Мгновенная и средняя скорость. Мгновенная скорость движения

Развивать мыслительные способности учащихся, умение анализировать, выделять общие и отличительные свойства; развивать умение применять теоретические знания на практике при решении задач на нахождение средней скорости неравномерного движения.

Скачать:


Предварительный просмотр:

Урок в 9 классе по теме: «Средняя и мгновенная скорости неравномерного движения»

Учитель – Малышев М.Е.

Дата -17.10.2013

Цели урока:

Образовательная цель:

  • Повторить понятие – средняя и мгновенная скорости,
  • научиться находить среднюю скорость при различных условиях, используя задачи из материалов ГИА и ЕГЭ прошлых лет.

Развивающая цель:

  • развивать мыслительные способности учащихся, умение анализировать, выделять общие и отличительные свойства; развивать умение применять теоретические знания на практике; развивать память, внимание, наблюдательность.

Воспитательная цель:

  • воспитывать устойчивый интерес к изучению математики и физики через реализацию межпредметных связей;

Тип урока:

  • урок обобщения и систематизации знаний, умений по данной теме.

Оборудование:

  • компьютер, мультимедийный проектор;
  • тетради;
  • набор оборудования L- микро по разделу «Механика»

Ход урока

1. Организационный момент

Взаимное приветствие; проверка готовности учащихся к уроку, организация внимания.

2. Сообщение темы и целей урока

Слайд на экране : “ Практика рождается только из тесного соединения физики и математики ” Бэкон Ф.

Сообщается тема и цели урока.

3. Входной контроль (повторение теоретического материала) (10 мин)

Организация устной фронтальной работы с классом по повторению.

Учитель физики:

1. Какой простейший вид движения вам известен? (равномерное движение)

2. Как найти скорость при равномерном движении? (перемещение разделить на время v = s / t )? Равномерное движение встречается нечасто.

Обычно механическое движение - это движение с изменяющейся скоростью. Движение, при котором скорость тела с течением времени изменяется, называют неравномерным. Например, неравномерно движется транспорт. Автобус, начиная движение, увеличивает свою скорость; при торможении его скорость уменьшается. Падающие на поверхность Земли тела также движутся неравномерно: их скорость с течением времени возрастает.

3. Как найти скорость при неравномерном движении? Как она называется? (Средняя скорость, v ср = s/ t)

На практике при определении средней скорости пользуются величиной, равной отношению пути s ко времени t, за которое этот путь пройден: v ср = s/t . Ее часто называют средней путевой скоростью .

4. Какие особенности есть у средней скорости? (Средняя скорость является векторной величиной. Для определения модуля средней скорости в практических целях этой формулой можно воспользоваться лишь в том случае, когда тело движется вдоль прямой в одну сторону. Во всех остальных случаях эта формула непригодна).

5. Что такое мгновенная скорость? Как направлен вектор мгновенной скорости? (Мгновенная скорость – это скорость тела в данный момент времени или в данной точке траектории. Вектор мгновенной скорости в каждой точке совпадает с направлением движения в данной точке.)

6. Чем отличается мгновенная скорость при равномерном прямолинейном движении от мгновенной скорости при неравномерном движении? (В случае равномерного прямолинейного движения мгновенная скорость в любой точке и в любой момент времени одинакова; в случае неравномерного прямолинейного движения мгновенная скорость различна).

7. Можно ли определить положение тела в любой момент времени зная среднюю скорость его движения на каком-либо участке траектории? (нельзя определить его положение в любой момент времени).

Предположим, что автомобиль проехал путь 300 км за 6 ч. Чему равна средняя скорость движения? Средняя скорость движения автомобиля равна 50 км/ч. Однако при этом он мог какое-то время стоять, какое - то время двигаться со скоростью 70 км/ч, какое - то время - со скоростью 20 км/ч и т. п.

Очевидно, что, зная среднюю скорость движения автомобиля за 6 ч, мы не можем определить его положение через 1 ч, через 2 ч, через 3 ч и т. д. времени”.

1. Устно найдите скорость автомобиля, если путь в 180 км он проехал за 3 часа.

2. Автомобиль ехал 1 час со скоростью 80 км /ч и 1 час со скоростью 60 км/ч. Найдите среднюю скорость. Действительно, средняя скорость равна(80+60)/2=70 км/ч. В данном случае средняя скорость равна среднему арифметическому скоростей.

3. Изменим условие. Автомобиль ехал 2 часа со скоростью 60 км /ч и 3 часа со скоростью 80 км/ч. Какова средняя скорость на всем пути?

(60 2+80 3)/5=72 км /ч. Скажите, а сейчас средняя скорость равна среднему арифметическому скоростей? Нет.

Самое главное, что нужно помнить, при нахождении средней скорости - это то, что она средняя, а не средняя арифметическая скорость. Конечно, услышав задачу, сразу хочется сложить скорости и разделить на 2.Это самая распространенная ошибка.

Средняя скорость равна среднему арифметическому от скоростей тела во время движения только в том случае, когда тело с этими скоростями проходит весь путь за одинаковые промежутки времени.

4. Решение задач (15 мин)

Задача №1. Скорость лодки по течению 24 км в час, против течения 16 км в час. Найти среднюю скорость. (Проверка выполнения заданий у доски.)

Решение. Пусть S - путь от начального до конечного пунктов, тогда время, затраченное на путь по течению S/24, а против течения - S/16, общее время движения - 5S/48. Так как весь путь, туда и обратно составляет 2S, следовательно, средняя скорость равна2S/(5S/48)=19,2 км в час.

Экспериментальное исследование “Равноускоренное движение, начальная скорость равна нолю” (Эксперимент проводится учащимися)

Прежде чем приступить к выполнению практической работы вспомним правила ТБ:

  1. Перед началом работы : внимательно изучить содержание и порядок проведения лабораторного практикума, подготовить рабочее место и убрать посторонние предметы, приборы и оборудование разместить таким образом, чтобы исключить их падение и опрокидывание, проверить исправность оборудования и приборов.
  2. Во время работы : точно выполнять все указания учителя, без его разрешения не выполнять самостоятельно никаких работ, следить за исправностью всех креплений в приборах и приспособлениях.
  3. По окончании работы : привести в порядок рабочее место, сдать учителю приборы и оборудование.

Исследование зависимости скорости от времени при равноускоренном движении (начальная скорость равна нулю).

Цель: изучение равноускоренного движения, построение графика зависимости v=at на основе экспериментальных данных.

Из определения ускорения следует, что скорость тела v , двигающегося прямолинейно с постоянным ускорением, спустя некоторое время t после начала движения может быть определена из уравнения: v = v 0 +аt . Если тело начало двигаться, не имея начальной скорости, то есть при v 0 = 0, это уравнение становится более простым: v = а t. (1)

Скорость в заданной точке траектории можно определить, зная перемещение тела из состояния покоя до этой точки и время движения. Действительно, при движении из состояния покоя ( v 0 = 0 ) с постоянным ускорением перемещение определяется по формуле S= at 2 /2, откуда, а=2S/ t 2 (2). После подстановки формулы (2) в (1):v=2 S/t (3)

Для выполнения работы направляющую рейки устанавливают с помощью штатива в наклонном положении.

Её верхний край должен находиться на высоте 18-20 см от поверхности стола. Под нижний край подкладывают пластиковый коврик. Каретку устанавливают на направляющей в крайнем верхнем положении, причём её выступ с магнитом должен быть обращен в сторону датчиков. Первый датчик размещают вблизи магнита каретки так, чтобы он запускал секундомер, как только каретка начнёт двигаться. Второй датчик устанавливают на удалении 20-25 см от первого. Далее работу выполняют в таком порядке:

  1. Измеряют перемещение, которое каретка совершит, двигаясь между датчиками – S 1
  2. Производят пуск каретки и измеряют время её движения между датчиками t 1
  3. По формуле (3) определяют скорость, с которой двигалась каретка в конце первого участка v 1 =2S 1 /t 1
  4. Увеличивают расстояние между датчиками на 5см и повторяют серию опытов для измерения скорости тела в конце второго участка: v 2 =2 S 2 /t 2 Каретку в этой серии опытов, как и в первой, пускают из крайнего верхнего положения.
  5. Проводят ещё две серии опытов, увеличивая в каждой серии расстояние между датчиками на 5 см. Так находят значения скорости v з и v 4
  6. По полученным данным строят график зависимости скорости от времени движения.
  7. Подведение итогов урока

Домашнее задание с комментариями: Выберите любые три задачи:

1. Велосипедист, проехав 4 км со скоростью 12 км/ч, остановился и отдыхал в течении 40 мин. Оставшиеся 8 км пути он проехал со скоростью 8 км/ч. Найдите среднюю скорость (в км/ч) велосипедиста на всем пути?

2.Велосипедист за первые 5 с проехал 35 м, за последующие 10 с-100 м и за последние 5 с-25 м. Найдите среднюю скорость движения на всем пути.

3. Первые 3/4 времени своего движения поезд шел со скоростью 80 км/ч, остальное время - со скоростью 40 км/ч. Какова средняя скорость (в км/ч) движения поезда на всем пути?

4. Первую половину пути автомобиль прошел со скоростью 40 км/ч, вторую – со скоростью 60 км/ч. Найдите среднюю скорость(в км/ч) автомобиля на всем пути?

5. Автомобиль проехал первую половину пути со скоростью 60 км/ч. Оставшуюся часть пути он ехал со скоростью 35 км/ч, а последний участок – со скоростью 45 км/ч. Найдите среднюю скорость (в км/ч) автомобиля на всем пути.

“ Практика рождается только из тесного соединения физики и математики ” Бэкон Ф.

а) “Разгон” (начальная скорость меньше конечной) б) “Торможение” (конечная скорость меньше начальной)

Устно 1. Найдите скорость автомобиля, если путь в 180 км он проехал за 3 часа. 2. Автомобиль ехал 1 час со скоростью 80 км /ч и 1 час со скоростью 60 км/ч. Найдите среднюю скорость. Действительно, средняя скорость равна(80+60)/2=70 км/ч. В данном случае средняя скорость равна среднему арифметическому скоростей. 3. Изменим условие. Автомобиль ехал 2 часа со скоростью 60 км /ч и 3 часа со скоростью 80 км/ч. Какова средняя скорость на всем пути?

(60* 2+80* 3)/5=72 км /ч. Скажите, а сейчас средняя скорость равна среднему арифметическому скоростей?

Задача Скорость лодки по течению 24 км в час, против течения 16 км в час. Найти среднюю скорость лодки.

Решение. Пусть S- путь от начального до конечного пунктов, тогда время, затраченное на путь по течению S/24, а против течения - S/16, общее время движения - 5S/48. Так как весь путь, туда и обратно составляет 2S, следовательно, средняя скорость равна2S/(5S/48)=19,2 км в час.

Решение. V ср = 2s / t 1 + t 2 t 1 = s / V 1 и t 2 = s / V 2 V ср = 2s / V 1 + s / V 2 = 2 V 1 V 2 / V 1 + V 2 V ср = 19,2 км/ч

На дом: Первую треть трассы велосипедист ехал со скоростью 12 км в час, вторую треть - со скоростью 16 км в час, а последнюю треть - со скоростью 24 км в час. Найдите среднюю скорость велосипеда на протяжении всего пути. Ответ дайте в км в час.


Скатывание тела по наклонной плоскости (рис. 2);

Рис. 2. Скатывание тела по наклонной плоскости ()

Свободное падение (рис. 3).

Все эти три вида движения не являются равномерными, то есть в них изменяется скорость. На этом уроке мы рассмотрим неравномерное движение.

Равномерное движение – механическое движение, при котором тело за любые равные отрезки времени проходит одинаковое расстояние (рис. 4).

Рис. 4. Равномерное движение

Неравномерным называется движение , при котором тело за равные промежутки времени проходит неравные пути.

Рис. 5. Неравномерное движение

Основная задача механики – определить положение тела в любой момент времени. При неравномерном движении скорость тела меняется, следовательно, необходимо научиться описывать изменение скорости тела. Для этого вводятся два понятия: средняя скорость и мгновенная скорость.

Факт изменения скорости тела при неравномерном движении не всегда необходимо учитывать, при рассмотрении движении тела на большом участке пути в целом (нам не важна скорость в каждый момент времени) удобно ввести понятие средней скорости.

Например, делегация школьников добирается из Новосибирска в Сочи поездом. Расстояние между этими городами по железной дороге составляет приблизительно 3300 км. Скорость поезда, когда он только выехал из Новосибирска составляла , значит ли это, что посередине пути скорость была такой же, а на подъезду к Сочи [М1] ? Можно ли, имея только эти данные, утверждать, что время движения составит (рис. 6). Конечно нет, так как жители Новосибирска знают, что до Сочи ехать приблизительно 84 ч.

Рис. 6. Иллюстрация к примеру

Когда рассматривается движение тела на большом участке пути в целом, удобнее ввести понятие средней скорости.

Средней скоростью называют отношение полного перемещения, которое совершило тело, ко времени, за которое совершено это перемещение (рис. 7).

Рис. 7. Средняя скорость

Данное определение не всегда является удобным. Например, спортсмен пробегает 400 м – ровно один круг. Перемещение спортсмена равно 0 (рис. 8), однако мы понимаем, что его средняя скорость нулю равна быть не может.

Рис. 8. Перемещение равно 0

На практике чаще всего используется понятие средней путевой скорости.

Средняя путевая скорость – это отношение полного пути, пройденного телом, ко времени, за которое путь пройден (рис. 9).

Рис. 9. Средняя путевая скорость

Существует еще одно определение средней скорости.

Средняя скорость – это та скорость, с которой должно двигаться тело равномерно, чтобы пройти данное расстояние за то же время, за которое оно его прошло, двигаясь неравномерно.

Из курса математики нам известно, что такое среднее арифметическое. Для чисел 10 и 36 оно будет равно:

Для того чтобы узнать возможность использования этой формулы для нахождения средней скорости, решим следующую задачу.

Задача

Велосипедист поднимается со скоростью 10 км/ч на склон, затрачивая на это 0,5 часа. Далее со скоростью 36 км/ч спускается вниз за 10 минут. Найдите среднюю скорость велосипедиста (рис. 10).

Рис. 10. Иллюстрация к задаче

Дано: ; ; ;

Найти:

Решение:

Так как единица измерения данных скоростей – км/ч, то и среднюю скорость найдем в км/ч. Следовательно, данные задачи не будем переводить в СИ. Переведем в часы.

Средняя скорость равна:

Полный путь () состоит из пути подъема на склон () и спуска со склона ():

Путь подъема на склон равен:

Путь спуска со склона равен:

Время, за которое пройден полный путь, равно:

Ответ: .

Исходя из ответа задачи, видим, что применять формулу среднего арифметического для вычисления средней скорости нельзя.

Не всегда понятие средней скорости полезно для решения главной задачи механики. Возвращаясь к задаче про поезд, нельзя утверждать, что если средняя скорость на всем пути поезда равна , то через 5 часов он будет находиться на расстоянии от Новосибирска.

Среднюю скорость, измеренную за бесконечно малый промежуток времени, называют мгновенной скоростью тела (для примера: спидометр автомобиля (рис. 11) показывает мгновенную скорость).

Рис. 11. Спидометр автомобиля показывает мгновенную скорость

Существует еще одно определение мгновенной скорости.

Мгновенная скорость – скорость движения тела в данный момент времени, скорость тела в данной точке траектории (рис. 12).

Рис. 12. Мгновенная скорость

Для того чтобы лучше понять данное определение, рассмотрим пример.

Пусть автомобиль движется прямолинейно по участку шоссе. У нас есть график зависимости проекции перемещения от времени для данного движения (рис. 13), проанализируем данный график.

Рис. 13. График зависимости проекции перемещения от времени

На графике видно, что скорость автомобиля не постоянная. Допустим, необходимо найти мгновенную скорость автомобиля через 30 секунд после начала наблюдения (в точке A ). Пользуясь определением мгновенной скорости, найдем модуль средней скорости за промежуток времени от до . Для этого рассмотрим фрагмент данного графика (рис. 14).

Рис. 14. График зависимости проекции перемещения от времени

Для того чтобы проверить правильность нахождения мгновенной скорости, найдем модуль средней скорости за промежуток времени от до , для этого рассмотрим фрагмент графика (рис. 15).

Рис. 15. График зависимости проекции перемещения от времени

Рассчитываем среднюю скорость на данном участке времени:

Получили два значения мгновенной скорости автомобиля через 30 секунд после начала наблюдения. Точнее будет то значение, где интервал времени меньше, то есть . Если уменьшать рассматриваемый интервал времени сильнее, то мгновенная скорость автомобиля в точке A будет определяться более точно.

Мгновенная скорость – это векторная величина. Поэтому, кроме ее нахождения (нахождения ее модуля), необходимо знать, как она направлена.

(при ) – мгновенная скорость

Направление мгновенной скорости совпадает с направлением перемещения тела.

Если тело движется криволинейно, то мгновенная скорость направлена по касательной к траектории в данной точке (рис. 16).

Задание 1

Может ли мгновенная скорость () изменяться только по направлению, не изменяясь по модулю?

Решение

Для решения рассмотрим следующий пример. Тело движется по криволинейной траектории (рис. 17). Отметим на траектории движения точку A и точку B . Отметим направление мгновенной скорости в этих точках (мгновенная скорость направлена по касательной к точке траектории). Пусть скорости и одинаковы по модулю и равны 5 м/с.

Ответ: может.

Задание 2

Может ли мгновенная скорость меняться только по модулю, не меняясь по направлению?

Решение

Рис. 18. Иллюстрация к задаче

На рисунке 10 видно, что в точке A и в точке B мгновенная скорость направлена одинаково. Если тело движется равноускоренно, то .

Ответ: может.

На данном уроке мы приступили к изучению неравномерного движения, то есть движения с изменяющейся скоростью. Характеристиками неравномерного движения являются средняя и мгновенная скорости. Понятие о средней скорости основано на мысленной замене неравномерного движения равномерным. Иногда понятие средней скорости (как мы увидели) является очень удобным, но для решения главной задачи механики оно не подходит. Поэтому вводится понятие мгновенной скорости.

Список литературы

  1. Г.Я. Мякишев, Б.Б. Буховцев, Н.Н. Сотский. Физика 10. - М.: Просвещение, 2008.
  2. А.П. Рымкевич. Физика. Задачник 10-11. - М.: Дрофа, 2006.
  3. О.Я. Савченко. Задачи по физике. - М.: Наука, 1988.
  4. А.В. Перышкин, В.В. Крауклис. Курс физики. Т. 1. - М.: Гос. уч.-пед. изд. мин. просвещения РСФСР, 1957.
  1. Интернет-портал «School-collection.edu.ru» ().
  2. Интернет-портал «Virtulab.net» ().

Домашнее задание

  1. Вопросы (1-3, 5) в конце параграфа 9 (стр. 24); Г.Я. Мякишев, Б.Б. Буховцев, Н.Н. Сотский. Физика 10 (см. список рекомендованной литературы)
  2. Можно ли, зная среднюю скорость за определенный промежуток времени, найти перемещение, совершенное телом за любую часть этого промежутка?
  3. Чем отличается мгновенная скорость при равномерном прямолинейном движении от мгновенной скорости при неравномерном движении?
  4. Во время езды на автомобиле через каждую минуту снимались показания спидометра. Можно ли по этим данным определить среднюю скорость движения автомобиля?
  5. Первую треть трассы велосипедист ехал со скоростью 12 км в час, вторую треть - со скоростью 16 км в час, а последнюю треть - со скоростью 24 км в час. Найдите среднюю скорость велосипеда на протяжении всего пути. Ответ дайте в км/час

Скорость в физике означает быстроту перемещения какого-либо объекта в пространстве. Эта величина бывает разной: линейной, угловой, средней, космической и даже сверхсветовой. В число всех существующих разновидностей входит также и мгновенная скорость. Что это за величина, какова ее формула и какие действия необходимы для ее расчета - об этом как раз и пойдет речь в нашей статье.

Мгновенная скорость: сущность и понятие

О том, как определить быстроту перемещения объекта по прямой, известно даже ученику начальных классов: достаточно пройденное расстояние разделить на время, которое было затрачено на такое перемещение. Однако стоит помнить, что результат, полученный таким способом, позволяет судить о Если объект движется неравномерно, то на определенных участках его пути быстрота перемещения может заметно варьироваться. Поэтому порой требуется такая величина как мгновенная скорость. Она позволяет судить о быстроте перемещения материальной точки в любой момент движения.

Мгновенная скорость: формула расчета

Данный параметр равен пределу (обозначается limit, сокращенно lim) отношения перемещения (разнице координат) к промежутку времени, за которое это изменение произошло, при условии, что этот промежуток времени стремится достичь нуля. Это определение можно записать в виде следующей формулы:

v = Δs/Δt при Δt → 0 либо так v = lim Δt→0 (Δs/Δt)

Отметим, что мгновенная скорость есть Если движение происходит по прямой линии, то она меняется лишь по величине, а направление остается постоянным. В противном случае вектор скорости мгновенной направлен по касательной по отношению к траектории перемещения в каждой рассматриваемой точке. Какой смысл несет данный показатель? Мгновенная скорость позволяет выяснить, какое перемещение осуществит объект за единицу времени, если с рассматриваемого момента он движется равномерно и прямолинейно.

В случае никаких сложностей нет: нужно просто найти отношение расстояния к времени, за которое оно было объектом преодолено. В этом случае средняя и мгновенная скорость тела равны. Если же движение происходит непостоянно, то в этом случае следует узнать величину ускорения и определять мгновенную скорость в каждый определенный момент времени. При вертикальном перемещении следует учитывать влияние Мгновенную скорость автомобиля можно определить с помощью радара или спидометра. Следует иметь в виду, что перемещение в некоторых участках пути может принимать отрицательное значение.

Для того чтобы найти ускорение, можно воспользоваться акселерометром либо составить функцию движения и воспользоваться формулой v=v0+a.t. Если перемещение начинается из состояния покоя, то v0 = 0. При расчетах нужно учитывать тот факт, что при торможении тела (уменьшении скорости) величина ускорения будет со знаком "минус". Если объект совершает мгновенная быстрота его перемещения рассчитывается по формуле v= g.t. В этом случае начальная скорость также равна 0.

«Физика - 10 класс»

Какую скорость показывает спидометр?
Может ли городской транспорт двигаться равномерно и прямолинейно?

Реальные тела (человек, автомобиль, ракета, теплоход и т. д.), как правило, не движутся с постоянной скоростью. Они начинают двигаться из состояния покоя, и их скорость увеличивается постепенно, при остановке скорость уменьшается также постепенно, таким образом, реальные тела движутся неравномерно.

Неравномерное движение может быть как прямолинейным, так и криволинейным.

Чтобы полностью описать неравномерное движение точки, надо знать её положение и скорость в каждый момент времени.

Скорость точки в данный момент времени называется мгновенной скоростью .

Что же понимают под мгновенной скоростью?

Пусть точка, двигаясь неравномерно и по кривой линии, в некоторый момент времени t занимает положение М (рис. 1.24). По прошествии времени Δt 1 от этого момента точка займёт положение М 1 , совершив перемещение Δ 1 . Поделив вектор Δ 1 на промежуток времени Δt 1 найдём такую скорость равномерного прямолинейного движения с которой должна была бы двигаться точка, чтобы за время Δt попасть из положения М в положение М 1 . Эту скорость называют средней скоростью перемещения точки за время Δt 1 .

Обозначив её через ср1 , запишем: Средняя скорость направлена вдоль секущей ММ 1 . По той же формуле мы находим скорость точки при равномерном прямолинейном движении.

Скорость, с которой должна равномерно и прямолинейно двигаться точка, чтобы попасть из начального положения в конечное за определённый промежуток времени, называется средней скоростью перемещения.

Для того чтобы определить скорость в данный момент времени, когда точка занимает положение М, найдём средние скорости за всё меньшие и меньшие промежутки времени:

Интересно, верно ли следующее определение мгновенной скорости: «Скорость тела в данной точке траектории называется мгновенной скоростью»?

При уменьшении промежутка времени Δt перемещения точки уменьшаются по модулю и меняются по направлению. Соответственно этому средние скорости также меняются как по модулю, так и по направлению. Но по мере приближения промежутка времени Δt к нулю средние скорости всё меньше и меньше будут отличаться друг от друга. А это означает, что при стремлении промежутка времени Δt к нулю отношение стремится к определённому вектору как к своему предельному значению. В механике такую величину называют скоростью точки в данный момент времени или просто мгновенной скоростью и обозначают

Мгновенная скорость точки есть величина, равная пределу отношения перемещения Δ к промежутку времени Δt, в течение которого это перемещение произошло, при стремлении промежутка Δt к нулю.

Выясним теперь, как направлен вектор мгновенной скорости. В любой точке траектории вектор мгновенной скорости направлен так, как в пределе, при стремлении промежутка времени Δt к нулю, направлена средняя скорость перемещения. Эта средняя скорость в течение промежутка времени Δt направлена так, как направлен вектор перемещения Δ Из рисунка 1.24 видно, что при уменьшении промежутка времени Δt вектор Δ уменьшая свою длину, одновременно поворачивается. Чем короче становится вектор Δ, тем ближе он к касательной, проведённой к траектории в данной точке М, т. е. секущая переходит в касательную. Следовательно,

мгновенная скорость направлена по касательной к траектории (см. рис. 1.24).

В частности, скорость точки, движущейся по окружности, направлена по касательной к этой окружности. В этом нетрудно убедиться. Если маленькие частички отделяются от вращающегося диска, то они летят по касательной, так как имеют в момент отрыва скорость, равную скорости точек на окружности диска. Вот почему грязь из-под колёс буксующей автомашины летит по касательной к окружности колёс (рис. 1.25).

Понятие мгновенной скорости - одно из основных понятий кинематики. Это понятие относится к точке. Поэтому в дальнейшем, говоря о скорости движения тела, которое нельзя считать точкой, мы можем говорить о скорости какой-нибудь его точки.

Помимо средней скорости перемещения, для описания движения чаще пользуются средней путевой скоростью cps .

Средняя путевая скорость определяется отношением пути к промежутку времени, за который этот путь пройден:

Когда мы говорим, что путь от Москвы до Санкт-Петербурга поезд прошёл со скоростью 80 км/ч, мы имеем в виду именно среднюю путевую скорость движения поезда между этими городами. Модуль средней скорости перемещения при этом будет меньше средней путевой скорости, так как s > |Δ|.

Для неравномерного движения также справедлив закон сложения скоростей. В этом случае складываются мгновенные скорости.

К примеру, автомобиль, который трогается с места, движется ускоренно, так как наращивает скорость движения. В точке начала движения скорость автомобиля равняется нулю. Начав движение, автомобиль разгоняется до некоторой скорости. При необходимости затормозить, автомобиль не сможет остановиться мгновенно, а за какое-то время. То есть скорость автомобиля будет стремиться к нулю - автомобиль начнет двигаться замедленно до тех пор, пока не остановится полностью. Но физика не имеет термина «замедление». Если тело двигается, уменьшая скорость, этот процесс тоже называется ускорением , но со знаком «-».

Средним ускорением называется отношение изменения скорости к промежутку времени, за который это изменении произошло. Вычисляют среднее ускорение при помощи формулы:

где - это . Направление вектора ускорения такое же, как у направления изменения скорости Δ = - 0

где 0 является начальной скоростью. В момент времени t 1 (см. рис. ниже) у тела 0 . В момент времени t 2 тело имеет скорость . Исходя из правила вычитания векторов, определим вектор изменения скорости Δ = - 0 . Отсюда вычисляем ускорение:

.

В системе СИ единицей ускорения называется 1 метр в секунду за секунду (либо метр на секунду в квадрате):

.

Метр на секунду в квадрате - это ускорение прямолинейно движущейся точки, при котором за 1 с скорость этой точки растет на 1 м/с. Другими словами, ускорение определяет степень изменения скорости тела за 1 с. К примеру, если ускорение составляет 5 м/с 2 , значит, скорость тела ежесекундно растет на 5 м/с.

Мгновенное ускорение тела (материальной точки) в данный момент времени - это физическая величина , которая равна пределу, к которому стремится среднее ускорение при стремлении промежутка времени к 0. Другими словами - это ускорение, развиваемое телом за очень маленький отрезок времени:

.

Ускорение имеет такое же направление, как и изменение скорости Δ в крайне маленьких промежутках времени, за которые скорость изменяется. Вектор ускорения можно задать при помощи проекций на соответствующие оси координат в заданной системе отсчета (проекциями а Х, a Y , a Z).

При ускоренном прямолинейном движении скорость тела увеличивается по модулю, т.е. v 2 > v 1 , а вектор ускорения имеет такое же направление, как и у вектора скорости 2 .

Если скорость тела по модулю уменьшается (v 2 < v 1), значит, у вектора ускорения направление противоположно направлению вектора скорости 2 . Другими словами, в таком случае наблюдаем замедление движения (ускорение отрицательно, а < 0). На рисунке ниже изображено направление векторов ускорения при прямолинейном движении тела для случая ускорения и замедления.

Если происходит движение по криволинейной траектории, то изменяется модуль и направление скорости. Значит, вектор ускорения изображают в виде 2х составляющих.

Тангенциальным (касательным) ускорением называют ту составляющую вектора ускорения, которая направлена по касательной к траектории в данной точке траектории движения. Тангенциальное ускорение описывает степень изменения скорости по модулю при совершении криволинейного движения.


У вектора тангенциального ускорения τ (см. рис. выше) направление такое же, как и у линейной скорости либо противоположно ему. Т.е. вектор тангенциального ускорения находится в одной оси с касательной окружности, являющейся траекторией движения тела.



Понравилась статья? Поделитесь с друзьями!