Метод итерация для систем нелинейных уравнений. Численные методы: решение нелинейных уравнений

Исследование различных явлений или процессов математическими методами осуществляется с помощью математической модели. Математическая модель представляет собой формализованное описание исследуемого объекта посредством систем линейных, нелинейных или дифференциальных уравнений, систем неравенств, определенного интеграла, многочлена с неизвестными коэффициентами и т. д. Математическая модель должна охватывать важнейшие характеристики исследуемого объекта и отражать связи между ними.

После того, как математическая модель составлена, переходят к постановке вычислительной задачи. При этом устанавливают, какие характеристики математической модели являются исходными (входными)данными, какие - параметрами модели, а какие - выходными данными. Проводится анализ полученной задачи с точки зрения существования и единственности решения.

На следующем этапе выбирается метод решения задачи. Во многих конкретных случаях найти решение задачи в явном виде не представляется возможным, так как оно не выражается через элементарные функции. Такие задачи можно решить лишь приближенно. Под вычислительными (численными) методами подразумеваются приближенные процедуры, позволяющие получать решение в виде конкретных числовых значений. Вычислительные методы, как правило, реализуются на ЭВМ. Для решения одной и той же задачи могут быть использованы различные вычислительные методы, поэтому нужно уметь оценивать качество различных методов и эффективность их применения для данной задачи.

Затем для реализации выбранного вычислительного метода составляется алгоритм и программа для ЭВМ. Современному инженеру важно уметь преобразовать задачу к виду, удобному для реализации на ЭВМ и построить алгоритм решения такой задачи.

В настоящее время широко используются как пакеты, реализующие наиболее общие методы решения широкого круга задач (например, Mathcad ,
MatLAB), так и пакеты, реализующие методы решения специальных задач.

Результаты расчета анализируются и интерпретируются. При необходимости корректируются параметры метода, а иногда математическая модель, и начинается новый цикл решения задачи.

1.1. Постановка задачи

Пусть дана некоторая функция и требуется найти все или некоторые значения , для которых .

Значение , при котором , называется корнем (или решением ) уравнения. Относительно функции часто предполагается, что дважды непрерывно дифференцируема в окрестности корня.

Корень уравнения называется простым, если первая производная функции в точке не равна нулю, т. е. . Если же , то корень называется кратным корнем.

Геометрически корень уравнения есть точка пересечения графика функции с осью абсцисс. На рис. 1 изображен график функции , имеющей четыре корня: два простых и два кратных .


Большинство методов решения уравнения ориентировано на отыскание простых корней.

1.2. Основные этапы отыскания решения

В процессе приближенного отыскания корней уравнения обычно выделяют два этапа: локализация (или отделение) корня и уточнение корня .

Локализация корня заключается в определении отрезка , содержащего один и только один корень. Не существует универсального алгоритма локализации корня. Иногда удобно бывает локализовать корень с помощью построения графика или таблицы значений функции . На наличие корня на отрезке указывает различие знаков функции на концах отрезка. Основанием для этого служит следующая теорема.

Теорема. Если функция непрерывна на отрезке и принимает на его концах значения разных знаков так что , то отрезок содержит по крайней мере один корень уравнения.

Однако корень четной кратности таким образом локализовать нельзя, так как в окрестности такого корня функция имеет постоянный знак. На этапе уточнения корня вычисляют приближенное значение корня с заданной точностью . Приближенное значение корня уточняют с помощью различных итерационных методов. Суть этих методов состоит в последовательном вычислении значений , которые являются приближениями к корню .

1.3. Метод половинного деления

Метод половинного является самым простым и надежным способом решения нелинейного уравнения. Пусть из предварительного анализа известно, что корень уравнения находится на отрезке , т. е. , так, что . Пусть функция непрерывна на отрезке и принимает на концах отрезка значения разных знаков, т.е. .

Разделим отрезок пополам. Получим точку . Вычислим значение функции в этой точке: . Если , то - искомый корень, и задача решена. Если , то - число определённого знака: либо . Тогда либо на концах отрезка , либо на концах отрезка значения функции имеют разные знаки. Обозначим такой отрезок . Очевидно, что и длина отрезка в два раза меньше, чем длина отрезка . Поступим аналогично с отрезком . В результате получим либо корень , либо новый отрезок и т. д. (рис. 2).

Середина -го отрезка . Очевидно, что длина отрезка будет равна , а так как , то

Критерий окончания. Из соотношения (1) следует, что при заданной точности приближения вычисления заканчиваются, когда будет выполнено неравенство или неравенство . Таким образом, количество итераций можно определить заранее. За приближенное значение корня берется величина .

Пример. Найдем приближенно с точностью . Эта задача эквивалентна решению уравнения , или нахождению нуля функции . В качестве начального отрезка возьмем отрезок . На концах этого отрезка функция принимает значения с разными знаками: . Найдем число делений отрезка , необходимых для достижения требуемой точности. Имеем:

Следовательно, не позднее 6-го деления найдем с требуемой точностью, . Результаты вычислений представлены в таблице 1.

Таблица 1

1,0000 1,0000 1,0000 1,1250 1,1250 1,1406 1,1406
2,0000 1,5000 1,2500 1,2500 1,1875 1,1875 1,1562
1,5000 1,2500 1,1250 1,1875 1,1406 1,1562 1,1484
Зн - - - - - - -
Зн + + + + + + +
5,5938 0,7585 -0,2959 0,1812 -0,0691 0,0532 -0,0078
- 1,0000 0,5000 0,2500 0,1250 0,0625 0,0312 0,0156

1.4. Метод простой итерации

Пусть уравнение можно заменить эквивалентным ему уравнением

Выберем каким-либо образом начальное приближение . Вычислим значение функции при и найдем уточненное значение . Подставим теперь в уравнение (1) и получим новое приближение и т. д. Продолжая этот процесс неограниченно, получим последовательность приближений к корню:

Формула (3) является расчетной формулой метода простой итерации.

Если последовательность сходится при , т. е. существует

и функция непрерывна, то, переходя к пределу в (3) и учитывая (4), получим: .

Таким образом, , следовательно, - корень уравнения (2).

Сходимость метода. Сходимость метода простой итерации устанавливает следующая теорема.

Теорема. Пусть функция определена и диффе-ренцируема на отрезке , причем все ее зна-чения . Тогда, если выполняется условие при :

1) процесс итерации сходится независимо от начального значения ;

2) предельное значение является единственным корнем уравнения на отрезке .

Доказательство. Так как и , то можно записать

По теореме о среднем (она утверждает, что если производная функции непрерывна на некотором интервале, то тангенс угла наклона хорды, проведенной между точками и , (т.е. равен производной функции в некоторой промежуточной точке, лежащей между и ) частное в последнем выражении будет равно , где - некоторая промежуточная точка в интервале поиска корня. Следовательно, .

Если ввести обозначение для всего интервала поиска, то предыдущее равенство может быть переписано в виде:

Аналогично . Тогда для будет справедливо неравенство: и т. д. Продолжая эти выкладки дальше, в результате получаем , где - натуральное число. Таким образом, чтобы метод сходился, необходимо выполнение неравенства: .

Отсюда следует, что должно быть меньше единицы. В свою очередь, для всех остальных значений меньших , можно записать: . Число определим из соотношения . Тогда справедливо неравенство (вывод см. ниже): . Если поставить условие, что истинное значение корня должно отличаться от приближенного значения на величину , т.е. , то приближения надо вычислять до тех пор, пока не будет выполнено неравенство

или и тогда .

Вывод неравенства.Рассмотрим два последовательных приближения: и . Отсюда .

Используя теорему о среднем, получим:

тогда на основании условия можно записать:

С другой стороны, пусть . Очевидно, что . Отсюда, учитывая, что , получим

Тогда или .

Используя предыдущую формулу, можно получить:

Перейдём к пределу в равенстве (3), в силу непрерывности функции получим , то есть - корень уравнения (2). Других корней на нет, так как если , то , тогда , где . Равенство нулю будет достигнуто, если . То есть - корень единственный.

Теорема доказана.

Приведение уравнения к виду
для обеспечения выполнения неравенства

В общем случае получить подходящую итерационную форму возможно, проведя равносильное преобразование исходного уравнения, например, умножив его на коэффициент : . Прибавив затем к обеим частям уравнения и обозначив можно потребовать выполнения достаточного условия . Отсюда определяется необходимое значение . Так как условие должно выполняться на всем отрезке , то для выбора следует использовать наибольшее значение на этом отрезке, т.е.

Это соотношение определяет диапазон значений коэффициента , изменяющий величину в пределах .

Обычно принимают .

На рис. 3-6 показаны четыре случая взаимного расположения линий и и соответствующие итерационные процессы. Рис. 3 и 4 соответствуют случаю , и итерационный процесс сходится. При этом, если (рис. 3), сходимость носит односторонний характер, а если (рис. 4), сходимость носит двусторонний, колебательный характер. Рис. 5 и 6 соответствуют случаю - итерационный процесс расходится. При этом может быть односторонняя (рис. 5) и двусторонняя (рис. 6) расходимость.

Погрешность метода. Оценка погрешности была доказана (5).

Критерий окончания. Из оценки (5) следует, что вычисления надо продолжать до выполнения неравенство . Если же , то оценка упрощается: .

Пример 1. Используем метод простой итерации для решения уравнения с точностью . Преобразуем уравнение к виду:

, т. е. .

Нетрудно убедиться, что корень уравнения находится на отрезке . Вычислив значения на концах отрезка, получим: , а , т. е. функция на концах отрезка имеет разные знаки,

поэтому внутри отрезка есть корень. Расположение корня наглядно иллюстрирует рис. 7.

Подсчитаем первую и вторую производные функции :

Так как на отрезке , то производная монотонно возрастает на этом отрезке и принимает максимальное значение на правом конце отрезка, т. е. в точке . Поэтому справедлива оценка:

Таким образом, условие выполнено, и можно воспользоваться критерием окончания вычислений. В табл. 2 приведены приближения, полученные по расчетной формуле. В качестве начального приближения выбрано значение .

Таблица 2

0,8415 0,8861 0,8712 0,8774 0,8765

Критерий окончания выполняется при , . Сходимость двусторонняя, качественный характер такой сходимости представлен на рис. 4. Приближенное значение корня с требуемой точностью .

Пример 2. Решить методом простой итерации уравнение на отрезке с точностью 0,025. Для решения исходное уравнение приводится к виду . Для выбора величины используем приведенную выше формулу . Тогда расчетная формула имеет вид . В качестве начального приближения можно выбрать верхнюю границу заданного отрезка .

0,8 0,78

Так как , то .

1.5. Метод Ньютона (метод касательных)

Метод Ньютона является наиболее эффективным методом решения нелинейных уравнений. Пусть корень , т. е. . Предполагаем, что функция непрерывна на отрезке и дважды непрерывно дифференцируема на интервале . Положим . Проведем касательную к графику функции в точке (рис. 8).

Уравнение касательной будет иметь вид: .

Первое пересечение получим, взяв абсциссу точки пересечения этой касательной с осью , т. е. положив : .

Аналогично поступим с точкой , затем с точкой и т. д., в результате получим последовательность приближений , причем

Формула (6) является расчетной формулой метода Ньютона .

Метод Ньютона можно рассматривать как частный случай метода простых итераций, для которого .

Сходимость метода . Сходимость метода Ньютона устанавливает следующая теорема.

Теорема. Пусть - простой корень уравнения и в некоторой окрестности этого корня функция дважды непрерывно дифференцируема. Тогда найдется такая малая - окрестность корня , что при произвольном выборе начального приближения из этой окрестности итерационная последовательность, определенная по формуле (6) не выходит за пределы этой окрестности и справедлива оценка:

Сходимость метода Ньютона зависит от того, насколько близко к корню выбрано начальное приближение.

Выбор начального приближения. Пусть - отрезок, содержащий корень. Если в качестве начального приближения выбрать тот из концов отрезка, для которого , то итерации (6) сходятся, причем монотонно. Рис. 8 соответствует случаю, когда в качестве начального приближения был выбран правый конец отрезка: (Здесь ).

Погрешность метода. Оценка (7) неудобна для практического использования. На практике пользуются следующие оценки погрешности:

Критерий окончания. Оценка (8) позволяет сформулировать следующий критерий окончания итераций метода Ньютона. При заданной точности вычисления нужно вести до тех пор, пока не будет выполнено неравенство

Пример . Вычислить методом Ньютона отрицательный корень уравнения с точностью до 0,0001. Проведя отделение корня, можно убедиться, что корень локализован на интервале . В этом интервале и . Так как и , то за начальное приближение можно принять .

-11 -5183 0,6662
-10,3336 307,3 4276,8 0,0718
-10,2618 3,496 4185,9 0,0008
-10,261 0,1477 - -

. Поэтому . Итак, в результате получаем следующее, и на , поэтому .

Так как , то

Назначение сервиса . Онлайн-калькулятор предназначен для отыскания корней уравнения методом итераций .

Решение оформляется в формате Word .

Правила ввода функции

Примеры
≡ x^2/(1+x)
cos 2 (2x+π) ≡ (cos(2*x+pi))^2
≡ x+(x-1)^(2/3)

Одним из наиболее эффективных способов численного решения уравнений является метод итерации . Сущность этого метода заключается в следующем. Пусть дано уравнение f(x)=0 .
Заменим его равносильным уравнением
Выберем начальное приближение корня x 0 и подставим его в правую часть уравнения (1). Тогда получим некоторое число

x 1 =φ(x 0). (2)


Подставляя теперь в правую часть (2) вместо x 0 число x 1 получим число x 2 =φ(x 1). Повторяя этот процесс, будем иметь последовательность чисел

x n =φ(x n-1) (n=1,2..). (3)


Если эта последовательность сходящаяся, то есть существует предел , то переходя к пределу в равенстве (3) и предполагая функцию φ(x) непрерывной найдем

Или ξ=φ(ξ).
Таким образом, предел ξ является корнем уравнения (1) и может быть вычислен по формуле (3) с любой степенью точности.


Рис. 1а Рис. 1б


Рис. 2.

|φ′(x)|>1 - расходящийся процесс

На рис.1а, 1б в окрестности корня |φ′(x)|<1 и процесс итерации сходится. Однако, если рассмотреть случай |φ′(x)|>1, то процесс итерации может быть расходящимся (см. рис.2).

Достаточные условия сходимости метода итерации

Теорема 7. Пусть функция φ(x) определена и дифференцируема на отрезке , причем все ее значения φ(x)∈ и пусть |φ′(x)|≤q<1 при x∈. Тогда процесс итерации x n = φ(x n -1) сходится независимо от начального значения x 0 ∈ и предельное значение является единственным корнем уравнения x= φ(x) на отрезке .
Доказательство: Рассмотрим два последовательных приближения x n = φ(x n -1) и x n +1 = φ(x n) и возьмем их разность x n+1 -x n =φ(x n)-φ(x n-1). По теореме Лагранжа правая часть может быть представлена как

φ′(x n)(x n -x n-1)

Где x n ∈
Тогда получим

|x n+1 -x n |≤φ′(x n)|x n -x n-1 |≤q|x n -x n-1 |


Полагая n=1,2,...

|x 2 -x 1 |≤q|x 1 -x 0 |
|x 3 -x 2 |≤q|x 2 -x 1 |≤q²|x 1 -x 0 |
|x n+1 -x n ≤q n |x 1 -x 0 | (4)


Из (4) в силу условия q<1 видно, что последовательность {x n } сходится к некоторому числу ξ, то есть , и следовательно,
(в силу непрерывности функции φ(x))
или ξ= φ(ξ) ч.т.д.
Для погрешности корня ξ можно получить следующую формулу.
Имеем x n =φ(x n-1).
Далее ξ-x n =ξ-φ(x n-1) = φ(ξ)-φ(x n-1) →
Теперь φ(x n-1)=φ(x n)-φ′(c)(x n -x n-1) →
φ(ξ)-φ(x n)+φ′(c)(x n -x n-1)
В результате получим

ξ-x n = φ′(c 1)(ξ-x n-1)+φ′(c)(x n -x n-1)
или
|ξ-x n |≤q|ξ-x n |+q|x n -x n-1 |


Отсюда

, (5)


откуда видно, что при q близком к 1 разность |ξ -x n | может быть очень большой несмотря на то что |x n -x n -1 |<ε, где ε-заданная величина. Для того, чтобы вычислить ξ с точностью ε необходимо обеспечить

. (6)


Тогда подставляя (6) в (5), получим |ξ -x n |<ε.
Если q очень мало, то вместо (6) можно использовать

|x n -x n -1 |<ε

Сходимость метода итерации линейная с коэффициентом сходимости α=q. Действительно, имеем
ξ-x n =φ(ξ)-φ n-1 = φ′(c)·(ξ-x n-1), отсюда |ξ-x n |≤q·|ξ-x n-1 |.

Замечание. Пусть в некоторой окрестности корня ξ∈(a,b) уравнения x= φ(x) производная φ’(x) сохраняет постоянный знак и выполнено неравенство |φ’(x)|≤q<1. Тогда, если φ’(x) положительна, то последовательные приближения x n = φ(x n -1) сходятся к корню монотонно.
Если же φ’(x) отрицательна, то последовательные приближения колеблются около корня.
Рассмотрим способ представления уравнения f(x)=0 в форме x= φ(x).
Функцию φ(x) необходимо задать такую, чтобы |φ’(x)| была малой величиной в окрестности корня.
Пусть известно m 1 и M 1 - наименьшее и наибольшее значения производной f’(x)
0Заменим уравнение f(x)=0 эквивалентным ему уравнением
x = x - λf(x).
Положим φ(x) = x- λf(x). Подберем параметр λ таким образом, чтобы в окрестности корня ξ выполнялось неравенство

0≤|φ′(x)|=|1-λ·f′(x)|≤q≤1


Отсюда на основании (7) получаем

0≤|1-λM 1 |≤|1-λm 1 |≤q


Тогда выбирая λ = 1/M 1 , получим
q = 1-m 1 /M 1 < 1.
Если λ =1/f’(x), то итерационная формула x n = φ(x n -1) переходит в формулу Ньютона

x n = x n -1 – f(x n)/f’(x).

Метод итераций в Excel

В ячейку B2 заносим начало интервала a , в ячейку B3 заносим конец интервала b . Строку 4 отводим под заголовок таблицы. Сам процесс итераций организуем в ячейках A5:D5 .

Процесс нахождения нулей функции методом итераций состоит из следующих этапов:

  1. Получить шаблон с омощью этого сервиса.
  2. Уточнить интервалы в ячейках B2 , B3 .
  3. Копировать строки итераций до требуемой точности (столбец D).
Примечание : столбец A - номер итерации, столбец B - корень уравнения X , столбец C - значение функции F(X) , столбец D - точность eps .

Пример . Найти корень уравнения e -x -x=0, x=∈, ε=0.001 (8)
Решение .
Представим уравнение (8) в форме x=x-λ(e -x -x)
Найдем максимальное значение производной от функции f(x)= e - x -x.
max f′(x)=max(-(e -x +1)) ≈ -1.37. Значение . Таким образом, решаем следующее уравнение
x=x+0,73(e - x -x)
Значения последовательных приближений даны в таблице.

n x i f(x i)
1 0.0 1.0
2 0.73 -0.2481
3 0.5489 0.0287
4 0.5698 -0.0042
5 0.5668 0.0006

Решение нелинейных уравнений

Пусть требуется решить уравнение

Где
– нелинейная непрерывная функция.

Методы решения уравнений делятся на прямые и итерационные. Прямые методы – это методы, позволяющие вычислить решение по формуле (например, нахождение корней квадратного уравнения). Итерационные методы – это методы, в которых задается некоторое начальное приближение и строится сходящаяся последовательность приближений к точному решению, причем каждое последующее приближение вычисляется с использованием предыдущих

Полное решение поставленной задачи можно разделить на 3 этапа:

    Установить количество, характер и расположение корней уравнения (1).

    Найти приближенные значения корней, т.е. указать промежутки, в которых наудится корни (отделить корни).

    Найти значение корней с требуемой точностью (уточнить корни).

Существуют различные графические и аналитические методы решения первых двух задач.

Наиболее наглядный метод отделения корней уравнения (1) состоит в определении координат точек пересечения графика функции
с осью абсцисс. Абсциссы точек пересечения графика
с осью
являются корнями уравнения (1)

Промежутки изоляции корней уравнения (1) можно получить аналитически, опираясь на теоремы о свойствах функций, непрерывных на отрезке.

Если, например, функция
непрерывна на отрезке
и
, то согласно теореме Больцано – Коши, на отрезке
существует хотя бы один корень уравнения (1)(нечетное количество корней).

Если функция
удовлетворяет условиям теоремы Больцано-Коши и монотонна на этом отрезке, то на
существует только один корень уравнения (1).Таким образом, уравнение (1) имеет на
единственный корень, если выполняются условия:


Если функция на заданном интервале непрерывно дифференцируема, то можно воспользоваться следствием из теоремы Ролля, по которому между парой корней всегда находится по крайней мере одна стационарная точка. Алгоритм решения задачи в данном случае будет следующий:


Полезным средством для отделения корней является также использование теоремы Штурма.

Решение третьей задачи осуществляется различными итерационными (численными) методами: методом дихотомии, методом простой итерации, методом Ньютона, методом хорд и т.д.

Пример Решим уравнение
методом простой итерации . Зададим
. Построим график функции.

На графике видно, что корень нашего уравнения принадлежит отрезку
, т.е.
– отрезок изоляции корня нашего уравнения. Проверим это аналитически, т.е. выполнение условий (2):


Напомним, что исходное уравнение (1) в методе простой итерации преобразуется к виду
и итерации осуществляются по формуле:

(3)

Выполнение расчетов по формуле (3) называется одной итерацией. Итерации прекращаются, когда выполняется условие
, где - абсолютная погрешность нахождения корня, или
, где -относительная погрешность.

Метод простой итерации сходится, если выполняется условие
для
. Выбором функции
в формуле (3) для итераций можно влиять на сходимость метода. В простейшем случае
со знаком плюс или минус.

На практике часто выражают
непосредственно из уравнения (1). Если не выполняется условие сходимости, преобразуют его к виду (3) и подбирают. Представим наше уравнение в виде
(выразим x из уравнения). Проверим условие сходимости метода:

для
. Обратите внимание, что условие сходимости выполняется не
, поэтому мы и берем отрезок изоляции корня
. Попутно заметим, что при представлении нашего уравнения в виде
, не выполняется условие сходимости метода:
на отрезке
. На графике видно, что
возрастает быстрее, чем функция
­­ (|tg| угла наклона касательной к
на отрезке
)

Выберем
. Организуем итерации по формуле:



Программно организуем процесс итераций с заданной точностью:

> fv:=proc(f1,x0,eps)

> k:=0:

x:=x1+1:

while abs(x1-x)> eps do

x1:=f1(x):

print(evalf(x1,8)):

print(abs(x1-x)):

:printf("Кол. итер.=%d ",k):

end :

На 19 итерации мы получили корень нашего уравнения

c абсолютной погрешностью

Решим наше уравнение методом Ньютона . Итерации в методе Ньютона осуществляются по формуле:

Метод Ньютона можно рассматривать как метод простой итерации с функцией, тогда условие сходимости метода Ньютона запишется в виде:

.

В нашем обозначении
и условие сходимости выполняется на отрезке
, что видно на графике:

Напомним, что метод Ньютона сходится с квадратичной скоростью и начальное приближение должно быть выбрано достаточно близко к корню. Произведем вычисления:
, начальное приближение, . Организуем итерации по формуле:



Программно организуем процесс итераций с заданной точностью. На 4 итерации получим корень уравнения

с
Мы рассмотрели методы решения нелинейных уравнений на примере кубических уравнений, естественно, этими методами решаются различные виды нелинейных уравнений. Например, решая уравнение

методом Ньютона с
, находим корень уравнения на [-1,5;-1]:

Задание : Решить нелинейные уравнения с точностью

0.


    деления отрезка пополам (дихотомии)

    простой итерации.

    Ньютона (касательных)

    секущих – хорд.

Варианты заданий рассчитываются следующим образом: номер по списку делится на 5 (
), целая часть соответствует номеру уравнения, остаток – номеру метода.

Задание:

1) Используя метод итераций, решить систему

2) Используя метод Ньютона, решить систему

нелинейных уравнений с точностью до 0,001.

Задание №1Используя метод итераций, решить систему нелинейных уравнений с точностью до 0,001.

Теоретическая часть.

Метод итераций э то способ численного решения математических задач. Его суть – нахождение алгоритма поиска по известному приближению (приближенному значению) искомой величины следующего, более точного приближения. Применяется в случае, когда последовательность приближений по указанному алгоритму сходится.

Данный метод называют также методом последовательных приближений, методом повторных подстановок, методом простых итераций и т.п.

Метод Ньютона , алгоритм Ньютона (также известный как метод касательных) - это итерационный численный метод нахождения корня (нуля) заданной функции. Метод был впервые предложен английским физиком, математиком и астрономом Исааком Ньютоном (1643-1727). Поиск решения осуществляется путём построения последовательных приближений и основан на принципах простой итерации. Метод обладает квадратичной сходимостью. Улучшением метода является метод хорд и касательных. Также метод Ньютона может быть использован для решения задач оптимизации, в которых требуется определить нуль первой производной либо градиента в случае многомерного пространства. Обоснование

Чтобы численно решить уравнение методом простой итерации, его необходимо привести к следующей форме: , где - сжимающее отображение.

Для наилучшей сходимости метода в точке очередного приближения должно выполняться условие . Решение данного уравнения ищут в виде , тогда:

В предположении, что точка приближения «достаточно близка» к корню , и что заданная функция непрерывна , окончательная формула для такова:

С учётом этого функция определяется выражением:

Эта функция в окрестности корня осуществляет сжимающее отображение, и алгоритм нахождения численного решения уравнения сводится к итерационной процедуре вычисления:

.

Варианты заданий

№1. 1)
2)

№2. 1)
2)

№3. 1)
2)

№4. 1)
2)

№5. 1)
2)

№6. 1)
2)

№7. 1)
2)

№8. 1)
2)

№9. 1)
2)

№10.1)
2)

№11.1)
2)

№12.1)
2)

№13.1)
2)

№14.1)
2)

№15.1)
2)

№16.1)
2)

№17.1)
2)

№18.1)
2)

№19.1)
2)

№20.1)
2)

№21. 1)
2)

№22. 1)
2)

№23. 1)
2)

№24. 1)
2)

№25. 1)
2)

№26. 1)
2)

№27. 1)
2)

№28. 1)
2)

№29. 1)
2)

№30. 1)
2)

Образец выполнения задания

№1. 1)
2)

Пример решения системы нелинейных уравнений методом итераций



Перепишем данную систему в виде:

Отделение корней производим графически (рис.1). Из графика видим, что система имеет одно решение, заключенное в области D: 0<х <0,3;-2,2<y <-1,8.

Убедимся в том, что метод итераций применим для уто­чнения решения системы, для чего запишем ее в следующем виде:

Так как ,то имеем в области D

+ = ;

+ =

Таким образом, условия сходимости выполняются.

Таблица №2

п
0,15 -2 -0,45 -0,4350 -0,4161 -0,1384
0,1616 -2,035 -0,4384 -0,4245 -0,4477 -0,1492
0,1508 -2.0245 -0,4492 -0,4342 -0,4382 -0,1461
0.1539 -2,0342. -0,4461 -0.4313 -0,4470 -0,1490
0.1510 -2,0313 -0,4490 -0,4341 -0,4444 -0.1481
0,1519 -2,0341 -0,4481 -0,4333 -0,4469 -0,1490
0,1510 -2.0333 -0.449 -0,4341 -0.4462 -0,1487
0.1513 -2.0341 -0,4487 -0,4340 -0,4469 -0.1490
0.1510 -2,0340

За начальные приближения принимаем х о =0,15, у 0 = -2.

(таб.№2). Тогда ответ запишется:

Пример решения системы нелинейных уравнений методом Ньютона

Отделение корней производим графически (рис.2). Для построения графиков функций составим таблицу значений функций и , входящих в первое и второе уравнения (табл. I).

Значения для x можно брать исходя из следующих условий: из первого уравнения 1≤1,2х+0,4≤1 , т.е. 1,16≤х≤0,5 ; из второго уравнения , т.е. . Таким образом, .

Система имеет два решения. Уточним одно из них, принадлежащее области D: 0,4<x <0,5;

0,76<y <0,73. За начальное приближение примем Имеем:


Таблица №3

x -1,1 -1 -0,8 -0,6 -0,2 -0,4 0,2 0,4 0,5
х 2 1.21 0,64 0,36 0,04 0,16 0,04 0.16 0,25
0,8 х 2 0,97 0,8 0,51 0,29 0,032 0,13 0,032 0,13 0,2
1 -0,8 х 2 0,03 0,2 0,49 0,71 0,97 0,87 0,97 0.87 0,8
0,02 0,13 0,33 0,47 0,65 0,58 0,67 0,65 0,58 0.53
±0,14 ±0,36 ±0,57 ±0,69 ±0,81 ±0,76 ±0,82 ±0.81 ±0,76 ±0.73
1,2x -1,32 -1,2 -0,9б" -0,72 -0,24 -0,48 0,24 0,48 0,6
0,4+1,2x -0,92 -0,8 -0,56 -0,32 0,16 -0,08 0,4 0,64 0.88
2x-y -1.17 -0,93 -0,59 -0,33 0,16 -0,08 0,41 0,69 2.06 1,08 1,57
-1,03 -1,07 -1,01 -0,87 -0,56 -0,72 -0,41 -0,29 -1,26 -1,28 -0.57

Уточнение корней проводим методом Ньютона:



где ; ;


;
;


Все вычисления производим по таблице 3

Таблица 3 0,10 0,017 -0,0060 0,0247 -0,0027 -0,0256 0,0001 0,0004
0,2701 0,0440 -0,0193 0,0794 -0,0080 -0,0764 -0,0003 0,0013
2,6197 3,2199 2,9827 3,1673
-0,0208 -2,25 0,1615 -2,199 0,1251 -2,1249 0,1452 -2,2017
-1,1584 0,64 -1,523 0,8 -1,4502 0,7904 -1,4904 0,7861
0,1198 -0,0282 -0,0131 0,059 -0,0007 -0,0523 -0,0002 0,0010
0,9988 0,0208 0,9869 -0,1615 0,9921 -0,1251 -0,9894 -0,1452
0,55 0,733 1,6963 1,7165
0,128 0,8438 0,2 0,8059 0,1952 0,7525 0,1931 0,8079
0,4 0,75 0,50 -0,733 0,4940 -0,7083 0,4913 -0,7339 0,4912 -0,7335 Ответ: x ≈0,491 y ≈ 0,734
n

Контрольные вопросы

1) Представьте на графике возможные случаи решения системы двух нелинейных уравнений.

2) Сформулируйте постановку задачи о решении системы n-линейных уравнений.

3) Приведите итерационные формулы метода простой итерации в случае системы двух нелинейных уравнений.

4) Сформулируйте теорему о локальной сходимости метода Ньютона.

5) Перечислите трудности, возникающие при использовании метода Ньютона на практике.

6) Объяснить каким образом можно модифицировать метод Ньютона.

7) Изобразите в виде блок-схем алгоритм решения систем двух нелинейных уравнений методами простой итерации и Ньютона.


Лабораторная работа №3

Метод простой итерации, называемый также методом последовательного приближения, - это математический алгоритм нахождения значения неизвестной величины путем постепенного ее уточнения. Суть этого метода в том, что, как видно из названия, постепенно выражая из начального приближения последующие, получают все более уточненные результаты. Этот метод используется для поиска значения переменной в заданной функции, а также при решении систем уравнений, как линейных, так и нелинейных.

Рассмотрим, как данный метод реализуется при решении СЛАУ. Метод простой итерации имеет следующий алгоритм:

1. Проверка выполнения условия сходимости в исходной матрице. Теорема о сходимости: если исходная матрица системы имеет диагональное преобладание (т.е, в каждой строке элементы главной диагонали должны быть больше по модулю, чем сумма элементов побочных диагоналей по модулю), то метод простых итераций - сходящийся.

2. Матрица исходной системы не всегда имеет диагональное преобладание. В таких случаях систему можно преобразовать. Уравнения, удовлетворяющие условию сходимости, оставляют нетронутыми, а с неудовлетворяющими составляют линейные комбинации, т.е. умножают, вычитают, складывают уравнения между собой до получения нужного результата.

Если в полученной системе на главной диагонали находятся неудобные коэффициенты, то к обеим частям такого уравнения прибавляют слагаемые вида с i *x i, знаки которых должны совпадать со знаками диагональных элементов.

3. Преобразование полученной системы к нормальному виду:

x - =β - +α*x -

Это можно сделать множеством способов, например, так: из первого уравнения выразить х 1 через другие неизвестные, из второго- х 2 , из третьего- х 3 и т.д. При этом используем формулы:

α ij = -(a ij / a ii)

i = b i /a ii
Следует снова убедиться, что полученная система нормального вида соответствует условию сходимости:

∑ (j=1) |α ij |≤ 1, при этом i= 1,2,...n

4. Начинаем применять, собственно, сам метод последовательных приближений.

x (0) - начальное приближение, выразим через него х (1) , далее через х (1) выразим х (2) . Общая формула а матричном виде выглядит так:

x (n) = β - +α*x (n-1)

Вычисляем, пока не достигнем требуемой точности:

max |x i (k)-x i (k+1) ≤ ε

Итак, давайте разберем на практике метод простой итерации. Пример:
Решить СЛАУ:

4,5x1-1.7x2+3.5x3=2
3.1x1+2.3x2-1.1x3=1
1.8x1+2.5x2+4.7x3=4 с точностью ε=10 -3

Посмотрим, преобладают ли по модулю диагональные элементы.

Мы видим что условию сходимости удовлетворяет лишь третье уравнение. Первое и второе преобразуем, к первому уравнению прибавим второе:

7,6x1+0.6x2+2.4x3=3

Из третьего вычтем первое:

2,7x1+4.2x2+1.2x3=2

Мы преобразовали исходную систему в равноценную:

7,6x1+0.6x2+2.4x3=3
-2,7x1+4.2x2+1.2x3=2
1.8x1+2.5x2+4.7x3=4

Теперь приведем систему к нормальному виду:

x1=0.3947-0.0789x2-0.3158x3
x2=0.4762+0.6429x1-0.2857x3
x3= 0.8511-0.383x1-0.5319x2

Проверяем сходимость итерационного процесса:

0.0789+0.3158=0,3947 ≤ 1
0.6429+0.2857=0.9286 ≤ 1
0.383+ 0.5319= 0.9149 ≤ 1 , т.е. условие выполняется.

0,3947
Начальное приближение х (0) = 0,4762
0,8511

Подставляем данные значения в уравнение нормального вида, получаем следующие значения:

0,08835
x (1) = 0,486793
0,446639

Подставляем новые значения, получаем:

0,215243
x (2) = 0,405396
0,558336

Продолжаем вычисления до того момента, пока не приблизимся к значениям, удовлетворяющим заданному условию.

x (7) = 0,441091

Проверим правильность полученных результатов:

4,5*0,1880 -1.7*0,441+3.5*0,544=2,0003
3.1*0,1880+2.3*0,441-1.1x*0,544=0,9987
1.8*0,1880+2.5*0,441+4.7*0,544=3,9977

Результаты, полученные при подстановке найденных значений в исходные уравнения, полностью удовлетворяют условиям уравнения.

Как мы видим, метод простой итерации дает довольно точные результаты, однако для решения этого уравнения нам пришлось потратить много времени и проделать громоздкие вычисления.



Понравилась статья? Поделитесь с друзьями!