой жизни», Уайлс наткнулся на откровение, которое позволило ему исправить решение задачи до того уровня, когда оно сможет удовлетворить математическое сообщество.

Характеристика работы

Доказательство теоремы Ферма Эндрю Уайлсом использует многие методы из алгебраической геометрии и теории чисел и имеет много разветвлений в этих областях математики. Он также использует стандартные конструкции современной алгебраической геометрии, такие как категория схем и теория Ивасавы, а также другие методы XX века, которые не были доступны Пьеру Ферма.

Две статьи, содержащие доказательства, составляют 129 страниц, которые писались в течение семи лет. Джон Коутс описал это открытие как одно из величайших достижений теории чисел, а Джон Конвей назвал его главным математическим свершением 20 века. Уайлс, чтобы доказать последнюю теорему Ферма путем доказательства теоремы модульности для частного случая полустабильных эллиптических кривых, разработал действенные методы подъема модульности и открыл новые подходы к многочисленным другим проблемам. За решение последней теоремы Ферма он был посвящен в рыцари и получил другие награды. Когда стало известно, что Уайлс выиграл премию Абеля, Норвежская академия наук описала его достижение как «восхитительное и элементарное доказательство последней теоремы Ферма».

Как это было

Одним из людей, анализировавших первоначальную рукопись Уайлса с решением теоремы, был Ник Кац. В ходе своего обзора он задал британцу ряд уточняющих вопросов, которые заставили Уайлса признать, что его работа явно содержит пробел. В одной критической части доказательства была допущена ошибка, которая давала оценку для порядка конкретной группы: система Эйлера, используемая для расширения метода Колывагина и Флача, была неполной. Ошибка, однако, не сделала его работу бесполезной - каждая часть работы Уайлса была очень значительной и новаторской сама по себе, как и многие разработки и методы, которые он создал в ходе своей работы и которые затрагивали лишь одну часть рукописи. Тем не менее в этой первоначальной работе, опубликованной в 1993 году, действительно не было доказательства великой теоремы Ферма.

Уайлс провел почти год, пытаясь заново найти решение теоремы - сперва в одиночку, а затем в сотрудничестве со своим бывшим учеником Ричардом Тейлором, но все, казалось, было тщетным. К концу 1993 года распространились слухи, что при проверке доказательство Уайльса потерпело неудачу, но насколько серьезной была эта неудача, известно не было. Математики начали оказывать давление на Уайлса, чтобы он раскрыл детали своей работы, независимо от того, была она выполнена или нет, чтобы более широкое сообщество математиков могло исследовать и использовать все, чего ему удалось добиться. Вместо того, чтобы быстро исправить свою ошибку, Уайлс лишь обнаружил дополнительные сложные аспекты в доказательстве великой теоремы Ферма, и наконец-то осознал, насколько сложной она является.

Уайлс заявляет, что утром 19 сентября 1994 года он был на грани того, чтобы бросить все и сдаться, и почти смирился с тем, что потерпел неудачу. Он готов был опубликовать свою неоконченную работу, чтобы другие могли на ней основываться и найти, в чем он ошибся. Английский математик решил дать себе последний шанс и в последний раз проанализировал теорему, чтобы попытаться понять основные причины, по которым его подход не работал, как вдруг внезапно осознал, что подход Колывагина-Флака не будет работать, пока он не подключит к процессу доказательства еще и теорию Ивасавы, заставив ее работать.

6 октября Уайлс попросил трех коллег (включая Фалтинса) рассмотреть его новую работу, а 24 октября 1994 г. он представил две рукописи - «Модульные эллиптические кривые и последняя теорема Ферма» и «Теоретические свойства кольца некоторых Гекке-алгебр», вторую из которых Уайлс написал совместно с Тейлором и доказал, что были выполнены определенные условия, необходимые для оправдания исправленного шага в основной статье.

Эти две статьи были проверены и, наконец, опубликованы в качестве полнотекстового издания в журнале «Анналы математики» за май 1995 года. Новые расчеты Эндрю были широко проанализированы и научное сообщество в конце концов их признало. В этих работах была установлена теорема модульности для полустабильных эллиптических кривых - последний шаг к доказательству великой теоремы Ферма, спустя 358 лет после того, как она была создана.

История великой проблемы

Решение этой теоремы считалось самой большой проблемой в математике на протяжении многих столетий. В 1816 и в 1850 годах Французская академия наук предложила приз за общее доказательство великой теоремы Ферма. В 1857 году Академия присудила 3000 франков и золотую медаль Куммеру за исследования идеальных чисел, хотя он и не подавал заявку на приз. Еще одна премия была предложена ему в 1883 году Брюссельской академией.

Премия Вольфскеля

В 1908 году немецкий промышленник и математик-любитель Пауль Вольфскель завещал 100 000 золотых марок (большую сумму для того времени) Академии наук Геттингена, чтобы эти деньги стали призом за полное доказательство великой теоремы Ферма. 27 июня 1908 года Академия опубликовала девять правил награждения. Среди прочего, эти правила требовали опубликования доказательства в рецензируемом журнале. Приз должен был присуждаться лишь через два года после публикации. Срок конкурса должен был истечь 13 сентября 2007 - примерно через столетие после своего начала. 27 июня 1997 года Уайлс получил призовые деньги Вольфсхеля, а затем еще 50 000 долларов. В марте 2016 года он получил 600 000 евро от правительства Норвегии в рамках премии Абеля за «потрясающее доказательство последней теоремы Ферма с помощью гипотезы модульности для полустабильных эллиптических кривых, открывающей новую эру в теории чисел». Это был мировой триумф скромного англичанина.

До доказательства Уайлса теорема Ферма, как уже говорилось ранее, считалась абсолютно нерешаемой на протяжении целых столетий. Тысячи неверных доказательств в разное время были представлены комитету Вольфскеля, составив примерно 10 футов (3 метра) корреспонденции. Только в первый год существования премии (1907-1908) было подано 621 заявок с претензией на решение теоремы, хотя к 1970-м годам их количество уменьшилось примерно до 3-4 заявок в месяц. По мнению Ф. Шлихтинга, рецензента Вольфсхеля, большинство доказательств были основаны на элементарных методах, преподаваемых в школах, и часто представлялись «людьми с техническим образованием, но неудачной карьерой». По словам историка математики Говарда Эйвса, последняя теорема Ферма установила своеобразный рекорд - это теорема, набравшая наибольшее количество неверных доказательств.

Лавры Ферма достались японцам

Как уже говорилось ранее, примерно в 1955 году японские математики Горо Шимура и Ютака Танияма открыли возможную связь между двумя, по-видимому, совершенно разными отраслями математики - эллиптическими кривыми и модульными формами. Полученная в результате их исследований теорема модульности (в то время известная как гипотеза Таниямы-Шимуры) гласит, что каждая эллиптическая кривая является модулярной, что означает, что она может быть связана с уникальной модулярной формой.

Теория первоначально была отклонена как маловероятная или весьма спекулятивная, но была воспринята более серьезно, когда теоретик чисел Андре Вейль нашел доказательства, подтверждающие выводы японцев. В результате гипотеза часто называлась гипотезой Таниямы-Шимуры-Вейля. Она стала частью программы Langlands, представляющей собой список важных гипотез, требующих доказательства в будущем.

Даже после серьезного внимания, гипотеза была признана современными математиками как чрезвычайно трудная или, возможно, недоступная для доказательства. Теперь именно эта теорема ждет своего Эндрю Уайлса, который смог бы удивить весь мир ее решением.

Теорема Ферма: доказательство Перельмана

Не смотря на расхожий миф, российский математик Григорий Перельман, при всей своей гениальности, не имеет никакого отношения к теореме Ферма. Что, впрочем, никак не умаляет его многочисленных заслуг перед научным сообществом.



Понравилась статья? Поделитесь с друзьями!