Нахождение корней квадратного трехчлена. Расположение корней квадратного трехчлена

Квадратным трехчленом называют трехчлен вида a*x 2 +b*x+c, где a,b,c некоторые произвольные вещественные (действительные) числа, а x – переменная. Причем число а не должно равняться нулю.

Числа a,b,c называются коэффициентами. Число а – называется старшим коэффициентом, число b коэффициентом при х, а число с называют свободным членом.

Корнем квадратного трехчлена a*x 2 +b*x+c называют любое значение переменной х, такое, что квадратный трехчлен a*x 2 +b*x+c обращается в нуль.

Для того, чтобы найти корни квадратного трехчлена необходимо решить квадратное уравнение вида a*x 2 +b*x+c=0.

Как найти корни квадратного трехчлена

Для решения можно использовать один из известных способов.

  • 1 способ.

Нахождение корней квадратного трехчлена по формуле.

1. Найти значение дискриминанта по формуле D =b 2 -4*a*c.

2. В зависимости от значения дискриминанта вычислить корни по формулам:

Если D > 0, то квадратный трехчлен имеет два корня.

x = -b±√D / 2*a

Если D < 0, то квадратный трехчлен имеет один корень.

Если дискриминант отрицателен, то квадратный трехчлен не имеет корней.

  • 2 способ.

Нахождение корней квадратного трехчлена выделением полного квадрата. Рассмотрим на примере приведенного квадратного трехчлена. Приведенное квадратное уравнение, уравнение у которого на старший коэффициент равен единице.

Найдем корни квадратного трехчлена x 2 +2*x-3. Для этого решим следующее квадратное уравнение: x 2 +2*x-3=0;

Преобразуем это уравнение:

В левой части уравнения стоит многочлен x 2 +2*x, для того чтобы представить его в виде квадрата суммы нам необходимо чтобы там был еще один коэффицент равный 1. Добавим и вычтем из этого выражения 1, получим:

(x 2 +2*x+1) -1=3

То, что в скобках можно представить в виде квадрата двучлена

Данное уравнение распадается на два случая либо x+1=2 , либо х+1=-2.

В первом случае получаем ответ х=1, а во втором, х=-3.

Ответ: х=1, х=-3.

В результате преобразований нам необходимо получить в левой части квадрат двучлена, а в правой части некоторое число. В правой части не должна содержаться переменная.

Тема урока : «Квадратный трехчлен и его корни».

Цель урока : познакомить обучающихся с понятием квадратного трехчлена и его корней, совершенствовать их умения и навыки в решении заданий на выделение квадрата двучлена из квадратного трехчлена.

Урок включает четыре основных этапа :

    Контроль знаний

    Объяснение нового материала

    Репродуктивное закрепление.

    Тренировочное закрепление.

    Рефлексия.

1 этап. Контроль знаний.

Учитель проводит математический диктант «под копирку» по материалу предыдущего цикла. Для диктанта используется карточки двух цветов: синего - для 1 варианта, красного –2 варианта.

    Из данных аналитических моделей функций выберите только квадратичные.

Вариант 1. у=ах+4, у=45-4х, у=х²+4х-5, у=х³+х²-1.

Вариант 2. у=8х-в, у=13+2х, у= -х²+4х, у=-х³+4х²-1.

    Изобразите схематично квадратичные функции. Можно ли однозначно определить положение квадратичной функции на координатной плоскости. Ответ попытайтесь аргументировать.

    Решите квадратные уравнения.

Вариант 1. а) х² +11х-12=0

Б) х² +11х =0

Вариант 2. а) х² -9х+20=0

Б) х² -9 х =0

4. Не решая уравнения, выясните, имеет ли оно корни.

Вариант 1. А) х² + х +12=0

Вариант 2. А) х² + х - 12=0

Полученные ответы учитель проверяет у первых двух пар. Полученные неправильные ответы обсуждаются всем классом.

Вариант 1.

Вариант 2.

1. у=х²+4х-5

1. у= -х²+4х

2. ветви вверх, но однозначно определить положение нельзя не хватает данных.

ветви вниз, но однозначно определить положение нельзя не хватает данных.

3. а) –12; 1 б) –11;0

3. а) 4;5 б) 9;0

4. Д0, есть два корня

2 этап. Давайте составим кластер. Какие ассоциации у вас возникают при рассмотрении квадратного трехчлена?

Составление кластера.


Возможные ответы:

    квадратный трехчлен используют для рассмотрения кв. функции;

    можно найти нули кв. функции

    по значению дискриминанта оценить количество корней.

    Описать реальные процессы и т.д.

Объяснение нового материала.

Параграф 2. п.3 стр.19-22.

Рассматриваются выражения, и дается определение квадратного трехчлена и корня многочлена (в ходе обсуждения ранее рассмотренных выражений)

    Формулируется определение корня многочлена.

    Формулируется определение квадратного трехчлена.

    Разбираются примеры решения трехчлена:

    Найти корни квадратного трехчлена.

    Выделим квадрат двучлена из квадратного трехчлена.

3х²-36х+140=0.

    Составляется схема ориентировочной основы действия.

Алгоритм выделения двучлена из квадратного трехчлена.

1.Опрелелить числовое значение старшего коэффициента квадратного трехчлена.

2. Выполнить тождественные и 2. Преобразовать выражение,

равносильные преобразования использовав формулы

(вынести общий множитель за скобки; квадрата суммы и разности.

преобразовать выражение, в скобках

достроив его до формулы квадрата суммы

или разности)

а²+2ав+в²= (а+в)² а²-2ав+в²= (а-в)²

3 этап. Решение типовых заданий из учебника (№ 60 а,в; 61 а, 64 а,в) Делаются у доски и комментируются.

4 этап. Самостоятельная работа на 2варианта (№ 60а,б; 65 а,б). Учащиеся сверяются с образцами решения на доске.

Домашнее задание: П.3 (теорию выучить, № 56, 61г, 64 г)

Рефлексия. Учитель дает задание: оценить свои успехи на каждом этапе урока с помощью рисунка и сдать учителю. (задание выполняется на отдельных листах, образец выдается).

Образец:

Используя, порядок расположения элементов на рисунке, определите на каком этапе урока ваше незнание преобладало. Выделите этот этап красным цветом.

Практика экзаменов по математике показывает, что задачи с параметрами представляют наибольшую сложность как в логическом, так и в техническом плане и поэтому умение их решать во многом предопределяет успешную сдачу экзамена любого уровня.

В задачах с параметрами наряду с неизвестными величинами фигурируют величины, численные значения которых хотя и не указаны конкретно, но считаются известными и заданными на некотором числовом множестве. При этом параметры, входящие в условие, существенно влияют на логический и технический ход решения и форму ответа. Такие задачи можно найти в книге «514 задач с параметрами» В литературе по элементарной математике немало учебных пособий, задачников, методических руководств, где приводятся задачи с параметрами. Но большинство из них охватывает узкий круг вопросов, делая основной упор на рецептуру, а не на логику решения задач. К тому же наиболее удачные из книг давно стали библиографической редкостью. В конце работы дан список книг, статьи из которых помогли составить классификацию утверждений по теме работы. Наиболее значимой является пособие Шахмейстера А. Х. Уравнения и неравенства с параметрами.

Основная цель настоящей работы – восполнение некоторых содержательных пробелов основного курса алгебры и установление фактов использования свойств квадратичной функции, позволяющие существенно упростить решение задач, связанных с расположением корней квадратного уравнения относительно некоторых характерных точек.

Задачи работы:

Установить возможные случаи расположения корней квадратного трехчлена на числовой прямой;

Выявить алгоритмы, позволяющие решать квадратные уравнения с параметром на основе использования расположения корней квадратного трехчлена на числовой прямой;

Научиться решать задачи более высокой, по сравнению с обязательным уровнем, сложности; овладеть рядом технических и интеллектуальных математических умений на уровне свободного их использования; повысить математическую культуру в рамках школьного курса математики.

Объект исследования: расположение корней квадратного трехчлена на координатной прямой.

Предмет исследования: квадратные уравнения с параметром.

Способы исследования. Основные способы исследования задач с параметром: аналитический, графический и комбинированный (функционально - графический). Аналитический – это способ так называемого прямого решения, повторяющего стандартные процедуры нахождения ответа в задачах без параметра. Графический – это способ, при котором используют графики в координатной плоскости (х; у). Наглядность графического способа помогает найти быстрый путь решения задачи. Из этих двух способов последний является не только изящным, но и наиболее важным, так как в нем просматриваются взаимосвязь между всеми типами математической модели: словесное описание задачи, геометрическая модель – график квадратного трехчлена, аналитическая модель – описание геометрической модели системой неравенств, составленных на основании математических утверждений выявленных по графику квадратичной функции.

Во многих случаях решение квадратных уравнений с параметром приводит к громоздким преобразованиям. Гипотеза: использование свойств квадратичной функции позволит существенно упростить решение, сводя его к решению рациональных неравенств.

Основная часть. Расположение корней квадратного трехчлена на координатной прямой

Рассмотрим некоторые утверждения, связанные с расположением корней квадратного трехчлена f(x)=ax2+bx+с на числовой прямой cотносительно точек m и п таких, что m

x1 и x2 - корни квадратного трехчлена,

D=b2-4ac- дискриминант квадратного трехчлена, D≥0.

m, n, m1, m2, n1, n2 - заданные числа.

Все рассуждения рассматриваются для a>0, случай для a

Утверждение первое

Для того, чтобы число m было расположено между корнями квадратного трехчлена (x1

Доказательство.

при условии x1

Геометрическая интерпретация

Пусть х1 и х2 - корни уравнения. При а > 0 f(x)

Задача 1. При каких значениях k уравнение x2-(2k+1)x + 3k-4=0 имеет два корня, один из которых меньше 2, а другой больше 2?

Решение. f(x)=x2-(2k+1)x + 3k-4; x1

При k>-2 уравнение x2-(2k+1)x + 3k-4=0 имеет два корня, один из которых меньше 2, а другой больше 2.

Ответ: k>-2.

Задача 2. При каких значениях k уравнение kx2+(3k-2)x + k-3=0 имеет корни разных знаков?

Эта задача может быть сформулирована так: при каких значениях k число 0 лежит между корнями данного уравнения.

Решение (1 способ) f(x)= kx2+(3k-2)x + k-3; x1

2 способ решения (использование теоремы Виета). Если квадратное уравнение имеет корни (D>0) и c/a

Задача 3. При каких значениях k уравнение (k2-2)x2+(k2+k-1)x – k3+k2=0 имеет два корня, один из которых меньше k, а другой больше k?

f(x)=(k2-2)x2+(k2+k-1)x – k3+k2; x1 Подставив значения k из найденного множества убедимся в том, что при этих значениях k D>0.

Утверждение второе (а)

Для того, чтобы корни квадратного трехчлена были меньше числа m (x1

Доказательство: x1-m>0, x2-m 0; m2-mx1-mx2+x1x2>0; m2-(x1+x2)m+x1x2

Задача 4. При каких значениях параметра корни уравнения x2-(3k+1)x+2k2+4k-6=0 меньше -1?

D≥0; (3k+1)2-4(2k2+4k-6) ≥0; (k-5)2≥0; k- любое; x0-3/2; k0. 1+(3k+1)+(2k2+4k-6)>0. 2(k+4)(k-1/2)>0. k1/2

Утверждение второе (б)

Для того, чтобы корни квадратного трехчлена были больше числа m (m

D ≥0; x0>m; af(m)>0.

Если выполнено условие m m. Так как m не принадлежит промежутку (x1; x2), то f(m) > О при а > 0 и f(m)

Обратно, пусть выполнена система неравенств. Из условия D > 0 следует существование корней х1 и х2 (х1 m.

Остается показать, что х1 > m. Если D = 0, то х1 = х2 > m. Если же D > 0, то f(х0) = -D/4a и af(x0) О, следовательно, в точках х0 и m функция принимает значения противоположных знаков и х1 принадлежит промежутку (m;х0).

Задача 5. При каких значениях параметра m корни уравнения x2-(3m+1)x+2m2+4m-6=0 a) больше 1? б) меньше -1?

Решение а) D≥0; D≥0; (3m+1)2-4(2m2+4m-6) ≥0; x0>m; x0>1; ½(3m+1)>1; f(m)>0. f(1)>0. 1-(3m+1)+(2m2+4m-6)>0.

(m-5)2≥0; m - любое m>1/3; m>1/3;

(2km-3)(m+2)>0. m3/2. Ответ:m>3/2.

б) D≥0; (3m+1)2-4(2m2+4m-6)≥0; (m-5)2 ≥0; m - любое x0-3/2; m0. 1+(3m+1)+(2m2+4m-6)>0. 2(m+4)(m-1/2)>0. m1/2.

Задача 6. При каких значениях параметра корни уравнения kx2-(2k +1)x+3 k -1=0 больше 1?

Решение. Очевидно, что задача равносильна следующей: при каких значениях параметра m корни квадратного трехчлена больше 1?

D≥0; D≥0 (2k+1)2-4k (3k-1) ≥0; 8k2-8k-1≤0; x0>m; x0>1 (2k+1)/ (2k) >1; 2k+1 > 2k; af(m)>0. af(1)>0. k(k-(2k+1)+(3k-1)) >0. 2k2-2k>0.

Решив эту систему, находим, что

Утверждение третье

Для того, чтобы корни квадратного трехчлена были больше числа m и меньше n (m

D ≥0; m 0 af(n)>0.

Отметим характерные черты графика.

1)Уравнение имеет корни, а значит D > 0.

2) Ось симметрии расположена между прямыми х = m и х = n, а значит m

3) В точках х = m и х = n график расположен выше оси ОХ, следовательно f(m) > 0 и f(n) > 0 (при m

Перечисленные выше условия (1; 2; 3) являются необходимыми и достаточными для искомых значений параметра.

Задача 7. При каких m x2-2mx+m2-2m+5=0 по модулю не превосходят числа 4?

Решение. Условие задачи можно сформулировать следующим образом: при каких m выполняется соотношение -4

Значения т находим из системы

D > 0; m2 - (m2 – 2m + 5) ≥ 0;

4 ≤ х0 ≤ 4; -4 ≤ m≤ 4; f(-4)≥ 0; 16 + 8m+ m2 – 2m + 5 ≥ 0; f(4)≥0; 16-8m + m2-2m + 5 ≥0; решением которой является отрезок . Ответ: m .

Задача 8. При каких значениях m корни квадратного трехчлена

(2m - 2)x2 + (m+1)х + 1 больше -1, но меньше 0 ?

Решение. Значения m можно найти из системы

D≥0; (m+1)2-4(2m-2) ≥ 0;

(2m - 2)/(-1) > 0 (2m -2)(2m -2 -m -1 +1) > 0;

(2m-2)f(0)>0; (2m-2)>0;

Ответ: m > 2.

Утверждение четвертое(а)

Для того, чтобы меньший корень квадратного трехчлена принадлежал интервалу (m;n), а больший не принадлежал (m

D ≥0; af(m)>0 af(n)

График квадратичного трехчлена в точности один раз пересекает ось ОХ на интервале (m; n). Это значит, что в точках х=m и х=n квадратный трехчлен принимает разные по знаку значения.

Задача 10. При каких значениях параметра а только меньший корень квадратного уравнения х2+2ах+а=0 принадлежит интервалу Х(0;3).

Решение. Рассмотрим квадратный трехчлен у(х)= х2-2ах+а. Графиком является парабола. Ветви параболы направлены вверх. Пусть х1 меньший корень квадратного трехчлена. По условию задачи х1 принадлежит промежутку (0;3). Изобразим геометрическую модель задачи, отвечающую условиям задачи.

Перейдем к системе неравенств.

1) Замечаем, что у(0)>0 и у(3) 0. Следовательно, это условие записывать в систему неравенств не нужно.

Итак, получаем следующую систему неравенств:

Ответ: а>1,8.

Утверждение четвертое(б)

Для того, чтобы больший корень квадратного трехчлена принадлежал интервалу (m; n), а меньший не принадлежал (x1

D ≥0; af(m) 0.

Утверждение четвертое (объединенное)

Замечание. Пусть задача сформулирована следующим образом при каких значениях параметра один корень уравнения принадлежит интервалу (ь;т), а другой - не принадлежит? Для решения этой задачи не нужно различать два подслучая, ответ находим из неравенства f(m)·f(n)

D ≥0; f(m)·f(n)

Задача 11. При каких m только один корень уравнения х2-mх+6=0 удовлетворяет условию 2

Решение. На основании утверждения 4(б) значения m найдем из условия f(2)f(5) (10 – 2m)(31 – 5m) m2 - 24 = 0, т. е. при m = ±2√6, При m= -2√6 х = - √6 , который не принадлежит интервалу (2; 5), при m = 2√6 х =√6, принадлежащий интервалу (2; 5).

Ответ: m {2√6} U (5; 31/5).

Утверждение пятое

Для того, чтобы корни квадратного трехчлена удовлетворяли соотношению (x1

D ≥0; af(m)Задача 12. Найти все значения m, при которых неравенство х2+2(m-3)х + m2-6m

Решение. По условию интервал (0; 2) должен содержаться во множестве решений неравенства х2 + 2(m - 3)x + m2 – 6m На основании утверждения 5 значения m находим из системы неравенств f(0) ≤ 0;m2-6m ≤ 0; m f(2) ≤ 0. 4 + 4(m-3) + m2-6m ≤ 0. m [-2;4], откуда m.

Ответ: m .

Утверждение шестое

Для того, чтобы меньший корень квадратного трехчлена принадлежал интервалу (m1; m2), а больший принадлежал интервалу (n1;n2) (m2

D ≥0; af(m1)>0; af(m2)Это утверждение является комбинацией утверждений 4а и 4б. Первые два неравенства гарантируют, что х1(m1, n1), а два последних неравенства – то, что х2(m2, n2),

Задача 13. При какихm один из корней уравнения х2 - (2m + l)x + m2 + m- 2 = 0 находится между числами 1 и 3, а второй - между числами 4 и 6?

Решение. 1 способ. Учитывая, что а = 1, значения m можно найти из системы f(1) > 0; 1 -2m- 1+m2 + т-2 >0; m2-m-2>0 m (-∞;-1) U (2;+∞) f(3)

4(4) 0; 36-12m-6 + m2 + m-2 0 m (-∞;4)U (7;+∞), откуда m(2; 4).

Ответ: m(2; 4).

Таким образом мы установили утверждения, связанные с расположением корней квадратного трехчлена f(x)=ax2+bx+ на числовой прямой cотносительно некоторых точек.

Заключение

В ходе работы я овладела рядом технических и математических умений на уровне свободного их использования и повысила математическую культуру в рамках школьного курса математики.

В результате выполнения работы была выполнена поставленная цель: установлены свойства квадратичной функции, позволяющие существенно упростить решение задач, связанных с расположением корней квадратного уравнения относительно некоторых характерных точек. Установлены возможные случаи расположения корней квадратного трехчлена на числовой прямой. Выявлены алгоритмы, позволяющие решать квадратные уравнения с параметром на основе использования расположения корней квадратного трехчлена на числовой прямой; решены задачи более высокой, по сравнению с обязательным уровнем, сложности. В работе представлено решение только 12 задач в виду ограниченности количества страниц работы. Конечно, рассмотренные в работе задачи можно решить и другими способами: используя формулы корней квадратного уравнения, применяя свойство корней (теорему Виета).

Фактически было решено значительное количество задач. Поэтому было решено создать сборник задач по теме проектно-исследовательской работы «Решебник задач на применение свойств квадратного трехчлена, связанных с расположением его корней на координатной прямой». Кроме того, результатом работы (продуктом проектно-исследовательской работы) является компьютерная презентация, которую можно использовать на занятиях элективного предмета «Решение задач с параметрами».

Нахождение корней квадратного трехчлена

Цели: ввести понятие квадратичного трехчлена и его корней; формировать умение находить корни квадратного трехчлена.

Ход урока

I. Организационный момент.

II. Устная работа.

Какие из чисел: –2; –1; 1; 2 – являются корнями уравнений?

а) 8х + 16 = 0; в) х 2 + 3х – 4 = 0;

б) 5х 2 – 5 = 0; г) х 3 – 3х – 2 = 0.

III. Объяснение нового материала.

Объяснение нового материала проводить по следующей с х е м е:

1) Ввести понятие корня многочлена.

2) Ввести понятие квадратного трехчлена и его корней.

3) Разобрать вопрос о возможном количестве корней квадратного трехчлена.

Вопрос о выделении квадрата двучлена из квадратного трехчлена лучше разобрать на следующем уроке.

На каждом этапе объяснения нового материала необходимо предлагать учащимся устное задание на проверку усвоения основных моментов теории.

З а д а н и е 1. Какие из чисел: –1; 1; ; 0 – являются корнями многочлена х 4 + 2х 2 – 3?

З а д а н и е 2. Какие из следующих многочленов являются квадратными трехчленами?

1) 2х 2 + 5х – 1; 6) х 2 – х – ;

2) 2х – ; 7) 3 – 4х + х 2 ;

3) 4х 2 + 2х + х 3 ; 8) х + 4х 2 ;

4) 3х 2 – ; 9) + 3х – 6;

5) 5х 2 – 3х ; 10) 7х 2 .

Какие из квадратных трёхчленов имеют корень 0?

З а д а н и е 3. Может ли квадратный трехчлен иметь три корня? Почему? Сколько корней имеет квадратный трехчлен х 2 + х – 5?

IV. Формирование умений и навыков.

Упражнения:

1. № 55, № 56, № 58.

2. № 59 (а, в, д), № 60 (а, в).

В этом задании не нужно искать корни квадратных трехчленов. Достаточно найти их дискриминант и ответить на поставленный вопрос.

а) 5х 2 – 8х + 3 = 0;

D 1 = 16 – 15 = 1;

D 1 0, значит, данный квадратный трехчлен имеет два корня.

б) 9х 2 + 6х + 1 = 0;

D 1 = 9 – 9 = 0;

D 1 = 0, значит, квадратный трехчлен имеет один корень.

в) –7х 2 + 6х – 2 = 0;

7х 2 – 6х + 2 = 0;

D 1 = 9 – 14 = –5;

Если останется время, можно выполнить № 63.

Р е ш е н и е

Пусть ax 2 + bx + c – данный квадратный трехчлен. Поскольку a + b +
+ c = 0, то один из корней этого трехчлена равен 1. По теореме Виета второй корень равен . Согласно условию, с = 4а , поэтому второй корень данного квадратного трехчлена равен
.

О т в е т: 1 и 4.

V. Итоги урока.

В о п р о с ы у ч а щ и м с я:

– Что такое корень многочлена?

– Какой многочлен называют квадратным трехчленом?

– Как найти корни квадратного трехчлена?

– Что такое дискриминант квадратного трехчлена?

– Сколько корней может иметь квадратный трехчлен? От чего это зависит?

Домашнее задание: № 57, № 59 (б, г, е), № 60 (б, г), № 62.

Найти корень квадратного трехчлена можно через дискриминант. Кроме того, для приведенного многочлена второй степени действует теорема Виета, основанная на соотношении коэффициентов.

Инструкция

  • Квадратные уравнения – довольно обширная тема в школьной алгебре. Левая часть такого уравнения представляет собой многочлен второй степени вида А х² + B х + C, т.е. выражение из трех одночленов разной степени неизвестной х. Чтобы найти корень квадратного трехчлена, нужно вычислить такое значение х, при котором выполняется равенство этого выражения нулю.
  • Для решения квадратного уравнения нужно найти дискриминант. Его формула является следствием выделения полного квадрата многочлена и представляет собой определенное соотношение его коэффициентов:D = B² – 4 А C.
  • Дискриминант может принимать различные значения, в том числе быть отрицательным. И если младшие школьники могут с облегчением сказать, что корней у такого уравнения нет, то старшеклассники уже способны их определить, исходя из теории комплексных чисел. Итак, вариантов может быть три: Дискриминант – положительное число. Тогда корни уравнения равны: х1 = (-B + √D)/2 А; х2 = (-B - √D)/2 А;
    Дискриминант обратился в ноль. Теоретически в этом случае уравнение также имеет два корня, но практически они одинаковы: х1 = х2 = -B/2 А;
    Дискриминант меньше нуля. В расчет вводится некая величина i² = -1, которая позволяет записать комплексное решение: х1 = (-B + i √|D|)/2 А; х2 = (-B - i √|D|)/2 А.
  • Метод дискриминанта справедлив для любого квадратного уравнения, однако есть ситуации, когда целесообразно применить более быстрый способ, особенно при небольших целочисленных коэффициентах. Этот способ называется теоремой Виета и заключается в паре соотношений между коэффициентами в приведенном трехчлене:х² + P х + Q
    х1 + х2 = -P;
    х1 х2 = Q.Остается только подобрать корни.
  • Следует отметить, что уравнение может быть приведено к подобному виду. Для этого нужно разделить все слагаемые трехчлена на коэффициент при старшей степени А:А х² + B х + C |А
    х² + B/А х + C/А
    х1 + х2 = -B/А;
    х1 х2 = C/А.


Понравилась статья? Поделитесь с друзьями!