Названия замечательных точек треугольника. Теорема о пересечении высот треугольника

Первые две теоремы Вам хорошо известны, две другие - докажем.

Теорема 1

Три биссектрисы треугольника пересекаются в одной точке, которая есть центр вписанной окружности.

Доказательство

основано на том факте, что биссектриса угла есть геометрическое место точек, равноудалённых от сторон угла.

Теорема 2

Три серединных перпендикуляра к сторонам треугольника пересекаются в одной точке, которая есть центр описанной окружности.

Доказательство

основано на том, что серединный перпендикуляр отрезка есть геометрическое место точек, равноудалённых от концов этого отрезка.

Теорема 3

Три высоты или три прямые , на которых лежат высоты треугольника, пересекаются в одной точке. Эта точка называется ортоцентром треугольника.

Доказательство

Через вершины треугольника `ABC` проведём прямые, параллельные противолежащим сторонам.

В пересечении образуется треугольник `A_1 B_1 C_1`.

По построению `ABA_1C` - параллелограмм, поэтому `BA_1 = AC`. Аналогично устанавливается, что `C_1B = AC`, следовательно `C_1B = AC`, точка `B` - середина отрезка `C_1A_1`.
Совершенно так же показывается, что `C` - середина `B_1A_1` и `A` - середина `B_1 C_1`.
Пусть `BN` - высота треугольника `ABC`, тогда для отрезка `A_1 C_1` прямая `BN` - серединный перпендикуляр. Откуда следует, что три прямые, на которых лежат высоты треугольника `ABC`, являются серединными перпендикулярами трёх сторон треугольника `A_1B_1C_1`; а такие перпендикуляры пересекаются в одной точке (теорема 2).
Если треугольник остроугольный, то каждая из высот есть отрезок, соединяющий вершину и некоторую точку противолежащей стороны. В этом случае точки `B` и `N` лежат в разных полуплоскостях, образуемых прямой `AM`, значит отрезок `BN` , пересекает прямую `AM`, точка пересечения лежит на высоте `BN`, т. е. лежит внутри треугольника.
В прямоугольном треугольнике точка пересечения высот есть вершина прямого угла.

Теорема 4

Три медианы треугольника пересекаются в одной точке и делятся точкой пересечении в отношении `2:1`, считая от вершины . Эта точка называется центром тяжести (или центром масс) треугольника.
Есть различные доказательства этой теоремы. Приведём то, которое основано на теореме Фалеса.

Доказательство

Пусть `E`, `D` и `F` - середины сторон `AB`, `BC` и `AC` треугольника `ABC`.

Проведём медиану `AD` и через точки `E` и `F` параллельные ей прямые `EK` и `FL`. По теореме Фалеса `BK = KD` `(/_ABC`, E K ‖ A D) EK\|AD) и `DL = LC` `(/_ACB`, A D ‖ F L) AD\| FL) . Но `BD = DC = a//2`, поэтому `BK = KD = DL = LC = a//4`. По тойже теореме `BN = NM = MF` `(/_ FBC`, N K ‖ M D ‖ F L) NK\| MD\| FL) , поэтому `BM = 2MF`.

Это означает, что медиана `BF` в точке `M` пересечения с медианой `AD` разделились в отношении `2:1` считая от вершины.

Докажем, что и медиана `AD` в точке `M` разделилась в том же отношении. Рассуждения аналогичны.

Если рассмотреть медианы `BF` и `CE` то также можно показать, что они пересекаются в той точке, в которой медиана `BF` делится в отношении `2:1` т. е. в той же точке `M`. И этой точкой медиана `CE` также разделится в отношении `2:1`, считая от вершины.

Баранова Елена

В данной работе рассмотрены замечательные точки треугольника, их свойства и закономерности такие, как окружность девяти точек и прямая Эйлера. Приведена историческая справка открытия прямой Эйлера и окружности девяти точек. Предложена практическая направленность прменения моего проекта.

Скачать:

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

« ЗАМЕЧАТЕЛЬНЫЕ ТОЧКИ ТРЕУГОЛЬНИКА». (Прикладные и фундаментальные вопросы математики) Баранова Елена 8 кл., МКОУ «СОШ № 20» Пос. Новоизобильный, Духанина Татьяна Васильевна, учитель математики МКОУ «СОШ №20» Посёлок Новоизобильный 2013. Муниципальное казённое общеобразовательное учреждение «Средняя общеобразовательная школа №20»

Цель: исследование треугольника на его замечательные точки, изучение их классификаций и свойств. Задачи: 1.Изучить необходимую литературу 2. Изучить классификацию замечательных точек треугольника 3.. Познакомиться со свойствами замечательных точек треугольника 4. Уметь строить замечательные точки треугольника. 5. Изучить область применения замечательных точек. Объект исследования - раздел математики - геометрия Предмет исследования - треугольник Актуальность: расширить свои знания о треугольнике, свойствах его замечательных точек. Гипотеза: связь треугольника и природы

Точка пересечения серединных перпендикуляров Она равноудалена от вершин треугольника и является центром описанной окружности. Окружности, описанные около треугольников, вершинами которых являются середины сторон треугольника и вершины треугольника пересекаются в одной точке, которая совпадает с точкой пересечения серединных перпендикуляров.

Точка пересечения биссектрис Точка пересечения биссектрис треугольника равноудалена от сторон треугольника. ОМ=ОА=ОВ

Точка пересечения высот Точка пересечения биссектрис треугольника, вершинами которого являются основания высот, совпадает с точкой пересечения высот треугольника.

Точка пересечения медиан Медианы треугольника пересекаются в одной точке, которая делит каждую медиану в отношении 2:1, считая от вершины. Если точку пересечения медиан соединить с вершинами, то треугольник разобьётся на три треугольника, равных по площади. Важным свойством точки пересечения медиан является тот факт, что сумма векторов, началом которых является точка пересечения медиан, а концами – вершины треугольников, равна нулю М1 N C B А м2 м3 М1 N C B А м2 м3 М1 N C B А м2 м3 М1 N C B А м2 м3

Точка Торричелли Замечание: точка Торричелли существует, если все углы треугольника меньше 120.

Окружность девяти точек В1, А1, С1 – основания высот; А2, В2, С2 – середины соответствующих сторон; А3, В3, С3, - середины отрезков АН, ВН и СН.

Прямая Эйлера Точка пересечения медиан, точка пересечения высот, центр окружности девяти точек лежат на одной прямой, которую называют прямой Эйлера в честь ученого математика определившего эту закономерность.

Н емного из истории открытия замечательных точек В 1765 году Эйлер обнаружил, что середины сторон треугольника и основания его высот лежат на одной окружности. Самым удивительным свойством замечательных точек треугольника является то, с что некоторые из них связаны друг с другом определённым соотношением. Точка пересечения медиан М, точка пересечения высот Н, и центр описанной окружности О лежат на одной прямой, причём точка М делит отрезок ОН так, что справедливо соотношение ОМ: ОН = 1: 2. Эта теорема была доказана Леонардом Эйлером в 1765 году.

Связь геометрии с природой. В этом положении потенциальная энергия имеет наименьшее значение и сумма отрезков МА+МВ+МС будет наименьшей, а сумма векторов, лежащих на этих отрезках с началом в точке Торричелли, будет равна нулю.

Выводы Я узнала, что кроме известных мне замечательных точек пересечения высот, медиан, биссектрис и серединных перпендикуляров существуют еще замечательные точки и линии треугольника. Полученные знания по данной теме смогу использовать в своей учебной деятельности, самостоятельно применять теоремы к определенным задачам, применять изученные теоремы в реальной ситуации. Считаю, что применение замечательных точек и линий треугольника в изучении математики является эффективным. Знание их значительно ускоряет решение многих заданий. Предложенный материал можно использовать как на уроках математики, так и во внеклассных занятиях учащимися 5-9-х классов.

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром создайте себе аккаунт (учетную запись) Google и войдите в него:

Докажем сначала теорему о биссектрисе угла.

Теорема

Доказательство

1) Возьмём произвольную точку М на биссектрисе угла ВАС, проведём перпендикуляры МК и ML к прямым АВ и АС и докажем, что MK = ML (рис. 224). Рассмотрим прямоугольные треугольники AM К и AML. Они равны по гипотенузе и острому углу (AM - общая гипотенуза, ∠1 = ∠2 по условию). Следовательно, MK = ML.

2) Пусть точка М лежит внутри угла ВАС и равноудалена от его сторон АВ и АС. Докажем, что луч AM - биссектриса угла ВАС (см. рис. 224). Проведём перпендикуляры МК и ML к прямым АВ и АС. Прямоугольные треугольники АМК и AML равны по гипотенузе и катету (AM - общая гипотенуза, МК = ML по условию). Следовательно, ∠1 = ∠2. Но это и означает, что луч AM - биссектриса угла ВАС. Теорема доказана.


Рис. 224

Следствие 1

Следствие 2

В самом деле, обозначим буквой О точку пересечения биссектрис АА 1 и ВВ 1 треугольника АВС и проведём из этой точки перпендикуляры OK, OL и ОМ соответственно к прямым АВ, ВС и СА (рис. 225). По доказанной теореме ОК = ОМ и OK = OL. Поэтому ОМ = OL, т. е. точка О равноудалена от сторон угла АСВ и, значит, лежит на биссектрисе СС 1 этого угла. Следовательно, все три биссектрисы треугольника АВС пересекаются в точке О, что и требовалось доказать.


Рис. 225

Свойства серединного перпендикуляра к отрезку

Серединным перпендикуляром к отрезку называется прямая, проходящая через середину данного отрезка и перпендикулярная к нему.


Рис. 226

Докажем теорему о серединном перпендикуляре к отрезку.

Теорема

Доказательство

Пусть прямая m - серединный перпендикуляр к отрезку АВ, точка О - середина этого отрезка (рис. 227, а).


Рис. 227

1) Рассмотрим произвольную точку М прямой m и докажем, что AM = ВМ. Если точка M совпадает с точкой О, то это равенство верно, так как О - середина отрезка АВ. Пусть M и О различные точки. Прямоугольные треугольники ОAM и ОВМ равны по двум катетам (ОА = ОВ, ОМ - общий катет), поэтому AM = ВМ.

2) Рассмотрим произвольную точку N, равноудалённую от концов отрезка АВ, и докажем, что точка N лежит на прямой m. Если N - точка прямой АВ, то она совпадает с серединой О отрезка АВ и потому лежит на прямой m. Если же точка N не лежит на прямой АВ, то треугольник ANB равнобедренный, так как AN = BN (рис. 227, б). Отрезок NO - медиана этого треугольника, а значит, и высота. Таким образом, NO ⊥ АВ, поэтому прямые ON и m совпадают, т. е. N - точка прямой m. Теорема доказана.

Следствие 1

Следствие 2

Для доказательства этого утверждения рассмотрим серединные перпендикуляры m и n к сторонам АВ и ВС треугольника АВС (рис. 228). Эти прямые пересекаются в некоторой точке О. В самом деле, если предположить противное, т. е. что m || n, то прямая ВА, будучи перпендикулярной к прямой m, была бы перпендикулярна и к параллельной ей прямой n, а тогда через точку В проходили бы две прямые ВА и ВС, перпендикулярные к прямой n, что невозможно.


Рис. 228

По доказанной теореме ОВ = ОА и ОВ = ОС. Поэтому ОА = ОС, т. е. точка О равноудалена от концов отрезка АС и, значит, лежит на серединном перпендикуляре р к этому отрезку. Следовательно, все три серединных перпендикуляра m, n и р к сторонам треугольника АВС пересекаются в точке О.

Теорема о пересечении высот треугольника

Мы доказали, что биссектрисы треугольника пересекаются в одной точке, серединные перпендикуляры к сторонам треугольника пересекаются в одной точке. Ранее было доказано, что медианы треугольника пересекаются в одной точке (п. 64). Оказывается, аналогичным свойством обладают и высоты треугольника.

Теорема

Доказательство

Рассмотрим произвольный треугольник АВС и докажем, что прямые АА 1 ВВ 1 и СС 1 содержащие его высоты, пересекаются в одной точке (рис. 229).


Рис. 229

Проведём через каждую вершину треугольника АВС прямую, параллельную противоположной стороне. Получим треугольник А 2 В 2 С 2 . Точки А, В и С являются серединами сторон этого треугольника. Действительно, АВ = А 2 С и АВ = СВ 2 как противоположные стороны параллелограммов АВА 2 С и АВСВ 2 , поэтому А 2 С = СВ 2 . Аналогично С 2 А = АВ 2 и С 2 В = ВА 2 . Кроме того, как следует из построения, СС 1 ⊥ А 2 В 2 , АА 1 ⊥ В 2 С 2 и ВВ 1 ⊥ А 2 С 2 . Таким образом, прямые АА 1 , ВВ 1 и СС 1 являются серединными перпендикулярами к сторонам треугольника А 2 В 2 С 2 . Следовательно, оНи пересекаются в одной точке. Теорема доказана.

Итак, с каждым треугольником связаны четыре точки: точка пересечения медиан, точка пересечения биссектрис, точка пересечения серединных перпендикуляров к сторонам и точка пересечения высот (или их продолжений). Эти четыре точки называются замечательными точками треугольника .

Задачи

674. Из точки М биссектрисы неразвёрнутого угла О проведены перпендикуляры МА и МВ к сторонам этого угла. Докажите, что АВ ⊥ ОМ.

675. Стороны угла О касаются каждой из двух окружностей, имеющих общую касательную в точке А. Докажите, что центры этих окружностей лежат на прямой О А.

676. Стороны угла А касаются окружности с центром О радиуса r. Найдите: а) ОА, если r = 5 см, ∠A = 60°; б) г, если ОА = 14 дм, ∠A = 90°.

677. Биссектрисы внешних углов при вершинах В и С треугольника АВС пересекаются в точке О. Докажите, что точка О является центром окружности, касающейся прямых АВ, ВС, АС.

678. Биссектрисы АА 1 и ВВ 1 треугольника АВС пересекаются в точке М. Найдите углы ACM и ВСМ, если: a) ∠AMB = 136°; б) ∠AMB = 111°.

679. Серединный перпендикуляр к стороне ВС треугольника АВС пересекает сторону АС в точке D. Найдите: a) AD и CD, если BD = 5 см, Ас = 8,5см; б) АС, если BD = 11,4 см, AD = 3,2 см.

680. Серединные перпендикуляры к сторонам АВ и АС треугольника АВС пересекаются в точке D стороны ВС. Докажите, что: а) точка D - середина стороны ВС; б) ∠A - ∠B + ∠C.

681. Серединный перпендикуляр к стороне АВ равнобедренного треугольника АВС пересекает сторону ВС в точке Е. Найдите основание АС, если периметр треугольника АЕС равен 27 см, а АВ = 18 см.

682. Равнобедренные треугольники АВС и ABD имеют общее основание АВ. Докажите, что прямая CD проходит через середину отрезка АВ.

683. Докажите, что если в треугольнике АВС стороны АВ и АС не равны, то медиана AM треугольника не является высотой.

684. Биссектрисы углов при основании АВ равнобедренного треугольника АВС пересекаются в точке М. Докажите, что прямая СМ перпендикулярна к прямой АВ.

685. Высоты АА 1 и ВВ 1 равнобедренного треугольника АВС, проведённые к боковым сторонам, пересекаются в точке М. Докажите, что прямая МС - серединный перпендикуляр к отрезку АВ.

686. Постройте серединный перпендикуляр к данному отрезку.

Решение

Пусть АВ - данный отрезок. Построим две окружности с центрами в точках А и В радиуса АВ (рис. 230). Эти окружности пересекаются в двух точках М 1 и М 2 . Отрезки АМ 1 , AM 2 , ВМ 1 , ВМ 2 равны друг другу как радиусы этих окружностей.


Рис. 230

Проведём прямую М 1 М 2 . Она является искомым серединным перпендикуляром к отрезку АВ. В самом деле, точки М 1 и М 2 равноудалены от концов отрезка АВ, поэтому они лежат на серединном перпендикуляре к этому отрезку. Значит, прямая М 1 М 2 и есть серединный перпендикуляр к отрезку АВ.

687. Даны прямая а и две точки А и В, лежащие по одну сторону от этой прямой. На прямой а постройте точку М, равноудалённую от точек А к В.

688. Даны угол и отрезок. Постройте точку, лежащую внутри данного угла, равноудалённую от его сторон и равноудалённую от концов данного отрезка.

Ответы к задачам

    674. Указание. Сначала доказать, что треугольник АОВ равнобедренный.

    676. а) 10 см; б) 7√2 дм.

    678. а) 46° и 46°; б) 21° и 21°.

    679. a) АВ = 3,5 см, CD = 5 см; б) АС = 14,6 см.

    683. Указание. Воспользоваться методом доказательства от противного.

    687. Указание. Воспользоваться теоремой п. 75.

    688. Указание. Учесть, что искомая точка лежит на биссектрисе данного угла.

1 То есть равноудалена от прямых, содержащих стороны угла.

© Кугушева Наталья Львовна, 2009 Геометрия, 8 класс ТРЕУГОЛЬНИКА ЧЕТЫРЕ ЗАМЕЧАТЕЛЬНЫЕ ТОЧКИ

Точка пересечения медиан треугольника Точка пересечения биссектрис треугольника Точка пересечения высот треугольника Точка пересечения серединных перпендикуляров треугольника

Медианой (BD) треугольника называется отрезок, который соединяет вершину треугольника с серединой противолежащей стороны. А В С D Медиана

Медианы треугольника пересекаются в одной точке (центре тяжести треугольника) и делятся этой точкой в отношении 2: 1, считая от вершины. АМ: МА 1 = ВМ: МВ 1 = СМ:МС 1 = 2:1. А А 1 В В 1 М С С 1

Биссектрисой (А D) треугольника называется отрезок биссектрисы внутреннего угла треугольника.

Каждая точка биссектрисы неразвёрнутого угла равноудалена от его сторон. Обратно: каждая точка, лежащая внутри угла и равноудалённая от сторон угла, лежит на его биссектрисе. А М В С

Все биссектрисы треугольника пересекаются в одной точке– центре вписанной в треугольник окружности. С В 1 М А В А 1 С 1 О Радиус окружности (ОМ) – перпендикуляр, опущенный из центра (т.О) на сторону треугольника

ВЫСОТА Высотой (С D) треугольника называется отрезок перпендикуляра, опущенного из вершины треугольника на прямую, содержащую противолежащую сторону. A B C D

Высоты треугольника (или их продолжения) пересекаются в одной точке. А А 1 В В 1 С С 1

СЕРЕДИННЫЙ ПЕРПЕНДИКУЛЯР Серединным перпендикуляром (DF) называется прямая, перпендикулярная стороне треугольника и делящая её пополам. А D F B C

А М В m O Каждая точка серединного перпендикуляра (m) к отрезку равноудалена от концов этого отрезка. Обратно: каждая точка, равноудалённая от концов отрезка, лежит на серединном перпендикуляре к нему.

Все серединные перпендикуляры сторон треугольника пересекаются в одной точке– центре описанной около треугольника окружности. А В С О Радиусом описанной окружности является расстояние от центра окружности до любой вершины треугольника (ОА). m n p

Задания для учащихся Постройте с помощью циркуля и линейки окружность, вписанную в тупоугольный треугольник. Для этого: Постройте биссектрисы в тупоугольном треугольнике с помощью циркуля и линейки. Точка пересечения биссектрис– центр окружности. Постройте радиус окружности: перпендикуляр из центра окружности на сторону треугольника. Постройте окружность, вписанную в треугольник.

2. Постройте с помощью циркуля и линейки окружность, описанную около тупоугольного треугольника. Для этого: Постройте серединные перпендикуляры к сторонам тупоугольного треугольника. Точка пересечения этих перпендикуляров– центр описанной окружности. Радиус окружности– расстояние от центра до любой вершины треугольника. Постройте окружность, описанную около треугольника.

На данном уроке мы рассмотрим четыре замечательные точки треугольника. На двух из них остановимся подробно, вспомним доказательства важных теорем и решим задачу. Остальные две вспомним и охарактеризуем.

Тема: Повторение курса геометрии 8 класса

Урок: Четыре замечательные точки треугольника

Треугольник - это, прежде всего, три отрезка и три угла, поэтому свойства отрезков и углов являются основополагающими.

Задан отрезок АВ. У любого отрезка есть середина, и через нее можно провести перпендикуляр - обозначим его за р. Таким образом, р - серединный перпендикуляр.

Теорема (основное свойство серединного перпендикуляра)

Любая точка, лежащая на серединном перпендикуляре, равноудалена от концов отрезка.

Доказать, что

Доказательство:

Рассмотрим треугольники и (см. Рис. 1). Они прямоугольные и равные, т.к. имеют общий катет ОМ, а катеты АО и ОВ равны по условию, таким образом, имеем два прямоугольных треугольника, равных по двум катетам. Отсюда следует, что гипотенузы треугольников тоже равны, то есть , что и требовалось доказать.

Рис. 1

Справедлива обратная теорема.

Теорема

Каждая точка, равноудаленная от концов отрезка, лежит на серединном перпендикуляре к этому отрезку.

Задан отрезок АВ, серединный перпендикуляр к нему р, точка М, равноудаленная от концов отрезка (см. Рис. 2).

Доказать, что точка М лежит на серединном перпендикуляре к отрезку.

Рис. 2

Доказательство:

Рассмотрим треугольник . Он равнобедренный, так как по условию. Рассмотрим медиану треугольника: точка О - середина основания АВ, ОМ - медиана. Согласно свойству равнобедренного треугольника, медиана, проведенная к его основанию, является одновременно высотой и биссектрисой. Отсюда следует, что . Но прямая р также перпендикулярна АВ. Мы знаем, что в точку О можно провести единственный перпендикуляр к отрезку АВ, значит, прямые ОМ и р совпадают, отсюда следует, что точка М принадлежит прямой р, что и требовалось доказать.

Если необходимо описать окружность около одного отрезка, это можно сделать, и таких окружностей бесконечно много, но центр каждой из них будет лежать на серединном перпендикуляре к отрезку.

Говорят, что серединный перпендикуляр есть геометрическое место точек, равноудаленных от концов отрезка.

Треугольник состоит из трех отрезков. Проведем к двум из них серединные перпендикуляры и получим точку О их пересечения (см. Рис. 3).

Точка О принадлежит серединному перпендикуляру к стороне ВС треугольника, значит, она равноудалена от его вершин В и С, обозначим это расстояние за R: .

Кроме того, точка О находится на серединном перпендикуляре к отрезку АВ, т.е. , вместе с тем , отсюда .

Таким образом, точка О пересечения двух серединных

Рис. 3

перпендикуляров треугольника равноудалена от его вершин, а значит, она лежит и на третьем серединном перпендикуляре.

Мы повторили доказательство важной теоремы.

Три серединных перпендикуляра треугольника пересекаются в одной точке - центре описанной окружности.

Итак, мы рассмотрели первую замечательную точку треугольника - точку пересечения его серединных перпендикуляров.

Перейдем к свойству произвольного угла (см. Рис. 4).

Задан угол , его биссектриса AL, точка М лежит на биссектрисе.

Рис. 4

Если точка М лежит на биссектрисе угла, то она равноудалена от сторон угла, то есть расстояния от точки М до АС и до ВС сторон угла равны.

Доказательство:

Рассмотрим треугольники и . Это прямоугольные треугольники, и они равны, т.к. имеют общую гипотенузу АМ, а углы и равны, так как AL - биссектриса угла . Таким образом, прямоугольные треугольники равны по гипотенузе и острому углу, отсюда следует, что , что и требовалось доказать. Таким образом, точка на биссектрисе угла равноудалена от сторон этого угла.

Справедлива обратная теорема.

Теорема

Если точка равноудалена от сторон неразвернутого угла, то она лежит на его биссектрисе (см. Рис. 5).

Задан неразвернутый угол , точка М, такая, что расстояние от нее до сторон угла одинаковое.

Доказать, что точка М лежит на биссектрисе угла.

Рис. 5

Доказательство:

Расстояние от точки до прямой есть длина перпендикуляра. Проведем из точки М перпендикуляры МК к стороне АВ и МР к стороне АС.

Рассмотрим треугольники и . Это прямоугольные треугольники, и они равны, т.к. имеют общую гипотенузу АМ, катеты МК и МР равны по условию. Таким образом, прямоугольные треугольники равны по гипотенузе и катету. Из равенства треугольников следует равенство соответствующих элементов, против равных катетов лежат равные углы, таким образом, , следовательно, точка М лежит на биссектрисе данного угла.

Если необходимо вписать в угол окружность, это можно сделать, и таких окружностей бесконечно много, но их центры лежат на биссектрисе данного угла.

Говорят, что биссектриса есть геометрическое место точек, равноудаленных от сторон угла.

Треугольник состоит из трех углов. Построим биссектрисы двух из них, получим точку О их пересечения (см. Рис. 6).

Точка О лежит на биссектрисе угла , значит, она равноудалена от его сторон АВ и ВС, обозначим расстояние за r: . Также точка О лежит на биссектрисе угла , значит, она равноудалена от его сторон АС и ВС: , , отсюда .

Несложно заметить, что точка пересечения биссектрис равноудалена от сторон третьего угла, а значит, она лежит на

Рис. 6

биссектрисе угла . Таким образом, все три биссектрисы треугольника пересекаются в одной точке.

Итак, мы вспомнили доказательство еще одной важной теоремы.

Биссектрисы углов треугольника пересекаются в одной точке - центре вписанной окружности.

Итак, мы рассмотрели вторую замечательную точку треугольника - точку пересечения биссектрис.

Мы рассмотрели биссектрису угла и отметили ее важные свойства: точки биссектрисы равноудалены от сторон угла, кроме того, отрезки касательных, проведенных к окружности из одной точки, равны.

Введем некоторые обозначения (см. Рис. 7).

Обозначим равные отрезки касательных через х, у и z. Сторона ВС, лежащая против вершины А, обозначается как а, аналогично АС как b, АВ как с.

Рис. 7

Задача 1: в треугольнике известны полупериметр и длина стороны а. Найти длину касательной, проведенной из вершины А - АК, обозначенную за х.

Очевидно, что треугольник задан не полностью, и таких треугольников много, но, оказывается, некоторые элементы у них общие.

Для задач, в которых речь идет о вписанной окружности, можно предложить следующую методику решения:

1. Провести биссектрисы и получить центр вписанной окружности.

2. Из центра О провести перпендикуляры к сторонам и получить точки касания.

3. Отметить равные касательные.

4. Выписать связь между сторонами треугольника и касательными.



Понравилась статья? Поделитесь с друзьями!