Найти центр масс двух шаров. Центр масс

Понятие интеграла широко применимо в жизни. Интегралы применяется в различных областях науки и техники. Основными задачами, вычисляемыми с помощью интегралов являются задачи на:

1. Нахождение объема тела

2. Нахождение центра масс тела.

Рассмотрим каждую из них более подробно. Здесь и далее, для обозначения определенного интеграла от некоторой функции f(x), с пределами интегрирования от a до b, будем использовать следующую запись ∫ a b f(x) .

Нахождение объема тела

Рассмотрим следующий рисунок. Допустим, имеется некоторое тело, объем которого равен V. Так же имеется прямая такая, что если мы возьмем некоторую плоскость, перпендикулярную этой прямой, на будет известна площадь сечения S данного тела этой плоскостью.

Каждая такая плоскость будет перпендикуляра оси Ох, а следовательно будет пересекать её в некоторой точке х. То есть каждой точке х, из отрезка будет поставлена в соответствие число S(x) - площадь сечения тела плоскость проходящей через эту точку.

Получается, на отрезке будет задана некоторая функция S(x). Если эта функция будет непрерывна на этом отрезке, то будет справедлива следующая формула:

V = ∫ a b S(x)dx.

Доказательство этого утверждения выходит за рамки программы школьного курса.

Вычисление центра масс тела

Центр масс чаще всего используется в физике. Например, есть некоторое тело которое движется с какой-либо скорость. Но большое тело рассматривать неудобно, и поэтому в физике рассматривается это тело, как движение точки, в предположении, что эта точка имеет такую же массу, как и все тело.

А задача вычисления цетра масс тела, является основной в этом вопросе. Потому как тело-то большое, и какую именно точку надо взять за центр масс? Может быть ту, которая находится в середине тела? Или может саму ближнюю точку к переднему краю? Тут приходит на помощь интегрирование.

Для нахождения центра масс используется следующие два правила:

1. Координата x’ центра масс некоторой системы материальных точек A1, A2,A3, … An с массами m1,m2,m3, … mn соответственно расположенных на прямой в точках с координатами x1, x2, x3, … xn находится последующей формуле:

x’ = (m1*x1 + ma*x2 + … + mn*xn)/(m1 + m2 + m3 +… + mn)

2. При вычислении координаты центра масс можно любую часть рассматриваемой фигуры заменить на материальную точку, при этом поместив ее в центр масс этой отдельной части фигуры, а массу взять равную массе этой части фигуры.

Например, если вдоль стержня - отрезка оси Ох распределена масса плотностью p(x), где p(x) есть непрерывная функция, то координата центра масс x’ будет равняться.

Движение системы, кроме действующих сил, зависит также от её суммарной массы и распределения масс. Масса системы равна арифметической сумме масс всех точек или тел, образующих систему

В однородном поле тяжести, для которого , вес любой частицы тела будет пропорционален ее массе. Поэтому о распределении масс в теле можно судить по положению его центра тяжести. Преобразуем формулы, определяющие координаты центра тяжести:

, , . (1)

В полученные равенства входят только массы материальных точек (частиц), образующих тело, и координаты этих точек. Следовательно, положение точки С (x C , y C , z C) действительно харак­теризует распределение масс в теле или в любой механической си­стеме, если под , понимать соответственно массы и координаты точек этой системы.

Геометрическая точка С , координаты которой определяются указанными формулами, называется центром масс или центром инерции системы.

Положение центра масс определяется его радиус-вектором

где - радиус-векторы точек, образующих систему.

Хотя положение центра масс совпадает с положением центра тя­жести тела, находящегося в однородном поле тяжести, понятия эти не являются тождественными. Понятие о центре тяжести, как о точке, через которую проходит линия действия равнодействующей сил тя­жести, по существу имеет смысл только для твердого тела, находя­щегося в однородном поле тяжести. Понятие же о центре масс, как о характеристике распределения масс в системе, имеет смысл для любой системы материальных точек или тел, причем, это понятие сохраняет свой смысл независимо от того, находится ли данная си­стема под действием каких-нибудь сил или нет.

Момент инерции тела относительно оси. Радиус инер­ции.

Положение центра масс характеризует распределение масс системы не полностью. Например (рис.32), если расстояния h от оси Oz каждого из одинаковых шаров А и В увеличить на одну и ту же величину, то положение центра масс системы не изменится, а распределение масс станет другим, и это скажется на движении системы (вращение вокруг оси Oz при прочих равных условиях будет происходить медленнее).

Рис.32

Поэтому в механике вводится еще одна характеристика распре­деления масс - момент инерции. Моментом инерциитела (системы) относительно данной оси Oz (или осевым моментом инерции) называется скалярная величина, равная сумме произведений масс всех точек тела (системы) на квадраты их расстояний от этой оси

Из определения следует, что момент инерции тела (или системы) относительно любой оси является величиной положительной и не равной нулю.

Заметим также, что момент инерции тела – это геометрическая характеристика тела, не зависящая от его движения.


Осевой момент инерции играет при вращательном движении тела такую же роль, какую масса при поступательном, т.е. что осевой момент инерции является ме­рой инертности тела при вра­щательном движении.

Согласно формуле момент инерции тела равен сумме момен­тов инерции всех его частей от­носительно той же оси. Для од­ной материальной точки, нахо­дящейся на расстоянии h от оси, .

Часто в ходе расчетов пользуются понятием радиуса инерции. Радиусом инерции тела относительно оси Оz называется линейная величина , определяемая равенством

где М - масса тела. Из определения следует, что радиус инерции геометрически равен расстоянию от оси Оz той точки, в которой надо сосредоточить массу всего тела, чтобы момент инерции одной этой точки был равен моменту инерции всего тела.

В случае сплошного те­ла, разбивая его на элементарные части, найдем, что в пределе сумма, стоящая в равенстве , обратится в интеграл. В результате, учи­тывая, что , где - плотность, а V- объем, получим

Интеграл здесь распространяется на весь объем V тела, а плотность и расстояние h зависят от координат точек тела.

Моменты инерции некоторых однородных тел:

1.Тонкий однородный стержень длины l и массы М. Вычислим его момент инерции относи­тельно оси Аz, перпендикулярной к стержню и прохо­дящей через его конец А (рис. 33).

Рис.33

Направим вдоль АВ координатную ось Ах. Тогда для любого элементарного отрезка длины dx величина h=x, а масса , где - масса единицы длины стержня. В результате

Заменяя здесь его значением, найдем окончательно:

2. Тонкое круглое однородное кольцо радиуса R и массы М. Найдем его момент инерции относительно оси Cz, перпендикулярной плоскости кольца и проходящей через его центр (рис.34,а). Так как все точки кольца находятся от оси Cz на расстоянии h k =R, то

Следовательно, для кольца

Очевидно, такой же результат получится для момента инерции тонкой цилиндрической оболочки массы М и радиуса R относитель­но ее оси.

3. Круглая однородная пластина или цилиндр ра­диуса R и массы М. Вычислим момент инерции круглой пла­стины относительно оси Сz, перпендикулярной к пластине и прохо­дящей через ее центр (см. рис.34,а ). Для этого выделим элементарное кольцо радиуса r и ширины dr (рис.34,б ).

В настоящем параграфе рассмотрим подробно частный случай системы собственно параллельных сил. Именно, всякое материальное тело или система материальных точек (дискретных частиц), находящихся на Земле, подвержены действию земного притяжения. Поэтому на каждую частицу таких механических систем действует сила ее тяжести. Строго говоря, все эти силы направлены в одну точку к центру Земли. Но так как размеры земных тел весьма малы по сравнению с радиусом Земли (полагаем, что также малы обьемы, в которых заключены дискретные частицы), то с большой степенью точности эти силы можно считать параллельными. Приведению этой системы сил и посвящен параграф.

Удельный вес

Выделим в теле элементарную частицу объемом столь малую, что ее положение можно определить одним радиусом-вектором Пусть вес этой частицы будет Величина

называется удельным весом, а величина

Плотностью тела.

В системе единиц СИ удельный вес имеет размерность

а плотность

В общем случае удельный вес и плотность являются функциями координат точек тела. Если они для всех точек одинаковые, то тело называется однородным.

Равнодействующая всех элементарных сил тяжести равна их сумме и представляет собой вес тела. Центр этих параллельных сил называется центром тяжести тела.

Очевидно, положение центра тяжести в теле не зависит от ориентации тела в пространстве. Это утверждение вытекает из сделанного ранее замечания о том, что центр параллельных сил не изменяет своего положения при повороте всех сил на один и тот же угол вокруг их точек приложения.

Формулы, определяющие центры тяжести тела и системы дискретных частиц

Для определения центра тяжести тела разобьем его на достаточно малые частицы объемом . К каждой из них приложим силу тяжести равную

Равнодействующая этих параллельных сил равна весу тела, который обозначим через

Радиус-вектор центра тяжести тела, который обозначим через , определится по формулам предыдущего параграфа как центр параллельных сил. Таким образом, будем иметь

Если определяется центр тяжести системы дискретных частиц, то будет удельный вес частицы, V, - ее объем - радиус-вектор, определяющий положение частицы. Последняя формула определяет в этом случае центр масс системы дискретных частиц.

Если механическая система представляет собой тело, образованное непрерывной совокупностью частиц, то в пределе суммы последних формул обращаются в интегралы и радиус-вектор центра тяжести тела может быть вычислен по формуле:

где интегралы распространяются по всему объему тела.

Если тело однородно то последняя формула имеет вид:

где V - объем всего тела.

Таким образом, когда тело однородно, определение его центра тяжести сводится к чисто геометрической задаче. В этом случае говорят о центре тяжести объема.

Центр масс тела

Введенное понятие центра тяжести имеет смысл лишь для тел (малых по сравнению с размерами Земли), находящихся вблизи поверхности Земли. Вместе с тем, метод вычисления координат центра тяжести позволяет применить его для вычисления координат точки, характеризующей распределение материи в теле. Для этого следует рассматривать не вес частиц, а их массу. Каждая частица тела объемом имеет массу

а заменяя в ранее полученной формуле на придем к равенству:

которое определяет точку, носящую название центра масс или центра инерции тела.

Если система состоит из материальных точек, массы которых то центр масс системы находится по формуле:

где представляет собой массу всей системы. Радиус-вектор центра масс тела зависит от выбора начала координат О. Если в качестве начала координат выбрать сам центр инерции, то будет равен нулю:

Понятие центра масс может быть введено независимо от понятия центра тяжести. Благодаря этому оно относится к любым механическим системам.

Статические моменты

Выражения называются соответственно статическими моментами веса, объема и массы тела относительно точки О. Если в качестве точки (начало координат) выбрать центр масс тела, то статические моменты тела относительно центра масс окажутся равными нулю, что будет неоднократно использоваться в дальнейшем.

Методы вычисления центра масс

В случае тела сложной формы определение координат центра масс по приведенным общим формулам обычно сопряжено с кропотливыми вычислениями. В ряде случаев их можно значительно упростить, если воспользоваться следующими методами.

1) Метод симметрии. Пусть тело имеет центр материальной симметрии. Это значит, что каждой частице с массой и радиусом-вектором проведенного из этого центра, соответствует частица с такой же массой и радиусом-вектором . В этом случае статический момент массы тела обратится в нуль и

Следовательно, центр масс будет совпадать в этом случае с центром материальной симметрии тела. Для однородных тел это означает, что центр масс совпадает с геометрическим центром объема тела. Если тело имеет плоскость материальной симметрии, то центр масс находится в этой плоскости. Если же тело симметрично относительно оси, то центр масс находится на этой оси.

2) Метод разбиения на части. Если тело можно разбить на конечное число частей, массы и положения центров масс которых известны, то центр масс всего тела найдем следующим образом: представим себе, что массы этих частей сосредоточены в их центрах масс, тогда тело приводится к конечному числу материальных точек. Центр масс системы материальных точек просто вычисляется по приведенным формулам.

3) Метод отрицательных масс. Пусть однородное тело массы имеет отверстий и центр масс его определяется радиусом-вектором Если заполнить эти отверстия тел веществом, из которого состоит тело, то они будут иметь определенные массы и центры масс. Массы этих заполненных отверстий будут равны а радиусы-векторы их центров масс Тогда центр масс тела с заполненными отверстиями будет определяться радиусом-вектором

где М - масса тела с заполненными отверстиями. Отсюда

Но следовательно,

Полученная формула указывает на следующий метод определения центра масс тела с отверстиями. Мысленно заполняют отверстия веществом, из которого состоит тело. Затем находят массу и центр масс полученного таким путем тела, а также массы и центры масс вещества, заполняющего отверстия, и приписывают этим массам знак минус. После этого центр масс рассматриваемого тела можно вычислить посредством метода разбиения.

Любая механическая система так же, как и любое тело обладает такой замечательной точкой как центр масс. Она есть у человека, автомобиля, Земли, Вселенной, т. е. у любого предмета. Очень часто эту точку путают с центром тяжести. Несмотря на то что они часто друг с другом совпадают, у них есть определенные различия. Можно сказать, что центр масс механической системы - это более обширное понятие по сравнению с ее центром тяжести. Что же это такое и как найти его местоположение в системе или в отдельно взятом объекте? Об этом как раз и пойдет речь в нашей статье.

Понятие и формула определения

Центр масс представляет собой некую точку пересечения прямых, параллельно которым воздействуют внешние силы, вызывая при этом поступательное движение данного объекта. Это утверждение является справедливым как для отдельного взятого тела, так и для группы элементов имеющих между собой определенную связь. Центр масс всегда совпадает с центром тяжести и является одной из важнейших геометрических характеристик распределения всех масс в исследуемой системе. Обозначим через m i массу каждой точки системы (i = 1,…,n). Положение любой из них можно описать тремя координатами: x i , у i , z i . Тогда очевидно, что масса тела (всей системы) будет равна сумме масс ее частиц: М=∑m i . А сам центр масс (O) можно будет определить через следующие соотношения:

X o = ∑m i *x i /M;

Y o = ∑m i *y i /M;

Z o = ∑m i *z i /M.

Чем же интересна данная точка? Одно из главных ее достоинств - это то, что она характеризует движение объекта как целого. Это свойство позволяет использовать центр массы в тех случаях, когда тело имеет большие габариты или неправильную геометрическую форму.

Что следует знать для нахождения данной точки


Практическое применение

Рассматриваемое понятие широко используется в различных областях механики. Обычно центр масс используют в роли центра тяжести. Последний представляет собой такую точку, подвесив объект, за который, можно будет наблюдать неизменность его положения. Центр масс системы нередко рассчитывают при проектировании различных деталей в машиностроении. Он также играет большую роль в обеспечении равновесия, что можно применить, к примеру, при создании альтернативных вариантов мебели, транспортных средств, в строительстве, в складском хозяйстве и т. д. Без знания основных принципов, по которым определяется центр тяжести, было бы сложно организовать безопасность работ с массивными грузами и любыми габаритными предметами. Надеемся, что наша статья оказалась полезной и ответила на все вопросы по данной теме.

Определение

При рассмотрении системы частиц, часто удобно найти такую точку, которая характеризует положение и движение рассматриваемой системы как единого целого. Такой точкой является центр масс .

Если у нас две частицы одинаковой массы, то такая точка находится посередине между ними.

Координаты центра масс

Допустим, что две материальные точки, имеющие массы $m_1$ и $m_2$ находятся на оси абсцисс и имеют координаты $x_1$ и $x_2$. Расстояние ($\Delta x$) между этими частицами равно:

\[\Delta x=x_2-x_1\left(1\right).\]

Определение

Точку С (рис.1), делящую расстояние между этими частицами на отрезки, обратно пропорциональные массам частиц называют центром масс этой системы частиц.

В соответствии с определением для рис.1 имеем:

\[\frac{l_1}{l_2}=\frac{m_2}{m_1}\left(2\right).\]

где $x_c$ - координата центра масс, то получаем:

Из формулы (4) получим:

Выражение (5) легко обобщается для множества материальных точек, которые расположены произвольным образом. При этом абсцисса центра масс равна:

Аналогично получают выражения для ординаты ($y_c$) центра масс и его аппликаты ($z_c$):

\ \

Формулы (6-8) совпадают с выражениями, определяющими центр тяжести тела. В том случае, если размеры тела малы в сравнении с расстоянием до центра Земли, центр тяжести считают совпадающим с центром масс тела. В большинстве задач центр тяжести совпадает с центром масс тела.

Если положение N материальных точек системы задано в векторной форме, то радиус - вектор, определяющий положение центра масс находим как:

\[{\overline{r}}_c=\frac{\sum\limits^N_{i=1}{m_i{\overline{r}}_i}}{\sum\limits^N_{i=1}{m_i}}\left(9\right).\]

Движение центра масс

Выражение для скорости центра масс (${\overline{v}}_c=\frac{d{\overline{r}}_c}{dt}$) имеет вид:

\[{\overline{v}}_c=\frac{m_1{\overline{v}}_1+m_2{\overline{v}}_2+\dots +m_n{\overline{v}}_n}{m_1+m_2+\dots +m_n}=\frac{\overline{P}}{M}\left(10\right),\]

где $\overline{P}$ - суммарный импульс системы частиц; $M$ масса системы. Выражение (10) справедливо при движениях со скоростями которые существенно меньше скорости света.

Если система частиц является замкнутой, то сумма импульсов ее частей не изменяется. Следовательно, скорость центра масс при этом величина постоянная. Говорят, что центр масс замкнутой системы перемещается по инерции, то есть прямолинейно и равномерно, и это движение не зависимо от движения составных частей системы. В замкнутой системе могут действовать внутренние силы, в результате их действия части системы могут иметь ускорения. Но это не оказывает влияния на движение центра масс. Под действием внутренних сил скорость центра масс не изменяется.

Примеры задач с решением

Пример 1

Задание. Запишите координаты центра масс системы из трех шариков, которые находятся в вершинах и центра равностороннего треугольника, сторона которого равна $b\ (м)$ (рис.2).

Решение. Для решения задачи используем выражения, определяющие координаты центра масс:

\ \

Из рис.2 мы видим, что абсциссы точек:

\[\left\{ \begin{array}{c} m_1=2m,\ \ x_1=0;;\ \ \\ {\rm \ }m_2=3m,\ \ \ \ x_2=\frac{b}{2};; \\ m_3=m,\ \ x_3=\frac{b}{2};; \\ m_4=4m,\ \ x_4=b. \end{array} \right.\left(2.3\right).\]

Тогда абсцисса центра масса равна:

Найдем ординаты точек.

\[ \begin{array}{c} m_1=2m,\ \ y_1=0;;\ \ \\ {\rm \ }m_2=3m,\ \ \ \ y_2=\frac{b\sqrt{3}}{2};; \\ m_3=m,\ \ y_3=\frac{b\sqrt{3}}{6};; \\ m_4=4m,\ \ y_4=0. \end{array} \left(2.4\right).\]

Для нахождения ординаты $y_2$ вычислим, чему равна высота в равностороннем треугольнике:

Ординату $y_3$ найдем, помня, что медианы в равностороннем треугольнике точкой пересечения делятся в отношении 2:1 от вершины, получаем:

Вычислим ординату центра масс:

Ответ. $x_c=0,6b\ {\rm \ }{\rm м}$; $y_c=\frac{b\sqrt{3}\ }{6}$ м

Пример 2

Задание. Запишите закон движения центра масс.

Решение. Закон изменения импульса системы частиц является законом движения центра масс. Из формулы:

\[{\overline{v}}_c=\frac{\overline{P}}{M}\to \overline{P}=M{\overline{v}}_c\left(2.1\right)\]

при постоянной массе $M$ продифференцировав обе части выражения (2.1), получим:

\[\frac{d\overline{P}}{dt}=M\frac{d{\overline{v}}_c}{dt}\left(2.2\right).\]

Выражение (2.2) означает, что скорость изменения импульса системы равняется произведению массы системы на ускорение ее центра масс. Так как

\[\frac{d\overline{P}}{dt}=\sum\limits^N_{i=1}{{\overline{F}}_i\left(2.3\right),}\]

В соответствии с выражением (2.4) получаем, что центр масс системы движется так, как двигалась бы одна материальная точка массы M, если на нее действует сила, равная сумме всех внешних сил, действующих на частицы, которые входят в рассматриваемую систему. Если $\sum\limits^N_{i=1}{{\overline{F}}_i=0,}$ то центр масс движется равномерно и прямолинейно.



Понравилась статья? Поделитесь с друзьями!