Матричные операции. Умножение квадратных матриц

Матрицей размерности называется прямоугольная таблица, состоящая изэлементов, расположенных вm строках и n столбцах.

Элементы матрицы (первый индексi − номер строки, второй индекс j − номер столбца) могут быть числами, функциями и т. п. Матрицы обозначают заглавными буквами латинского алфавита.

Матрица называется квадратной , если у нее число строк равно числу столбцов (m = n ). В этом случае число n называется порядком матрицы, а сама матрица называется матрицей n -го порядка.

Элементы с одинаковыми индексами образуютглавную диагональ квадратной матрицы, а элементы (т.е. имеющие сумму индексов, равнуюn +1) − побочную диагональ .

Единичной матрицей называется квадратная матрица, все элементы главной диагонали которой равны 1, а остальные элементы равны 0. Она обозначается буквой Е .

Нулевая матрица − это матрица, все элементы которой равны 0. Нулевая матрица может быть любого размера.

К числу линейных операций над матрицами относятся:

1) сложение матриц;

2) умножение матриц на число.

Операция сложения матриц определена только для матриц одинаковой размерности.

Суммой двух матриц А и В называется матрица С , все элементы которой равны суммам соответствующих элементов матриц А и В :

.

Произведением матрицы А на число k называется матрица В , все элементы которой равны соответствующим элементам данной матрицы А , умноженным на число k :

Операция умножения матриц вводится для матриц, удовлетворяющих условию: число столбцов первой матрицы равно числу строк второй.

Произведением матрицы А размерности на матрицу В размерности называется матрицаС размерности , элементi -ой строки и j -го столбца которой равен сумме произведений элементов i -ой строки матрицы А на соответствующие элементы j -го столбца матрицы В :

Произведение матриц (в отличие от произведения действительных чисел) не подчиняется переместительному закону, т.е. в общем случае А В В А .

1.2. Определители. Свойства определителей

Понятие определителя вводится только для квадратных матриц.

Определителем матрицы 2-го порядка называется число, вычисляемое по следующему правилу

.

Определителем матрицы 3-го порядка называется число, вычисляемое по следующему правилу:

Первое из слагаемых со знаком «+» представляет собой произведение элементов, расположенных на главной диагонали матрицы (). Остальные два содержат элементы, расположенные в вершинах треугольников с основанием, параллельным главной диагонали (и). Со знаком «-» входят произведения элементов побочной диагонали () и элементов, образующих треугольники с основаниями, параллельными этой диагонали (и).

Это правило вычисления определителя 3-го порядка называется правилом треугольников (или правилом Саррюса).

Свойства определителей рассмотрим на примере определителей 3-го порядка.

1. При замене всех строк определителя на столбцы с теми же номерами, что и строки, определитель своего значения не меняет, т.е. строки и столбцы определителя равноправны

.

2. При перестановке двух строк (столбцов) определитель меняет свой знак.

3. Если все элементы некоторой строки (столбца) нули, то определитель равен 0.

4. Общий множитель всех элементов строки (столбца) можно вынести за знак определителя.

5. Определитель, содержащий две одинаковые строки (столбца), равен 0.

6. Определитель, содержащий две пропорциональные строки (столбца), равен нулю.

7. Если каждый элемент некоторого столбца (строки) определителя представляет сумму двух слагаемых, то определитель равен сумме двух определителей, в одном из которых в том же столбце (строке) стоят первые слагаемые, а в другом − вторые. Остальные элементы у обоих определителей одинаковые. Так,

.

8. Определитель не изменится, если к элементам какого-либо его столбца (строки) прибавить соответствующие элементы другого столбца (строки), умноженные на одно и то же число.

Сложение матриц:

Вычитание и сложение матриц сводится к соответствующим операциям над их элементами. Операция сложения матриц вводится только для матриц одинакового размера, т. е. для матриц , у которых число строк и столбцов соответственно равно. Суммой матриц А и В, называется матрица С, элементы которой равны сумме соответствующих элементов. С = А + В c ij = a ij + b ij Аналогично определяется разность матриц .

Умножение матрицы на число:

Операция умножения (деления) матрицы любого размера на произвольное число сводится к умножению (делению) каждого элемента матрицы на это число. Произведением матрицы А на число k называется матрица В, такая что

b ij = k × a ij . В = k × A b ij = k × a ij . Матрица - А = (-1) × А называется противоположной матрице А.

Свойства сложения матриц и умножения матрицы на число:

Операции сложения матриц и умножения матрицы на число обладают следующими свойствами: 1. А + В = В + А; 2. А + (В + С) = (А + В) + С; 3. А + 0 = А; 4. А - А = 0; 5. 1 × А = А; 6. α × (А + В) = αА + αВ; 7. (α + β) × А = αА + βА; 8. α × (βА) = (αβ) × А; , где А, В и С - матрицы, α и β - числа.

Умножение матриц (Произведение матриц):

Операция умножения двух матриц вводится только для случая, когда число столбцов первой матрицы равно числу строк второй матрицы . Произведением матрицы А m×n на матрицу В n×p , называется матрица С m×p такая, что с ik = a i1 × b 1k + a i2 × b 2k + ... + a in × b nk , т. е. находиться сумма произведений элементов i - ой строки матрицы А на соответствующие элементы j - ого столбца матрицы В. Если матрицы А и В квадратные одного размера, то произведения АВ и ВА всегда существуют. Легко показать, что А × Е = Е × А = А, где А квадратная матрица , Е - единичная матрица того же размера.

Свойства умножения матриц:

Умножение матриц не коммутативно, т.е. АВ ≠ ВА даже если определены оба произведения. Однако, если для каких - либо матриц соотношение АВ=ВА выполняется, то такие матрицы называются перестановочными. Самым характерным примером может служить единичная матрица , которая является перестановочной с любой другой матрицей того же размера. Перестановочными могут быть только квадратные матрицы одного и того же порядка. А × Е = Е × А = А

Умножение матриц обладает следующими свойствами: 1. А × (В × С) = (А × В) × С; 2. А × (В + С) = АВ + АС; 3. (А + В) × С = АС + ВС; 4. α × (АВ) = (αА) × В; 5. А × 0 = 0; 0 × А = 0; 6. (АВ) Т = В Т А Т; 7. (АВС) Т = С Т В Т А Т; 8. (А + В) Т = А Т + В Т;

2. Определители 2-го и 3-го порядков. Свойства определителей.

Определителем матрицы второго порядка, или определителем второго порядка, называется число, которое вычисляется по формуле:

Определителем матрицы третьего порядка, или определителем третьего порядка, называется число, которое вычисляется по формуле:

Это число представляет алгебраическую сумму, состоящую из шести слагаемых. В каждое слагаемое входит ровно по одному элементу из каждой строки и каждого столбца матрицы . Каждое слагаемое состоит из произведения трех сомножителей.

Знаки, с которыми члены определителя матрицы входят в формулу нахождения определителя матрицы третьего порядка можно определить, пользуясь приведенной схемой, которая называется правилом треугольников или правилом Сарруса. Первые три слагаемые берутся со знаком плюс и определяются из левого рисунка, а последующие три слагаемые берутся со знаком минус и определяются из правого рисунка.

Определить количество слагаемых, для нахождения определителя матрицы , в алгебраической сумме, можно вычислив факториал: 2! = 1 × 2 = 2 3! = 1 × 2 × 3 = 6

Свойства определителей матриц

Свойства определителей матриц:

Свойство № 1:

Определитель матрицы не изменится, если его строки заменить столбцами, причем каждую строку столбцом с тем же номером, и наоборот (Транспонирование). |А| = |А| Т

Следствие:

Столбцы и строки определителя матрицы равноправны, следовательно, свойства присущие строкам выполняются и для столбцов.

Свойство № 2:

При перестановке 2-х строк или столбцов определитель матрицы изменит знак на противоположный, сохраняя абсолютную величину, т.е.:

Свойство № 3:

Определитель матрицы , имеющий два одинаковых ряда, равен нулю.

Свойство № 4:

Общий множитель элементов какого-либо ряда определителя матрицы можно вынести за знак определителя .

Следствия из свойств № 3 и № 4:

Если все элементы некоторого ряда (строки или столбца) пропорциональны соответствующим элементам параллельного ряда, то такой определитель матрицы равен нулю.

Свойство № 5:

определителя матрицы равны нулю, то сам определитель матрицы равен нулю.

Свойство № 6:

Если все элементы какой–либо строки или столбца определителя представлены в виде суммы 2-х слагаемых, то определитель матрицы можно представить в виде суммы 2-х определителей по формуле:

Свойство № 7:

Если к какой–либо строке (или столбцу) определителя прибавить соответствующие элементы другой строки (или столбца), умноженные на одно и тоже число, то определитель матрицы не изменит своей величины.

Пример применения свойств для вычисления определителя матрицы :

Итак, в предыдущем уроке мы разобрали правила сложения и вычитания матриц. Это настолько простые операции, что большинство студентов понимают их буквально с ходу.

Однако вы рано радуетесь. Халява закончилась — переходим к умножению. Сразу предупрежу: умножить две матрицы — это вовсе не перемножить числа, стоящие в клеточках с одинаковыми координатами, как бы вы могли подумать. Тут всё намного веселее. И начать придётся с предварительных определений.

Согласованные матрицы

Одна из важнейших характеристик матрицы — это её размер. Мы уже сто раз говорили об этом: запись $A=\left[ m\times n \right]$ означает, что в матрице ровно $m$ строк и $n$ столбцов. Как не путать строки со столбцами, мы тоже уже обсуждали. Сейчас важно другое.

Определение. Матрицы вида $A=\left[ m\times n \right]$ и $B=\left[ n\times k \right]$, в которых количество столбцов в первой матрице совпадает с количеством строк во второй, называются согласованными.

Ещё раз: количество столбцов в первой матрице равно количеству строк во второй! Отсюда получаем сразу два вывода:

  1. Нам важен порядок матриц. Например, матрицы $A=\left[ 3\times 2 \right]$ и $B=\left[ 2\times 5 \right]$ являются согласованными (2 столбца в первой матрице и 2 строки во второй), а вот наоборот — матрицы $B=\left[ 2\times 5 \right]$ и $A=\left[ 3\times 2 \right]$ — уже не согласованы (5 столбцов в первой матрице — это как бы не 3 строки во второй).
  2. Согласованность легко проверить, если выписать все размеры друг за другом. На примере из предыдущего пункта: «3 2 2 5» — посередине одинаковые числа, поэтому матрицы согласованы. А вот «2 5 3 2» — не согласованы, поскольку посередине разные числа.

Кроме того, капитан очевидность как бы намекает, что квадратные матрицы одинакового размера $\left[ n\times n \right]$ согласованы всегда.

В математике, когда важен порядок перечисления объектов (например, в рассмотренном выше определении важен порядок матриц), часто говорят об упорядоченных парах. Мы встречались с ними ещё в школе: думаю, и ежу понятно, что координаты $\left(1;0 \right)$ и $\left(0;1 \right)$ задают разные точки на плоскости.

Так вот: координаты — это тоже упорядоченные пары, которые составляются из чисел. Но ничто не мешает составить такую пару из матриц. Тогда можно будет сказать: «Упорядоченная пара матриц $\left(A;B \right)$ является согласованной, если количество столбцов в первой матрице совпадает с количеством строк во второй».

Ну и что с того?

Определение умножения

Рассмотрим две согласованные матрицы: $A=\left[ m\times n \right]$ и $B=\left[ n\times k \right]$. И определим для них операцию умножения.

Определение. Произведение двух согласованных матриц $A=\left[ m\times n \right]$ и $B=\left[ n\times k \right]$ — это новая матрица $C=\left[ m\times k \right]$, элементы которой считаются по формуле:

\[\begin{align} & {{c}_{i;j}}={{a}_{i;1}}\cdot {{b}_{1;j}}+{{a}_{i;2}}\cdot {{b}_{2;j}}+\ldots +{{a}_{i;n}}\cdot {{b}_{n;j}}= \\ & =\sum\limits_{t=1}^{n}{{{a}_{i;t}}\cdot {{b}_{t;j}}} \end{align}\]

Обозначается такое произведение стандартно: $C=A\cdot B$.

У тех, кто впервые видит это определение, сразу возникает два вопроса:

  1. Что это за лютая дичь?
  2. А почему так сложно?

Что ж, обо всём по порядку. Начнём с первого вопроса. Что означают все эти индексы? И как не ошибиться при работе с реальными матрицами?

Прежде всего заметим, что длинная строчка для расчёта ${{c}_{i;j}}$ (специально поставил точку с запятой между индексами, чтобы не запутаться, но вообще их ставить не надо — я сам задолбался набирать формулу в определении) на самом деле сводится к простому правилу:

  1. Берём $i$-ю строку в первой матрице;
  2. Берём $j$-й столбец во второй матрице;
  3. Получаем две последовательности чисел. Перемножаем элементы этих последовательностей с одинаковыми номерами, а затем складываем полученные произведения.

Данный процесс легко понять по картинке:


Схема перемножения двух матриц

Ещё раз: фиксируем строку $i$ в первой матрице, столбец $j$ во второй матрице, перемножаем элементы с одинаковыми номерами, а затем полученные произведения складываем — получаем ${{c}_{ij}}$. И так для всех $1\le i\le m$ и $1\le j\le k$. Т.е. всего будет $m\times k$ таких «извращений».

На самом деле мы уже встречались с перемножением матриц в школьной программе, только в сильно урезанном виде. Пусть даны вектора:

\[\begin{align} & \vec{a}=\left({{x}_{a}};{{y}_{a}};{{z}_{a}} \right); \\ & \overrightarrow{b}=\left({{x}_{b}};{{y}_{b}};{{z}_{b}} \right). \\ \end{align}\]

Тогда их скалярным произведением будет именно сумма попарных произведений:

\[\overrightarrow{a}\times \overrightarrow{b}={{x}_{a}}\cdot {{x}_{b}}+{{y}_{a}}\cdot {{y}_{b}}+{{z}_{a}}\cdot {{z}_{b}}\]

По сути, в те далёкие годы, когда деревья были зеленее, а небо ярче, мы просто умножали вектор-строку $\overrightarrow{a}$ на вектор-столбец $\overrightarrow{b}$.

Сегодня ничего не поменялось. Просто теперь этих векторов-строк и столбцов стало больше.

Но хватит теории! Давайте посмотрим на реальные примеры. И начнём с самого простого случая — квадратных матриц.

Умножение квадратных матриц

Задача 1. Выполните умножение:

\[\left[ \begin{array}{*{35}{r}} 1 & 2 \\ -3 & 4 \\\end{array} \right]\cdot \left[ \begin{array}{*{35}{r}} -2 & 4 \\ 3 & 1 \\\end{array} \right]\]

Решение. Итак, у нас две матрицы: $A=\left[ 2\times 2 \right]$ и $B=\left[ 2\times 2 \right]$. Понятно, что они согласованы (квадратные матрицы одинакового размера всегда согласованы). Поэтому выполняем умножение:

\[\begin{align} & \left[ \begin{array}{*{35}{r}} 1 & 2 \\ -3 & 4 \\\end{array} \right]\cdot \left[ \begin{array}{*{35}{r}} -2 & 4 \\ 3 & 1 \\\end{array} \right]=\left[ \begin{array}{*{35}{r}} 1\cdot \left(-2 \right)+2\cdot 3 & 1\cdot 4+2\cdot 1 \\ -3\cdot \left(-2 \right)+4\cdot 3 & -3\cdot 4+4\cdot 1 \\\end{array} \right]= \\ & =\left[ \begin{array}{*{35}{r}} 4 & 6 \\ 18 & -8 \\\end{array} \right]. \end{align}\]

Вот и всё!

Ответ: $\left[ \begin{array}{*{35}{r}}4 & 6 \\ 18 & -8 \\\end{array} \right]$.

Задача 2. Выполните умножение:

\[\left[ \begin{matrix} 1 & 3 \\ 2 & 6 \\\end{matrix} \right]\cdot \left[ \begin{array}{*{35}{r}}9 & 6 \\ -3 & -2 \\\end{array} \right]\]

Решение. Опять согласованные матрицы, поэтому выполняем действия:\[\]

\[\begin{align} & \left[ \begin{matrix} 1 & 3 \\ 2 & 6 \\\end{matrix} \right]\cdot \left[ \begin{array}{*{35}{r}} 9 & 6 \\ -3 & -2 \\\end{array} \right]=\left[ \begin{array}{*{35}{r}} 1\cdot 9+3\cdot \left(-3 \right) & 1\cdot 6+3\cdot \left(-2 \right) \\ 2\cdot 9+6\cdot \left(-3 \right) & 2\cdot 6+6\cdot \left(-2 \right) \\\end{array} \right]= \\ & =\left[ \begin{matrix} 0 & 0 \\ 0 & 0 \\\end{matrix} \right]. \end{align}\]

Как видим, получилась матрица, заполненная нулями

Ответ: $\left[ \begin{matrix} 0 & 0 \\ 0 & 0 \\\end{matrix} \right]$.

Из приведённых примеров очевидно, что умножение матриц — не такая уж и сложная операция. По крайней мере для квадратных матриц размера 2 на 2.

В процессе вычислений мы составили промежуточную матрицу, где прямо расписали, какие числа входят в ту или иную ячейку. Именно так и следует делать при решении настоящих задач.

Основные свойства матричного произведения

В двух словах. Умножение матриц:

  1. Некоммутативно: $A\cdot B\ne B\cdot A$ в общем случае. Бывают, конечно, особые матрицы, для которых равенство $A\cdot B=B\cdot A$ (например, если $B=E$ — единичной матрице), но в абсолютном большинстве случаев это не работает;
  2. Ассоциативно: $\left(A\cdot B \right)\cdot C=A\cdot \left(B\cdot C \right)$. Тут без вариантов: стоящие рядом матрицы можно перемножать, не переживая за то, что стоит левее и правее этих двух матриц.
  3. Дистрибутивно: $A\cdot \left(B+C \right)=A\cdot B+A\cdot C$ и $\left(A+B \right)\cdot C=A\cdot C+B\cdot C$ (в силу некоммутативности произведения приходится отдельно прописывать дистрибутивность справа и слева.

А теперь — всё то же самое, но более подробно.

Умножение матриц во многом напоминает классическое умножение чисел. Но есть отличия, важнейшее из которых состоит в том, что умножение матриц, вообще говоря, некоммутативно .

Рассмотрим ещё раз матрицы из задачи 1. Прямое их произведение мы уже знаем:

\[\left[ \begin{array}{*{35}{r}} 1 & 2 \\ -3 & 4 \\\end{array} \right]\cdot \left[ \begin{array}{*{35}{r}} -2 & 4 \\ 3 & 1 \\\end{array} \right]=\left[ \begin{array}{*{35}{r}}4 & 6 \\ 18 & -8 \\\end{array} \right]\]

Но если поменять матрицы местами, то получим совсем другой результат:

\[\left[ \begin{array}{*{35}{r}} -2 & 4 \\ 3 & 1 \\\end{array} \right]\cdot \left[ \begin{array}{*{35}{r}} 1 & 2 \\ -3 & 4 \\\end{array} \right]=\left[ \begin{matrix} -14 & 4 \\ 0 & 10 \\\end{matrix} \right]\]

Получается, что $A\cdot B\ne B\cdot A$. Кроме того, операция умножения определена только для согласованных матриц $A=\left[ m\times n \right]$ и $B=\left[ n\times k \right]$, но никто не гарантировал, что они останутся согласованными, если их поменять местами. Например, матрицы $\left[ 2\times 3 \right]$ и $\left[ 3\times 5 \right]$ вполне себе согласованы в указанном порядке, но те же матрицы $\left[ 3\times 5 \right]$ и $\left[ 2\times 3 \right]$, записанные в обратном порядке, уже не согласованы. Печаль.:(

Среди квадратных матриц заданного размера $n$ всегда найдутся такие, которые дают одинаковый результат как при перемножении в прямом, так и в обратном порядке. Как описать все подобные матрицы (и сколько их вообще) — тема для отдельного урока. Сегодня не будем об этом.:)

Тем не менее, умножение матриц ассоциативно:

\[\left(A\cdot B \right)\cdot C=A\cdot \left(B\cdot C \right)\]

Следовательно, когда вам надо перемножить сразу несколько матриц подряд, совсем необязательно делать это напролом: вполне возможно, что некоторые рядом стоящие матрицы при перемножении дают интересный результат. Например, нулевую матрицу, как в Задаче 2, рассмотренной выше.

В реальных задачах чаще всего приходится перемножать квадратные матрицы размера $\left[ n\times n \right]$. Множество всех таких матриц обозначается ${{M}^{n}}$ (т.е. записи $A=\left[ n\times n \right]$ и \ означают одно и то же), и в нём обязательно найдётся матрица $E$, которую называют единичной.

Определение. Единичная матрица размера $n$ — это такая матрица $E$, что для любой квадратной матрицы $A=\left[ n\times n \right]$ выполняется равенство:

Такая матрица всегда выглядит одинаково: на главной диагонали её стоят единицы, а во всех остальных клетках — нули.

\[\begin{align} & A\cdot \left(B+C \right)=A\cdot B+A\cdot C; \\ & \left(A+B \right)\cdot C=A\cdot C+B\cdot C. \\ \end{align}\]

Другими словами, если нужно умножить одну матрицу на сумму двух других, то можно умножить её на каждую из этих «двух других», а затем результаты сложить. На практике обычно приходится выполнять обратную операцию: замечаем одинаковую матрицу, выносим её за скобку, выполняем сложение и тем самым упрощаем себе жизнь.:)

Заметьте: для описания дистрибутивности нам пришлось прописать две формулы: где сумма стоит во втором множителе и где сумма стоит в первом. Это происходит как раз из-за того, что умножение матриц некоммутативно (и вообще, в некоммутативной алгебре куча всяких приколов, которые при работе с обычными числами даже не приходят в голову). И если, допустим, вам на экзамене нужно будет расписать это свойство, то обязательно пишите обе формулы, иначе препод может немного разозлиться.

Ладно, всё это были сказки о квадратных матрицах. А что насчёт прямоугольных?

Случай прямоугольных матриц

А ничего — всё то же самое, что и с квадратными.

Задача 3. Выполните умножение:

\[\left[ \begin{matrix} \begin{matrix} 5 \\ 2 \\ 3 \\\end{matrix} & \begin{matrix} 4 \\ 5 \\ 1 \\\end{matrix} \\\end{matrix} \right]\cdot \left[ \begin{array}{*{35}{r}} -2 & 5 \\ 3 & 4 \\\end{array} \right]\]

Решение. Имеем две матрицы: $A=\left[ 3\times 2 \right]$ и $B=\left[ 2\times 2 \right]$. Выпишем числа, обозначающие размеры, в ряд:

Как видим, центральные два числа совпадают. Значит, матрицы согласованы, и их можно перемножить. Причём на выходе мы получим матрицу $C=\left[ 3\times 2 \right]$:

\[\begin{align} & \left[ \begin{matrix} \begin{matrix} 5 \\ 2 \\ 3 \\\end{matrix} & \begin{matrix} 4 \\ 5 \\ 1 \\\end{matrix} \\\end{matrix} \right]\cdot \left[ \begin{array}{*{35}{r}} -2 & 5 \\ 3 & 4 \\\end{array} \right]=\left[ \begin{array}{*{35}{r}} 5\cdot \left(-2 \right)+4\cdot 3 & 5\cdot 5+4\cdot 4 \\ 2\cdot \left(-2 \right)+5\cdot 3 & 2\cdot 5+5\cdot 4 \\ 3\cdot \left(-2 \right)+1\cdot 3 & 3\cdot 5+1\cdot 4 \\\end{array} \right]= \\ & =\left[ \begin{array}{*{35}{r}} 2 & 41 \\ 11 & 30 \\ -3 & 19 \\\end{array} \right]. \end{align}\]

Всё чётко: в итоговой матрице 3 строки и 2 столбца. Вполне себе $=\left[ 3\times 2 \right]$.

Ответ: $\left[ \begin{array}{*{35}{r}} \begin{array}{*{35}{r}} 2 \\ 11 \\ -3 \\\end{array} & \begin{matrix} 41 \\ 30 \\ 19 \\\end{matrix} \\\end{array} \right]$.

Сейчас рассмотрим одно из лучших тренировочных заданий для тех, кто только начинает работать с матрицами. В нём нужно не просто перемножить какие-то две таблички, а сначала определить: допустимо ли такое умножение?

Задача 4. Найдите все возможные попарные произведения матриц:

\\]; $B=\left[ \begin{matrix} \begin{matrix} 0 \\ 2 \\ 0 \\ 4 \\\end{matrix} & \begin{matrix} 1 \\ 0 \\ 3 \\ 0 \\\end{matrix} \\\end{matrix} \right]$; $C=\left[ \begin{matrix}0 & 1 \\ 1 & 0 \\\end{matrix} \right]$.

Решение. Для начала запишем размеры матриц:

\;\ B=\left[ 4\times 2 \right];\ C=\left[ 2\times 2 \right]\]

Получаем, что матрицу $A$ можно согласовать лишь с матрицей $B$, поскольку количество столбцов у $A$ равно 4, а такое количество строк только у $B$. Следовательно, можем найти произведение:

\\cdot \left[ \begin{array}{*{35}{r}} 0 & 1 \\ 2 & 0 \\ 0 & 3 \\ 4 & 0 \\\end{array} \right]=\left[ \begin{array}{*{35}{r}}-10 & 7 \\ 10 & 7 \\\end{array} \right]\]

Промежуточные шаги предлагаю выполнить читателю самостоятельно. Замечу лишь, что размер результирующей матрицы лучше определять заранее, ещё до каких-либо вычислений:

\\cdot \left[ 4\times 2 \right]=\left[ 2\times 2 \right]\]

Другими словами, мы просто убираем «транзитные» коэффициенты, которые обеспечивали согласованность матриц.

Какие ещё возможны варианты? Безусловно, можно найти $B\cdot A$, поскольку $B=\left[ 4\times 2 \right]$, $A=\left[ 2\times 4 \right]$, поэтому упорядоченная пара $\left(B;A \right)$ является согласованной, а размерность произведения будет:

\\cdot \left[ 2\times 4 \right]=\left[ 4\times 4 \right]\]

Короче говоря, на выходе будет матрица $\left[ 4\times 4 \right]$, коэффициенты которой легко считаются:

\\cdot \left[ \begin{array}{*{35}{r}} 1 & -1 & 2 & -2 \\ 1 & 1 & 2 & 2 \\\end{array} \right]=\left[ \begin{array}{*{35}{r}}1 & 1 & 2 & 2 \\ 2 & -2 & 4 & -4 \\ 3 & 3 & 6 & 6 \\ 4 & -4 & 8 & -8 \\\end{array} \right]\]

Очевидно, можно согласовать ещё $C\cdot A$ и $B\cdot C$ — и всё. Поэтому просто запишем полученные произведения:

Это было легко.:)

Ответ: $AB=\left[ \begin{array}{*{35}{r}} -10 & 7 \\ 10 & 7 \\\end{array} \right]$; $BA=\left[ \begin{array}{*{35}{r}} 1 & 1 & 2 & 2 \\ 2 & -2 & 4 & -4 \\ 3 & 3 & 6 & 6 \\ 4 & -4 & 8 & -8 \\\end{array} \right]$; $CA=\left[ \begin{array}{*{35}{r}} 1 & 1 & 2 & 2 \\ 1 & -1 & 2 & -2 \\\end{array} \right]$; $BC=\left[ \begin{array}{*{35}{r}}1 & 0 \\ 0 & 2 \\ 3 & 0 \\ 0 & 4 \\\end{array} \right]$.

Вообще, очень рекомендую выполнить это задание самостоятельно. И ещё одно аналогичное задание, которое есть в домашней работе. Эти простые на первый взгляд размышления помогут вам отработать все ключевые этапы умножения матриц.

Но на этом история не заканчивается. Переходим к частным случаям умножения.:)

Вектор-строки и вектор-столбцы

Одной из самых распространённых матричных операций является умножение на матрицу, в которой одна строка или один столбец.

Определение. Вектор-столбец — это матрица размера $\left[ m\times 1 \right]$, т.е. состоящая из нескольких строк и только одного столбца.

Вектор-строка — это матрица размера $\left[ 1\times n \right]$, т.е. состоящая из одной строки и нескольких столбцов.

На самом деле мы уже встречались с этими объектами. Например, обычный трёхмерный вектор из стереометрии $\overrightarrow{a}=\left(x;y;z \right)$ — это не что иное как вектор-строка. С точки зрения теории разницы между строками и столбцами почти нет. Внимательными надо быть разве что при согласовании с окружающими матрицами-множителями.

Задача 5. Выполните умножение:

\[\left[ \begin{array}{*{35}{r}} 2 & -1 & 3 \\ 4 & 2 & 0 \\ -1 & 1 & 1 \\\end{array} \right]\cdot \left[ \begin{array}{*{35}{r}} 1 \\ 2 \\ -1 \\\end{array} \right]\]

Решение. Перед нами произведение согласованных матриц: $\left[ 3\times 3 \right]\cdot \left[ 3\times 1 \right]=\left[ 3\times 1 \right]$. Найдём это произведение:

\[\left[ \begin{array}{*{35}{r}} 2 & -1 & 3 \\ 4 & 2 & 0 \\ -1 & 1 & 1 \\\end{array} \right]\cdot \left[ \begin{array}{*{35}{r}} 1 \\ 2 \\ -1 \\\end{array} \right]=\left[ \begin{array}{*{35}{r}} 2\cdot 1+\left(-1 \right)\cdot 2+3\cdot \left(-1 \right) \\ 4\cdot 1+2\cdot 2+0\cdot 2 \\ -1\cdot 1+1\cdot 2+1\cdot \left(-1 \right) \\\end{array} \right]=\left[ \begin{array}{*{35}{r}} -3 \\ 8 \\ 0 \\\end{array} \right]\]

Ответ: $\left[ \begin{array}{*{35}{r}}-3 \\ 8 \\ 0 \\\end{array} \right]$.

Задача 6. Выполните умножение:

\[\left[ \begin{array}{*{35}{r}} 1 & 2 & -3 \\\end{array} \right]\cdot \left[ \begin{array}{*{35}{r}} 3 & 1 & -1 \\ 4 & -1 & 3 \\ 2 & 6 & 0 \\\end{array} \right]\]

Решение. Опять всё согласовано: $\left[ 1\times 3 \right]\cdot \left[ 3\times 3 \right]=\left[ 1\times 3 \right]$. Считаем произведение:

\[\left[ \begin{array}{*{35}{r}} 1 & 2 & -3 \\\end{array} \right]\cdot \left[ \begin{array}{*{35}{r}} 3 & 1 & -1 \\ 4 & -1 & 3 \\ 2 & 6 & 0 \\\end{array} \right]=\left[ \begin{array}{*{35}{r}}5 & -19 & 5 \\\end{array} \right]\]

Ответ: $\left[ \begin{matrix} 5 & -19 & 5 \\\end{matrix} \right]$.

Как видите, при умножении вектор-строки и вектор-столбца на квадратную матрицу на выходе мы всегда получаем строку или столбец того же размера. Этот факт имеет множество приложений — от решения линейных уравнений до всевозможных преобразований координат (которые в итоге тоже сводятся к системам уравнений, но давайте не будем о грустном).

Думаю, здесь всё было очевидно. Переходим к заключительной части сегодняшнего урока.

Возведение матрицы в степень

Среди всех операций умножения отдельного внимания заслуживает возведение в степень — это когда мы несколько раз умножаем один и тот же объект на самого себя. Матрицы — не исключение, их тоже можно возводить в различные степени.

Такие произведения всегда согласованы:

\\cdot \left[ n\times n \right]=\left[ n\times n \right]\]

И обозначаются точно так же, как и обычные степени:

\[\begin{align} & A\cdot A={{A}^{2}}; \\ & A\cdot A\cdot A={{A}^{3}}; \\ & \underbrace{A\cdot A\cdot \ldots \cdot A}_{n}={{A}^{n}}. \\ \end{align}\]

На первый взгляд, всё просто. Посмотрим, как это выглядит на практике:

Задача 7. Возведите матрицу в указанную степень:

${{\left[ \begin{matrix} 1 & 1 \\ 0 & 1 \\\end{matrix} \right]}^{3}}$

Решение. Ну ОК, давайте возводить. Сначала возведём в квадрат:

\[\begin{align} & {{\left[ \begin{matrix} 1 & 1 \\ 0 & 1 \\\end{matrix} \right]}^{2}}=\left[ \begin{matrix} 1 & 1 \\ 0 & 1 \\\end{matrix} \right]\cdot \left[ \begin{matrix} 1 & 1 \\ 0 & 1 \\\end{matrix} \right]= \\ & =\left[ \begin{array}{*{35}{r}} 1\cdot 1+1\cdot 0 & 1\cdot 1+1\cdot 1 \\ 0\cdot 1+1\cdot 0 & 0\cdot 1+1\cdot 1 \\\end{array} \right]= \\ & =\left[ \begin{array}{*{35}{r}} 1 & 2 \\ 0 & 1 \\\end{array} \right] \end{align}\]

\[\begin{align} & {{\left[ \begin{matrix} 1 & 1 \\ 0 & 1 \\\end{matrix} \right]}^{3}}={{\left[ \begin{matrix} 1 & 1 \\ 0 & 1 \\\end{matrix} \right]}^{3}}\cdot \left[ \begin{matrix} 1 & 1 \\ 0 & 1 \\\end{matrix} \right]= \\ & =\left[ \begin{array}{*{35}{r}} 1 & 2 \\ 0 & 1 \\\end{array} \right]\cdot \left[ \begin{matrix} 1 & 1 \\ 0 & 1 \\\end{matrix} \right]= \\ & =\left[ \begin{array}{*{35}{r}} 1 & 3 \\ 0 & 1 \\\end{array} \right] \end{align}\]

Вот и всё.:)

Ответ: $\left[ \begin{matrix}1 & 3 \\ 0 & 1 \\\end{matrix} \right]$.

Задача 8. Возведите матрицу в указанную степень:

\[{{\left[ \begin{matrix} 1 & 1 \\ 0 & 1 \\\end{matrix} \right]}^{10}}\]

Решение. Вот только не надо сейчас плакать по поводу того, что «степень слишком большая», «мир не справедлив» и «преподы совсем берега потеряли». На самом деле всё легко:

\[\begin{align} & {{\left[ \begin{matrix} 1 & 1 \\ 0 & 1 \\\end{matrix} \right]}^{10}}={{\left[ \begin{matrix} 1 & 1 \\ 0 & 1 \\\end{matrix} \right]}^{3}}\cdot {{\left[ \begin{matrix} 1 & 1 \\ 0 & 1 \\\end{matrix} \right]}^{3}}\cdot {{\left[ \begin{matrix} 1 & 1 \\ 0 & 1 \\\end{matrix} \right]}^{3}}\cdot \left[ \begin{matrix} 1 & 1 \\ 0 & 1 \\\end{matrix} \right]= \\ & =\left(\left[ \begin{matrix} 1 & 3 \\ 0 & 1 \\\end{matrix} \right]\cdot \left[ \begin{matrix} 1 & 3 \\ 0 & 1 \\\end{matrix} \right] \right)\cdot \left(\left[ \begin{matrix} 1 & 3 \\ 0 & 1 \\\end{matrix} \right]\cdot \left[ \begin{matrix} 1 & 1 \\ 0 & 1 \\\end{matrix} \right] \right)= \\ & =\left[ \begin{matrix} 1 & 6 \\ 0 & 1 \\\end{matrix} \right]\cdot \left[ \begin{matrix} 1 & 4 \\ 0 & 1 \\\end{matrix} \right]= \\ & =\left[ \begin{matrix} 1 & 10 \\ 0 & 1 \\\end{matrix} \right] \end{align}\]

Заметьте: во второй строчке мы использовали ассоциативность умножения. Собственно, мы использовали её и в предыдущем задании, но там это было неявно.

Ответ: $\left[ \begin{matrix} 1 & 10 \\ 0 & 1 \\\end{matrix} \right]$.

Как видите, ничего сложного в возведении матрицы в степень нет. Последний пример можно обобщить:

\[{{\left[ \begin{matrix} 1 & 1 \\ 0 & 1 \\\end{matrix} \right]}^{n}}=\left[ \begin{array}{*{35}{r}} 1 & n \\ 0 & 1 \\\end{array} \right]\]

Этот факт легко доказать через математическую индукцию или прямым перемножением. Однако далеко не всегда при возведении в степень можно выловить подобные закономерности. Поэтому будьте внимательны: зачастую перемножить несколько матриц «напролом» оказывается проще и быстрее, нежели искать какие-то там закономерности.

В общем, не ищите высший смысл там, где его нет. В заключение рассмотрим возведение в степень матрицы большего размера — аж $\left[ 3\times 3 \right]$.

Задача 9. Возведите матрицу в указанную степень:

\[{{\left[ \begin{matrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\\end{matrix} \right]}^{3}}\]

Решение. Не будем искать закономерности. Работаем «напролом»:

\[{{\left[ \begin{matrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\\end{matrix} \right]}^{3}}={{\left[ \begin{matrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\\end{matrix} \right]}^{2}}\cdot \left[ \begin{matrix}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\\end{matrix} \right]\]

Для начала возведём эту матрицу в квадрат:

\[\begin{align} & {{\left[ \begin{matrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\\end{matrix} \right]}^{2}}=\left[ \begin{matrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\\end{matrix} \right]\cdot \left[ \begin{matrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\\end{matrix} \right]= \\ & =\left[ \begin{array}{*{35}{r}} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \\\end{array} \right] \end{align}\]

Теперь возведём в куб:

\[\begin{align} & {{\left[ \begin{matrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\\end{matrix} \right]}^{3}}=\left[ \begin{array}{*{35}{r}} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \\\end{array} \right]\cdot \left[ \begin{matrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\\end{matrix} \right]= \\ & =\left[ \begin{array}{*{35}{r}} 2 & 3 & 3 \\ 3 & 2 & 3 \\ 3 & 3 & 2 \\\end{array} \right] \end{align}\]

Вот и всё. Задача решена.

Ответ: $\left[ \begin{matrix} 2 & 3 & 3 \\ 3 & 2 & 3 \\ 3 & 3 & 2 \\\end{matrix} \right]$.

Как видите, объём вычислений стал больше, но смысл от этого нисколько не поменялся.:)

На этом урок можно заканчивать. В следующий раз мы рассмотрим обратную операцию: по имеющемуся произведению будем искать исходные множители.

Как вы уже, наверное, догадались, речь пойдёт об обратной матрице и методах её нахождения.

Это понятие, которое обобщает все возможные операции, производимые с матрицами. Математическая матрица - таблица элементов. О такой таблице, где m строк и n столбцов, говорят, что это матрица имеет размерность m на n .

Общий вид матрицы:

Для решения матриц необходимо понимать, что такое матрица и знать основные ее параметры. Основные элементы матрицы:

  • Главная диагональ, состоящая из элементов а 11 ,а 22 …..а mn .
  • Побочная диагональ, состоящая из элементов а 1n ,а 2n-1 …..а m1 .

Основные виды матриц:

  • Квадратная - такая матрица, где число строк = числу столбцов (m=n ).
  • Нулевая - где все элементы матрицы = 0.
  • Транспонированная матрица — матрица В , которая была получена из исходной матрицы A путем замены строк на столбцы.
  • Единичная - все элементы главной диагонали = 1, все остальные = 0.
  • Обратная матрица — матрица, при умножении на которую исходная матрица даёт в результате единичную матрицу.

Матрица может быть симметричной относительно главной и побочной диагонали. Т.е., если а 12 =а 21 , а 13 =а 31 ,….а 23 =а 32 …. а m-1n =а mn-1 , то матрица симметрична относительно главной диагонали. Симметричными могут быть лишь квадратные матрицы.

Методы решения матриц.

Почти все методы решения матрицы заключаются в нахождении ее определителя n -го порядка и большинство из них довольно громоздки. Чтобы найти определитель 2го и 3го порядка есть другие, более рациональные способы.

Нахождение определителей 2-го порядка.

Для вычисления определителя матрицы А 2го порядка, необходимо из произведения элементов главной диагонали вычесть произведение элементов побочной диагонали:

Методы нахождения определителей 3го порядка.

Ниже приведены правила для нахождения определителя 3го порядка.

Упрощенно правило треугольника, как одного из методов решения матриц , можно изобразить таким образом:

Другими словами, произведение элементов в первом определителе, которые соединены прямыми, берется со знаком "+"; так же, для 2го определителя - соответствующие произведения берутся со знаком "-", то есть по такой схеме:

При решении матриц правилом Саррюса , справа от определителя дописывают первые 2 столбца и произведения соответствующих элементов на главной диагонали и на диагоналях, которые ей параллельны, берут со знаком "+"; а произведения соответствующих элементов побочной диагонали и диагоналей, которые ей параллельны, со знаком "-":

Разложение определителя по строке или столбцу при решении матриц.

Определитель равен сумме произведений элементов строки определителя на их алгебраические дополнения. Обычно выбирают ту строку/столбец, в которой/ом есть нули. Строку либо столбец, по которой/ому ведется разложение, будут обозначать стрелкой.

Приведение определителя к треугольному виду при решении матриц.

При решении матриц методом приведения определителя к треугольному виду, работают так: с помощью простейших преобразований над строками либо столбцами, определитель становится треугольного вида и тогда его значение, в соответствии со свойствами определителя, будет равно произведению элементов, которые стоят на главной диагонали.

Теорема Лапласа при решении матриц.

Решая матрицы по теореме Лапласа, необходимо знать непосредственно саму теорему. Теорема Лапласа: Пусть Δ - это определитель n -го порядка. Выбираем в нем любые k строк (либо столбцов), при условии k n - 1 . В таком случае сумма произведений всех миноров k -го порядка, содержащихся в выбранных k строках (столбцах), на их алгебраические дополнения будет равна определителю.

Решение обратной матрицы.

Последовательность действий для решения обратной матрицы :

  1. Понять, квадратная ли данная матрица. В случае отрицательного ответа становится ясно, что обратной матрицы для нее не может быть.
  2. Вычисляем алгебраические дополнения.
  3. Составляем союзную (взаимную, присоединённую) матрицу C .
  4. Составляем обратную матрицу из алгебраических дополнений: все элементы присоединённой матрицы C делим на определитель начальной матрицы. Итоговая матрица будет искомой обратной матрицей относительно заданной.
  5. Проверяем выполненную работу: умножаем матрицу начальную и полученную матрицы, результатом должна стать единичная матрица.

Решение систем матриц.

Для решения систем матриц наиболее часто используют метод Гаусса.

Метод Гаусса — это стандартный способ решения систем линейных алгебраических уравнений (СЛАУ) и он заключается в том, что последовательно исключаются переменные, т.е., при помощи элементарных изменений систему уравнений доводят до эквивалентной системы треугольного вида и из нее, последовательно, начиная с последних (по номеру), находят каждый элемент системы.

Метод Гаусса является самым универсальным и лучшим инструментом для нахождения решения матриц. Если у системы бесконечное множество решений или система является несовместимой, то ее нельзя решать по правилу Крамера и матричным методом.

Метод Гаусса подразумевает также прямой (приведение расширенной матрицы к ступенчатому виду, т.е. получение нулей под главной диагональю) и обратный (получение нулей над главной диагональю расширенной матрицы) ходы. Прямой ход и есть метод Гаусса, обратный - метод Гаусса-Жордана. Метод Гаусса-Жордана отличается от метода Гаусса лишь последовательностью исключения переменных.

Решение матриц – понятие обобщающее операции над матрицами. Под математической матрицей понимается таблица элементов. О подобной таблице, в которой m строк и n столбцов, говорят что это матрица размером m на n.
Общий вид матрицы

Основные элементы матрицы:
Главная диагональ . Её составляют элементы а 11 ,а 22 …..а mn
Побочная диагональ. Её слагают элементы а 1n ,а 2n-1 …..а m1 .
Перед тем как перейти к решению матриц рассмотрим основные виды матриц:
Квадратная – в которой число строк равно числу столбцов (m=n)
Нулевая – все элементы этой матрицы равны 0.
Транспонированная матрица - матрица В, полученная из исходной матрицы A заменой строк на столбцы.
Единичная – все элементы главной диагонали равны 1, все остальные 0.
Обратная матрица - матрица, при умножении на которую исходная матрица даёт в результате единичную матрицу.
Матрица может быть симметричной относительно главной и побочной диагонали. То есть, если а 12 =а 21 , а 13 =а 31 ,….а 23 =а 32 …. а m-1n =а mn-1 . то матрица симметрична относительно главной диагонали. Симметричными бывают только квадратные матрицы.
Теперь перейдем непосредственно к вопросу, как решать матрицы.

Сложение матриц.

Матрицы можно алгебраически складывать, если они обладают одинаковой размерностью. Чтобы сложить матрицу А с матрицей В, необходимо элемент первой строки первого столбца матрицы А сложить с первым элементом первой строки матрицы В, элемент второго столбца первой строки матрицы А сложить с элементом элемент второго столбца первой строки матрицы В и т.д.
Свойства сложения
А+В=В+А
(А+В)+С=А+(В+С)

Умножение матриц .

Матрицы можно перемножать, если они согласованы. Матрицы А и В считаются согласованными, если количество столбцов матрицы А равно количеству строк матрицы В.
Если А размерностью m на n, B размерностью n на к, то матрица С=А*В будет размерностью m на к и будет составлена из элементов

Где С 11 – сумма папарных произведений элементов строки матрицы А и столбца матрицы В, то есть элемента сумма произведения элемента первого столбца первой строки матрицы А с элементом первого столбца первой строки матрицы В, элемента второго столбца первой строки матрицы А с элементом первого столбца второй строки матрицы В и т.д.
При перемножении важен порядок перемножения. А*В не равно В*А.

Нахождение определителя.

Любая квадратная матрица может породить определитель или детерминант. Записывает det. Или | элементы матрицы |
Для матриц размерностью 2 на 2. Определить есть разница между произведением элементов главной и элементами побочной диагонали.

Для матриц размерностью 3 на 3 и более. Операция нахождения определителя сложнее.
Введем понятия:
Минор элемента – есть определитель матрицы, полученной из исходной матрицы, путем вычеркивания строки и столбца исходной матрицы, в которой этот элемент находился.
Алгебраическим дополнением элемента матрицы называется произведение минора этого элемента на -1 в степени суммы строки и столбца исходной матрицы, в которой этот элемент находился.
Определитель любой квадратной матрицы равен сумме произведения элементов любого ряда матрицы на соответствующие им алгебраические дополнения.

Обращение матрицы

Обращение матрицы - это процесс нахождения обратной матрицы, определение которой мы дали в начале. Обозначается обратная матрица также как исходная с припиской степени -1.
Находиться обратная матрица по формуле.
А -1 = A * T x (1/|A|)
Где A * T - Транспонированная матрица Алгебраических дополнений.

Примеры решения матриц мы сделали в виде видеоурока

:

Если хотите разобраться, смотрите обязательно.

Это основные операции по решению матриц. Если появится дополнительные вопросы о том, как решить матрицы , пишите смело в комментариях.

Если все же вы не смогли разобраться, попробуйте обратиться к специалисту.



Понравилась статья? Поделитесь с друзьями!