Молекулярная физика определение коэффициента поверхностного натяжения жидкости методом поднятия жидкости в капиллярах. Эта сила прижимает друг к другу оба полушария по поверхности S=πR2 и следовательно, обуславливает дополнительное давление

Соприкасающаяся с другой средой, находится в особых условиях по сравнению с остальной массой жидкости. Силы, действующие на каждую молекулу поверхностного слоя жидкости, граничащей с паром, направлены в сторону объёма жидкости, то есть внутрь жидкости. Вследствие этого для перемещения молекулы из глубины жидкости на поверхность требуется совершить работу. Если при постоянной температуре увеличить площадь поверхности на бесконечно малую величину dS , то необходимая для этого работа будет равна . Работа по увеличению площади поверхности совершается против сил поверхностного натяжения, которые стремятся сократить, уменьшить поверхность. Поэтому работа самих сил поверхностного натяжения по увеличению площади поверхности жидкости будет равна:

Здесь коэффициент пропорциональности σ называется коэффициентом поверхностного натяжения и определяется величиной работы сил поверхностного натяжения по изменению площади поверхности на единицу. В СИ коэффициент поверхностного натяжения измеряется в Дж/м 2 .

Молекулы поверхностного слоя жидкости обладают избыточной по сравнению с глубинными молекулами, потенциальной энергией, которая прямо пропорциональна площади поверхности жидкости:

Приращение потенциальной энергии поверхностного слоя связано только с приращением площади поверхности: . Силы поверхностного натяжения - консервативные силы , поэтому выполняется равенство: . Силы поверхностного натяжения стремятся уменьшить потенциальную энергию поверхности жидкости. Обычно та энергия, которая может быть преобразована в работу, называется свободной энергией U S . Поэтому можно записать. Используя понятие свободной энергии, можно записать формулу (6.36) так: . Используя последнее равенство можно определить коэффициент поверхностного натяжения как физическую величину, численно равную свободной энергии единицы площади поверхности жидкости.

Действие сил поверхностного натяжения можно наблюдать с помощью простого эксперимента над тонкой плёнкой жидкости (например, мыльного раствора), которая обволакивает проволочный прямоугольный каркас, у которого одна сторона может перемешаться (рис.6.11). Предположим, что на подвижную сторону, длиной l, действует внешняя сила F B , перемещающая подвижную сторону рамки равномерно на очень малое расстояние dh. Элементарная работа этой силы будет равна , так как сила и перемещение сонаправлены. Поскольку плёнка имеет две поверхности и, то вдоль каждой из них направлены силы поверхностного натяжения F, векторная сумма которых равна внешней силе. Модуль внешней силы равен удвоенному модулю одной из сил поверхностного натяжения: . Минимальная работа, совершаемая внешней силой, равна по величине сумме работ сил поверхностного натяжения: . Величина работы силы поверхностного натяжения будет определяться так:


, где . Отсюда . То есть коэффициент поверхностногонатяжения может быть определён как величина, равная силе поверхностного натяжения, действующей по касательной к поверхности жидкости, приходящейся на единицу длины линии раздела. Силы поверхностного натяжения стремятся сократить площадь поверхности жидкости. Это заметно для малых объёмов жидкости, когда она принимает форму капель-шариков. Как известно, именно сферическая поверхность имеет минимальную площадь при данном объёме. Жидкость, взятая в большом количестве, под действием силы тяжести растекается по поверхности, на которой она находится. Как известно, сила тяжести зависит от массы тела, поэтому её величина по мере уменьшения массы тоже уменьшается и при определённой массе становится сравнимой или даже много меньше величины силы поверхностного натяжения. В этом случае силой тяжести можно пренебречь. Если жидкость находится в состоянии невесомости, то даже при большом объёме её поверхность стремится к сферической. Подтверждение тому - знаменитый опыт Плато. Если подобрать две жидкости с одинаковой плотностью, то действие силы тяжести на одну из них (взятую в меньшем количестве) будет скомпенсировано архимедовой силой и она примет форму шара. При этом условии она будет плавать внутри другой жидкости.

Рассмотрим, что происходит с каплей жидкости 1, граничащей с одной стороны с паром 3, с другой стороны с жидкостью 2 (рис.6.12). Выберем очень малый элемент границы раздела всех трёх веществ dl. Тогда силы поверхностного натяжения на границах раздела сред будут направлены по касательным к контуру границ раздела и равны:

Действием силы тяжести пренебрежём. Капля жидкости 1 находится в равновесии, если выполняются условия:

(6.38)

Подставив (6.37) в (6.38), сократив на dl обе части равенств (6.38), возведя в квадрат обе части равенств (6.38) и сложив их, получим:

где - угол между касательными к линиям раздела сред, называется краевым углом.

Анализ уравнения (6.39) показывает, что при получим и жидкость 1 полностью смачивает поверхность жидкости 2, растекаясь по ней тонким слоем (явление полного смачивания ).

Аналогичное явление можно наблюдать и при растекании тонким слоем жидкости 1 по поверхности твёрдого тела 2. Иногда жидкость наоборот не растекается по поверхности твёрдого тела. Если , то и жидкость 1 полностью не смачивает твёрдое тело 2 (явление полного несмачивания ). В этом случае есть только одна точка касания жидкости 1 и твёрдого тела 2. Полное смачивание или несмачивание являются предельными случаями. Реально можно наблюдать частичное смачивание , когда краевой угол острый () и частичное несмачивание , когда краевой угол тупой ().

На рисунке 6.13 а приведены случаи частичного смачивания, а на рис.6.13 б приведены примеры частичного несмачивания. Рассмотренные случаи показывают, что наличие сил поверхностного натяжения граничащих жидкостей или жидкости на поверхности твёрдого тела приводит к искривлению поверхностей жидкостей.

Рассмотрим силы, действующие на кривую поверхность. Кривизна поверхности жидкости приводит к появлению сил, действующих на жидкость под этой поверхностью. Если поверхность сферическая, то к любому элементу длины окружности (см. рис.6.14) приложены силы поверхностного натяжения, направленные по касательной к поверхности и стремящиеся её сократить. Результирующая этих сил направлена к центру сферы.

Отнесённая к единице площади поверхности эта результирующая сила оказывает дополнительное давление, которое испытывает жидкость под искривлённой поверхностью. Это дополнительное давление называется давлением Лапласа . Оно всегда направлено к центру кривизны поверхности. На рисунке 6.15 приведены примеры вогнутой и выпуклой сферических поверхностей и показаны давления Лапласа, соответственно.

Определим величину давления Лапласа для сферической, цилиндрической и любой поверхности.

Сферическая поверхность . Капля жидкости . При уменьшении радиуса сферы (рис.6.16) поверхностная энергия уменьшается, а работа производится силами, действующими в капле. Следовательно, объём жидкости под сферической поверхностью всегда несколько сжат, то есть испытывает давление Лапласа, направленное к центру кривизны радиально. Если под действием этого давления шар уменьшит свой объём на dV , то величина работы сжатия будет определяться формулой:

Уменьшение поверхностной энергии произошло на величину, определяемую формулой: (6.41)

Уменьшение поверхностной энергии произошло за счёт работы сжатия, следовательно, dA=dU S . Приравнивая правые части равенств (6.40) и (6.41), а также учитывая, что и , получим давление Лапласа: (6.42)

Объём жидкости под цилиндрической поверхностью также как и под сферической всегда несколько сжат, то есть испытывает давление Лапласа, направленное к центру кривизны радиально. Если под действием этого давления цилиндр уменьшит свой объём на dV , то величина работы сжатия будет определяться формулой (6.40), только величина давления Лапласа и приращение объёма будут другими. Уменьшение поверхностной энергии произошло на величину, определяемую формулой(6.41). Уменьшение поверхностной энергии произошло за счёт работы сжатия, следовательно, dA=dU S . Приравнивая правые части равенств (6.40) и (6.41), а также учитывая, что для цилиндрической поверхности и , получим давление Лапласа:

Используя формулу (6.45), можно перейти к формулам (6.42) и (6.44). Так для сферической поверхности, следовательно, формула (6.45) упростится до формулы (6.42); для цилиндрической поверхности r 1 = r , а , тогда формула (6.45) упростится до формулы (6.44). Чтобы отличить выпуклую поверхность от вогнутой, принято считать давление Лапласа положительным для выпуклой поверхности, а соответственно и радиус кривизны выпуклой поверхности будет тоже положительным. Для вогнутой поверхности радиус кривизны и давление Лапласа считают отрицательными.

Решим следующую задачу (задача Банаха). Некто носит в кармане две коробки спичек (по 60 спичек каждая) и всякий раз, когда нужна спичка, наугад берет коробку и вынимает спичку. Какова вероятность того, что когда первая коробка будет пуста, во второй все еще останется 20 спичек? Выбор коробки можно рассматривать как независимое испытание, в котором с вероятностью выбирается первая коробка. Всего опытов производитсяn = 60+40=100, и в этих ста опытах первая коробка должна быть выбрана 60 раз. Вероятность этого равна:

.

Из записи видно, что при больших n пользоваться формулой Бернулли затруднительно из-за громоздких вычислений. Существуют специальные приближенные формулы, которые позволяют находить вероятности
, еслиn велико. Одну из таких формул дает следующая теорема.

Теорема 2.1. (Лапласа локальная). Если в схеме Бернулли
, то вероятность того, что событиеA наступит ровноk раз, удовлетворяет при большихn соотношению

где
.

Для удобства вводится в рассмотрение функция
– локальная функция Лапласа, с помощью которой теорему Лапласа можно записать так:

Существуют специальные таблицы функции
, по которым для любого значения:
можно найти соответствующее значение функции. Получены эти таблицы путем разложения функции
в ряд.

Геометрически этот результат означает, что для больших n многоугольник распределения хорошо вписывается в график функции, стоящей в формуле справа (рис. 2.3) и вместо истинного значения вероятности
можно для каждогоk брать значение функции в точкеk .

Рис. 2.3. Локальная функция Лапласа

Вернемся теперь к задаче. Используя формулу (2.1) находим:

,

где значение
определено по таблице .

2.2.2. Интегральная теорема Лапласа

Теорема 2.2 (Лапласа интегральная). Вероятность того, что в схемеn независимых испытаний событие наступит отk 1 доk 2 раз, приближенно равна

P n (k 1
k
2 )
,

– интегральная функция Лапласа, для которой составлены таблицы. ФункцияФ(х) нечетная:Ф(-х)=-Ф(х) иФ (х 4)=0,5.

Рассмотрим пока без доказательства еще одно утверждение.

Отклонение относительной частоты от вероятностиp вn независимых испытаниях равно

(

.

Замечание. Обоснование этих фактов будет рассмотрено далее в разделе 7 (подразд. 7.2, 7.3). Теоремы Лапласа иногда называют теоремами Муавра–Лапласа.

Пример 2.3.

Вероятность появления события в каждом из 900 независимых испытаний равна 0.5. 1) найти вероятность того, что событие произойдет от 400 до 500 раз, 2) найти вероятность того, что относительная частота появления события отклонится от его вероятности по абсолютной величине не более чем на 0,02.

Решение

1) Р 900 (400<k <500)=
=

2)

=

2.3. Формула Пуассона

Если зафиксировать число опытов n , а вероятность появления события в одном опытер изменять, то многоугольник распределения будет иметь различный вид в зависимости от величиныр (рис.2.4). При значенияхp , близких к 1/2, многоугольник почти симметричен и хорошо вписывается в симметричный график функции Лапласа. Поэтому приближенная формула Лапласа дает хорошую точность.

Для малых р (на практике меньших) приближение плохое из-за несимметричности многоугольника распределения. Поэтому возникает задача найти приближенную формулу для вычисления вероятностей
в случае большихn и малых р . Ответ на этот вопрос дает формула Пуассона.

Итак, рассмотрим схему независимых испытаний, в которой n велико (чем больше, тем лучше), ар мало (чем меньше, тем лучше). Обозначимn р =λ . Тогда по формуле Бернулли имеем

.

Последнее равенство верно в силу того, что
(второй замечательный предел). При получении формулы наивероятнейшего числа появления событияk 0 было рассмотрено отношение вероятностей. Из него следует, что

Таким образом, при k много меньшихn имеем рекуррентное соотношение

.

Для k =0 учтем полученный ранее результат:
, тогда

………………

Итак, если в схеме независимых испытаний nвелико, ар мало, то имеет местоформула Пуассона

Р n (к)
, где λ= n р.

Закон Пуассона еще называют законом редких явлений.

Пример 2.4.

Вероятность выпуска бракованной детали равна 0,02. Детали упаковываются в коробки по 100 штук. Какова вероятность того, что а) в коробке нет бракованных деталей, б) в коробке больше двух бракованных деталей?

Решение

a ) Так какn велико, ар мало, имеем ; Р 100 (0)
;

б )Р 100 (k >2)= 1-Р 1-

Таким образом, в схеме независимых испытаний для вычисления вероятности Р n (k ) следует пользоваться формулой Бернулли, еслиn невелико, а еслиn велико, то в зависимости от величиныр используется одна из приближенных формул Лапласа или формула Пуассона.

Свойства жидкостей.

Особенности жидкого состояния вещества. Молекулы вещества в жидком состоянии расположены вплотную друг к другу, как и в твердом состоянии. Поэтому объем жидкости мало зависит от давления. Постоянство занимаемого объема является свойством, общим для жидких и твердых тел и отличающим их от газов, способных занимать любой предоставленный им объем.

Возможность свободного перемещения молекул относительно друг друга обусловливает свойство текучести жидкости. Тело в жидком состоянии, как и в газообразном, не имеет постоянной формы. Форма жидкого тела определяется формой сосуда, в котором находится жидкость, действием внешних сил и сил поверхностного натяжения. Большая свобода движения молекул в жидкости приводит к большей скорости диффузии в жидкостях по сравнению с твердыми телами, обеспечивает возможность растворения твердых веществ в жидкостях.


Поверхностное натяжение.

Поверхностное натяжение. С силами притяжения между молекулами и подвижностью молекул в жидкостях связано проявление сил поверхностного натяжения.

Внутри жидкости силы притяжения, действующие на одну молекулу со стороны соседних с ней молекул, взаимно компенсируются. Любая молекула, находящаяся у поверхности жидкости, притягивается молекулами, находящимися внутри жидкости. Под действием этих сил молекулы с поверхности жидкости уходят внутрь жидкости и число молекул, находящихся на поверхности, уменьшается до тех пор, пока свободная поверхность жидкости не достигнет минимального из возможных в данных условиях значения. Минимальную поверхность среди тел данного объема имеет шар, поэтому при отсутствии или пренебрежимо малом действии других сил жидкость под действием сил поверхностного натяжения принимает форму шара.

Свойство сокращения свободной поверхности жидкости во многих явлениях выглядит таким образом, будто жидкость покрыта тонкой растянутой упругой пленкой, стремящейся к сокращению.

Силой поверхностного натяжения называют силу, которая действует вдоль поверхности жидкости перпендикулярно к линии, ограничивающей эту поверхность, и стремится сократить ее до минимума.

Подвесим на крючок пружинного динамометра П-образную проволоку. Длина стороны АВ равна l . Начальное растяжение пружины динамометра под действием силы тяжести проволоки можно исключить из рассмотрения установкой нулевого деления шкалы против указателя действующей силы.

Опустим проволоку в воду, затем будем медленно опускать вниз сосуд с водой (рис. 92). Опыт показывает, что при этом вдоль проволоки образуется пленка жидкости и пружина динамометра растягивается. По показаниям динамометра можно определить силу поверхностного натяжения. При этом следует учесть, что пленка жидкости имеет две поверхности (рис. 93) и сила упругости равна по модулю удвоенному значению силы поверхностного натяжения :

Если взять проволоку со стороной АВ, вдвое большей длины, то значение силы поверхностного натяжения оказывается вдвое большим. Опыты с проволоками разной длины показывают, что отношение модуля силы поверхностного натяжения, действующей на границу поверхностного слоя длиной l , к этой длине есть величина постоянная, не зависящая от длины l . Эту величину называют коэффициентом поверхностного натяжения и обозначают греческой буквой «сигма»:

. (27.1)

Коэффициент поверхностного натяжения выражается в ньютонах на метр (Н/м). Поверхностное натяжение различно у разных жидкостей.

Если силы притяжения молекул жидкостей между собой меньше сил притяжения молекул жидкости к поверхности твердого тела, то жидкость смачивает поверхность твердого тела. Если же силы взаимодействия молекул жидкости и молекул твердого тела меньше сил взаимодействия между молекулами жидкости, то жидкость не смачивает поверхность твердого тела.


Капиллярные явления.

Капиллярные явления. Особенности взаимодействия жидкостей со смачиваемыми и несмачиваемыми поверхностями твердых тел являются причиной капиллярных явлений.

Капилляром называется трубка с малым внутренним диаметром. Возьмем капиллярную стеклянную трубку и погрузим один ее конец в воду. Опыт показывает, что внутри капиллярной трубки уровень воды оказывается выше уровня открытой поверхности воды.

При полном смачивании жидкостью поверхности твердого тела силу поверхностного натяжения можно считать направленной вдоль поверхности твердого тела перпендикулярно к границе соприкосновения твердого тела и жидкости. В этом случае подъем жидкости вдоль смачиваемой поверхности продолжается до тех пор, пока сила тяжести , действующая на столб жидкости в капилляре и направленная вниз, не станет равной по модулю силе поверхностного натяжения , действующей вдоль границы соприкосновения жидкости с поверхностью капилляра (рис. 94):

,

.

Отсюда получаем, что высота подъема столба жидкости в капилляре обратно пропорциональна радиусу капилляра:

(27.2)

Формула Лапласа.

Рассмотрим поверхность жидкости, опирающуюся на некоторый плоский контур. Если поверхность жидкости не плоская, то стремление её к сокращению приведёт к возникновению давления, дополнительного к тому, которое испытывает жидкость с плоской поверхностью. В случае выпуклой поверхности это дополнительное давление положительно, в случае вогнутой поверхности – отрицательно. В последнем случае поверхностный слой, стремясь сократиться, растягивает жидкость. Работа преподаватель курса кадровое делопроизводство москва .

Величина добавочного давления, очевидно, должна возрастать с увеличением коэффициента поверхностного натяжения α и кривизны поверхности. Вычислим добавочное давление для сферической поверхности жидкости. Для этого рассечём сферическую каплю жидкости диаметральной плоскостью на два полушария (рис. 5).

Сечение сферической капли жидкости.

Из-за поверхностного натяжения оба полушария притягиваются друг к другу с силой, равной:

Эта сила прижимает друг к другу оба полушария по поверхности S=πR2 и следовательно, обуславливает дополнительное давление:

∆p=F/S=(2πRα)/ πR2=2α/R (4)

Кривизна сферической поверхности всюду одинакова и определяется радиусом сферы R. Очевидно, что чем меньше R, тем больше кривизна сферической поверхности. Кривизну произвольной поверхности принято характеризовать так называемой средней кривизной, которая может оказаться различной для разных точек поверхности.

Средняя кривизна определяется через кривизну нормальных сечений. Нормальным сечением поверхности в некоторой точке называется линия пересечения этой поверхности с плоскостью, проходящей через нормаль к поверхности в рассматриваемой точке. Для сферы любое нормальное сечение представляет собой окружность радиуса R (R-радиус сферы). Величина H=1/R даёт кривизну сферы. В общем случае различные сечения, проведённые через одну и ту же точку, имеют различную кривизну. В геометрии доказывается, что полусумма обратных радиусов кривизны

H=0,5(1/R1+1/R2) (5)

для любой пары взаимно перпендикулярных нормальных сечений имеет одно и тоже значение. Эта величина и есть средняя кривизна поверхности в данной точке.

Радиусы R1 и R2 в формуле (5) – алгебраические величины. Если центр кривизны нормального сечения находиться под данной поверхностью, соответствующий радиус кривизны положителен, если центр кривизны лежит над поверхностью, радиус кривизны отрицателен.

Для сферы R1=R2=R, так что в соответствии с (5) H=1/R. Заменив в (4) 1/R через H, получим, что

Лаплас доказал, что формула (6) справедлива для поверхности любой формы, если под H понимать среднюю кривизну поверхности в это точке, под которой определяется дополнительное давление. Подставив в (6) выражение (5) для средней кривизны, получим формулу для добавочного давления под произвольной поверхностью:

∆p=α(1/R1+1/R2) (7)

Она называется формулой Лапласа.

Добавочное давление (7) обуславливает изменение уровня жидкости в капилляре, вследствие чего называется иногда капиллярным давлением.

Существование краевого угла приводит к тому, что вблизи стенок сосуда наблюдается искривление поверхности жидкости. В капилляре или в узком зазоре между двумя стенками искривленной оказывается вся поверхность. Если жидкость смачивает стенки, поверхность имеет вогнутую форму, если не смачивает – выпуклую (рис. 4). Такого рода изогнутые поверхности жидкости называются менисками.

Если капилляр погрузить одним концом в жидкость, налитую в широкий сосуд, то под искривлённой поверхностью в капилляре давление будет отличаться от давления по плоской поверхностью в широком сосуде на величину ∆p, определённую формулой (7). В результате при смачивании капилляра уровень жидкости в нём будет выше, чем в сосуде, при несмачивании – ниже.

Известно, что поверхность жидкости около стенок сосуда искривляется. Свободная поверхность жидкости, искривлённая около стенок сосуда, называется мениском (рис. 145).

Рассмотрим тонкую жидкую плёнку, толщиной которой можно пренебречь. Стремясь минимизировать свою свободную энергию, плёнка создаёт разность давления с разных сторон. Из-за действия сил поверхностного натяжения в каплях жидкости и внутри мыльных пузырей возникает добавочное давление (плёнка сжимается до тех пор, пока давление внутри пузыря не будет превышать атмосферное на величину добавочного давления плёнки ).

Рис. 146.

Рассмотрим поверхность жидкости, опирающуюся на некоторый плоский контур (рис.146, а ). Если поверхность жидкости не плоская, то стремление ее к сокращению и приведет к возникновению давления , дополнительного к тому, которое испытывает жидкость с плоской поверхностью. В случае выпуклой поверхности это дополнительное давление положительно (рис. 146, б ), в случае вогнутой поверхности – отрицательно (рис. 146, в ). В последнем случае поверхностный слой, стремясь сократиться, растягивает жидкость.

Величина добавочного давления, очевидно, должна возрастать с увеличением коэффициента поверхностного натяжения и кривизны поверхности .

Рис. 147.
Вычислим добавочное давление для сферической поверхности жидкости. Для этого рассечем мысленно сферическую каплю жидкости диаметральной плоскостью на два полушария (рис. 147). Из-за поверхностного натяжения оба полушария притягиваются друг к другу с силой, равной:

.

Эта сила прижимает друг к другу оба полушария по поверхности и, следовательно, обусловливает дополнительное давление:

Кривизна сферической поверхности всюду одинакова и определяется радиусом сферы . Очевидно, что чем меньше , тем больше кривизна сферической поверхности.

Избыточное давление внутри мыльного пузыря в два раза больше, так как пленка имеет две поверхности:

Добавочное давление обусловливает изменение уровня жидкости в узких трубках (капиллярах), вследствие чего называется иногда капиллярным давлением .

Кривизну произвольной поверхности принято характеризовать так называемой средней кривизной , которая может оказаться различной для разных точек поверхности.

Величина дает кривизну сферы. В геометрии доказывается, что полусумма обратных радиусов кривизны для любой пары взаимно перпендикулярных нормальных сечений имеет одно и то же значение:

. (1)

Эта величина и есть средняя кривизна поверхности в данной точке. В этой формуле радиусы – алгебраические величины. Если центр кривизны нормального сечения находится под данной поверхностью, соответствующий радиус кривизны положителен; если центр кривизны лежит над поверхностью, радиус кривизны отрицателен (рис.148).

Рис. 148.
Таким образом, неплоская поверхность может иметь среднюю кривизну, равную нулю. Для этого нужно, чтобы радиусы кривизны были одинаковы по величине и противоположны по знаку.

Например, для сферы центры кривизны в любой точке поверхности совпадают с центром сферы, поэтому и . Для случая поверхности кругового цилиндра радиуса имеем: , и .

Можно доказать, что для поверхности любой формы справедливо соотношение:

Подставив в формулу (2) выражение (1), получим формулу добавочного давления под произвольной поверхностью, называемую формулой Лапласа (рис. 148):

. (3)

Радиусы и в формуле (3) – алгебраические величины. Если центр кривизны нормального сечения находится под данной поверхностью, соответствующий радиус кривизны положителен; если центр кривизны лежит над поверхностью, радиус кривизны отрицателен.

Пример. Если в жидкости имеется пузырек газа, то поверхность пузырька, стремясь сократиться, будет оказывать на газ дополнительное давление . Найдем радиус пузырька в воде, при котором добавочное давление равно1 aтм . .Коэффициент поверхностного натяжения воды при равен . Следовательно, для получается следующее значение: .



Понравилась статья? Поделитесь с друзьями!