Нормальное ускорение точки равно 0. Нормальное распределение

Ускорение в кинематике формула. Ускорение в кинематике определение.

Что такое ускорение?

Скорость может изменяться во время движения.

Скорость является векторной величиной.

Вектор скорости может изменяться по направлению и по модулю, т.е. по величине. Для учёта таких изменений скорости используют ускорение.

Ускорение определение

Определение ускорения

Ускорение служит мерой любых изменений скорости.

Ускорение, его ещё называют полным ускорением, является вектором.

Вектор ускорения

Вектор ускорения есть сумма двух других векторов. Один из этих других векторов называется тангенциальным ускорением, а другой называется нормальным ускорением.

Описывает изменение модуля вектора скорости.

Описывает изменение направления вектора скорости.

При прямолинейном движении направление скорости не меняется. В этом случае нормальное ускорение равно нулю, а полное и тангенциальное ускорения совпадают.

При равномерном движении модуль скорости не меняется. В этом случае тангенциальное ускорение равно нулю, а полное и нормальное ускорения совпадают.

Если тело совершает прямолинейное равномерное движение, то его ускорение равно нулю. А это значит, что и составляющие полного ускорения, т.е. нормальное ускорение и тангенциальное ускорение, тоже равны нулю.

Вектор полного ускорения

Вектор полного ускорения равен геометрической сумме нормального и тангенциального ускорений, как показано на рисунке:

Формула ускорения:

a = a n + a т

Модуль полного ускорения

Модуль полного ускорения:

Угол альфа между вектором полного ускорения и нормальным ускорением (он же угол между вектором полного ускорения и радиус-вектором):

Обратите внимание, что вектор полного ускорения не направлен по касательной к траектории.

По касательной направлен вектор тангенциального ускорения.

Направление вектора полного ускорения определяется векторной суммой векторов нормального и тангенциального ускорений.

Линейное перемещение, линейная скорость, линейное ускорение.

Перемеще́ние (в кинематике) - изменение местоположения физического тела в пространстве относительно выбранной системы отсчёта. Также перемещением называют вектор, характеризующий это изменение. Обладает свойством аддитивности. Длина отрезка - это модуль перемещения, измеряется в метрах (СИ).

Можно определить перемещение, как изменение радиус-вектора точки: .

Модуль перемещения совпадает с пройденным путём в том и только в том случае, если при движении направление перемещения не изменяется. При этом траекторией будет отрезок прямой. В любом другом случае, например, при криволинейном движении, из неравенства треугольника следует, что путь строго больше.

Вектор Dr = r -r 0 , проведенный из начального положения движущейся точки в положение ее в данный момент времени (приращение радиуса-вектора точки за рассматриваемый промежуток времени), называется перемещением .

При прямолинейном движении вектор перемещения совпадает с соответствующим участком траектории и модуль перемещения |Dr | равен пройденному пути Ds .
Линейная скорость тела в механике

Скорость

Для характеристики движения материальной точки вводится векторная величина - скорость, которой определяется как быстрота движения, так и его направ­ление в данный момент времени.

Пусть материальная точка движется по какой-либо криволинейной траектории так, что в момент времени t ей соответствует радиус-вектор r 0 (рис. 3). В течение малого промежутка времени Dt точка пройдет путь Ds и получит элементарное (бесконечно малое) перемещение Dr.

Вектором средней скорости называется отношение приращения Dr радиу­са-вектора точки к промежутку времени Dt :

Направление вектора средней скорости совпадает с направлением Dr. При неог­раниченном уменьшении Dt средняя скорость стремится к предельному значению, которое называетсямгновенной скоростью v:

Мгновенная скорость v, таким образом, есть векторная величина, равная первой производной радиуса-вектора движущейся точки по времени. Так как секущая в пре­деле совпадает с касательной, то вектор скорости v направлен по касательной к траек­тории в сторону движения (рис. 3). По мере уменьшения Dt путь Ds все больше будет приближаться к |Dr|, поэтому модуль мгновенной скорости

Таким образом, модуль мгновенной скорости равен первой производной пути по времени:

Принеравномерном движении - модуль мгновенной скорости с течением времени изменяется. В данном случае пользуются скалярной величиной áv ñ -средней скоро­стью неравномерного движения:

Из рис. 3 вытекает, что áv ñ> |ávñ|, так как Ds > |Dr|, и только в случае прямолиней­ного движения

Если выражение ds = v dt (см. формулу (2.2)) проинтегрировать по времени в пре­делах от t до t + Dt , то найдем длину пути, пройденного точкой за время Dt :

В случаеравномерного движения числовое значение мгновенной скорости постоянно; тогда выражение (2.3) примет вид

Длина пути, пройденного точкой за промежуток времени от t 1 до t 2 , дается интегралом

Ускорение и его составляющие

В случае неравномерного движения важно знать, как быстро изменяется скорость с течением времени. Физической величиной, характеризующей быстроту изменения скорости по модулю и направлению, является ускорение .

Рассмотримплоское движение, т.е. движение, при котором все участки траектории точки лежат в одной плоскости. Пусть вектор v задает скорость точки А в момент времени t. За время Dt движущаяся точка перешла в положение В и приобрела скорость, отличную от v как по модулю, так и направлению и равную v 1 = v + Dv. Перенесем вектор v 1 в точку А и найдем Dv (рис. 4).

Средним ускорением неравномерного движения в интервале от t до t + Dt называется векторная величина, равная отношению изменения скорости Dv к интервалу вре­мени Dt

Мгновенным ускорением а (ускорением) материальной точки в момент време­ни t будет предел среднего ускорения:

Таким образом, ускорение a есть векторная величина, равная первой производной скорости по времени.

Разложим вектор Dv на две составляющие. Для этого из точки А (рис. 4) по направлению скорости v отложим вектор , по модулю равный v 1 . Очевидно, что вектор , равный , определяет изменение скорости за время Dt по моду­лю : . Вторая же составляющая вектора Dv характеризует изменение ско­рости за время Dt по направлению.

Тангенциальное и нормальное ускорение.

Тангенциа́льное ускоре́ние - компонента ускорения, направленная по касательной к траектории движения. Совпадает с направлением вектора скорости при ускоренном движении и противоположно направлено при замедленном. Характеризует изменение модуля скорости. Обозначается обычно или (, итд в соответствии с тем, какая буква выбрана для обозначения ускорения вообще в данном тексте).

Иногда под тангенциальным ускорением понимают проекцию вектора тангенциального ускорения - как он определен выше - на единичный вектор касательной к траектории, что совпадает с проекцией (полного) вектора ускорения на единичный вектор касательной то есть соответствующий коэффициент разложения по сопутствующему базису. В этом случае используется не векторное обозначение, а «скалярное» - как обычно для проекции или координаты вектора - .

Величину тангенциального ускорения - в смысле проекции вектора ускорения на единичный касательный вектор траектории - можно выразить так:

где - путевая скорость вдоль траектории, совпадающая с абсолютной величиной мгновенной скорости в данный момент.

Если использовать для единичного касательного вектора обозначение , то можно записать тангенциальное ускорение в векторном виде:

Вывод

Выражение для тангенциального ускорения можно найти, продифференцировав по времени вектор скорости, представленный в виде через единичный вектор касательной :

где первое слагаемое - тангенциальное ускорение, а второе - нормальное ускорение.

Здесь использовано обозначение для единичного вектора нормали к траектории и - для текущей длины траектории (); в последнем переходе также использовано очевидное

и, из геометрических соображений,

Центростремительное ускорение(нормальное) - часть полного ускорения точки, обусловленного кривизной траектории и скоростью движения по ней материальной точки. Такое ускорение направлено к центру кривизны траектории, чем и обусловлен термин. Формально и по существу термин центростремительное ускорение в целом совпадает с термином нормальное ускорение, различаясь скорее лишь стилистически (иногда исторически).

Особенно часто о центростремительном ускорении говорят, когда речь идет о равномерном движении по окружности или при движении, более или менее приближенном к этому частному случаю.

Элементарная формула

где - нормальное (центростремительное) ускорение, - (мгновенная) линейная скорость движения по траектории, - (мгновенная) угловая скорость этого движения относительно центра кривизны траектории, - радиус кривизны траектории в данной точке. (Cвязь между первой формулой и второй очевидна, учитывая).

Выражения выше включают абсолютные величины. Их легко записать в векторном виде, домножив на - единичный вектор от центра кривизны траектории к данной ее точки:


Эти формулы равно применимы к случаю движения с постоянной (по абсолютной величине) скоростью, так и к произвольному случаю. Однако во втором надо иметь в виду, что центростремительное ускорение не есть полный вектор ускорения, а лишь его составляющая, перпендикулярная траектории (или, что то же, перпендикулярная вектору мгновенной скорости); в полный же вектор ускорения тогда входит еще и тангенциальная составляющая (тангенциальное ускорение) , по направлению совпадающее с касательной к траектории (или, что то же, с мгновенной скоростью).

Вывод

То, что разложение вектора ускорения на компоненты - одну вдоль касательного к траектории вектора (тангенциальное ускорение) и другую ортогональную ему (нормальное ускорение) - может быть удобным и полезным, довольно очевидно само по себе. Это усугубляется тем, что при движении с постоянной по величине скоростью тангенциальная составляющая будет равной нулю, то есть в этом важном частном случае остается только нормальная составляющая. Кроме того, как можно увидеть ниже, каждая из этих составляющих имеет ярко выраженные собственные свойства и структуру, и нормальное ускорение содержит в структуре своей формулы достаточно важное и нетривиальное геометрическое наполнение. Не говоря уже о важном частном случае движения по окружности (который, к тому же, практически без изменения может быть обобщен и на общий случай).



Ускорение – это величина, которая характеризует быстроту изменения скорости.

Например, автомобиль, трогаясь с места, увеличивает скорость движения, то есть движется ускоренно. Вначале его скорость равна нулю. Тронувшись с места, автомобиль постепенно разгоняется до какой-то определённой скорости. Если на его пути загорится красный сигнал светофора, то автомобиль остановится. Но остановится он не сразу, а за какое-то время. То есть скорость его будет уменьшаться вплоть до нуля – автомобиль будет двигаться замедленно, пока совсем не остановится. Однако в физике нет термина «замедление». Если тело движется, замедляя скорость, то это тоже будет ускорение тела, только со знаком минус (как вы помните, – это векторная величина).


> – это отношение изменения скорости к промежутку времени, за который это изменении произошло. Определить среднее ускорение можно формулой:

где – вектор ускорения .

Направление вектора ускорения совпадает с направлением изменения скорости Δ = - 0 (здесь 0 – это начальная скорость, то есть скорость, с которой тело начало ускоряться).

В момент времени t1 (см. рис 1.8) тело имеет скорость 0 . В момент времени t2 тело имеет скорость . Согласно правилу вычитания векторов найдём вектор изменения скорости Δ = - 0 . Тогда определить ускорение можно так:

Рис. 1.8. Среднее ускорение.

В СИ единица ускорения – это 1 метр в секунду за секунду (или метр на секунду в квадрате), то есть

Метр на секунду в квадрате равен ускорению прямолинейно движущейся точки, при котором за одну секунду скорость этой точки увеличивается на 1 м/с. Иными словами, ускорение определяет, насколько изменяется скорость тела за одну секунду. Например, если ускорение равно 5 м/с 2 , то это означает, что скорость тела каждую секунду увеличивается на 5 м/с.


Мгновенное ускорение тела (материальной точки) в данный момент времени – это физическая величина, равная пределу, к которому стремится среднее ускорение при стремлении промежутка времени к нулю. Иными словами – это ускорение, которое развивает тело за очень короткий отрезок времени:

Направление ускорения также совпадает с направлением изменения скорости Δ при очень малых значениях промежутка времени, за который происходит изменение скорости. Вектор ускорения может быть задан проекциями на соответствующие оси координат в данной системе отсчёта (проекциями а Х, a Y , a Z).

При ускоренном прямолинейном движении скорость тела возрастает по модулю, то есть

Если скорость тела по модулю уменьшается, то есть

V 2 то направление вектора ускорения противоположно направлению вектора скорости 2 . Иначе говоря, в данном случае происходит замедление движения , при этом ускорение будет отрицательным (а

Рис. 1.9. Мгновенное ускорение.

При движении по криволинейной траектории изменяется не только модуль скорости, но и её направление. В этом случае вектор ускорение представляют в виде двух составляющих (см. следующий раздел).


Тангенциальное (касательное) ускорение – это составляющая вектора ускорения, направленная вдоль касательной к траектории в данной точке траектории движения. Тангенциальное ускорение характеризует изменение скорости по модулю при криволинейном движении.

Рис. 1.10. Тангенциальное ускорение.

Направление вектора тангенциального ускорения τ (см. рис. 1.10) совпадает с направлением линейной скорости или противоположно ему. То есть вектор тангенциального ускорения лежит на одной оси с касательной окружности, которая является траекторией движения тела.

Нормальное ускорение

Нормальное ускорение – это составляющая вектора ускорения, направленная вдоль нормали к траектории движения в данной точке на траектории движения тела. То есть вектор нормального ускорения перпендикулярен линейной скорости движения (см. рис. 1.10). Нормальное ускорение характеризует изменение скорости по направлению и обозначается буквой n . Вектор нормального ускорения направлен по радиусу кривизны траектории.

Полное ускорение

Полное ускорение при криволинейном движении складывается из тангенциального и нормального ускорений по правилу сложения векторов и определяется формулой:

(согласно теореме Пифагора для прямоугольно прямоугольника).

= τ + n

Центростремительное ускорение - компонента ускорения точки, характеризующая быстроту изменения направления вектора скорости для траектории с кривизной (вторая компонента, тангенциальное ускорение , характеризует изменение модуля скорости). Направлено к центру кривизны траектории, чем и обусловлен термин. По величине равно квадрату скорости, поделённому на радиус кривизны. Термин «центростремительное ускорение» эквивалентен термину «нормальное ускорение ». Ту составляющую суммы сил, которая обуславливает это ускорение, называют центростремительной силой .

Наиболее простым примером центростремительного ускорения является вектор ускорения при равномерном движении по окружности (направленный к центру окружности).

Осестремительное ускорение в проекции на плоскость, перпендикулярную оси, предстаёт как центростремительное.

Энциклопедичный YouTube

  • 1 / 5

    A n = v 2 R {\displaystyle a_{n}={\frac {v^{2}}{R}}\ } a n = ω 2 R , {\displaystyle a_{n}=\omega ^{2}R\ ,}

    где a n {\displaystyle a_{n}\ } - нормальное (центростремительное) ускорение, v {\displaystyle v\ } - (мгновенная) линейная скорость движения по траектории, ω {\displaystyle \omega \ } - (мгновенная) угловая скорость этого движения относительно центра кривизны траектории, R {\displaystyle R\ } - радиус кривизны траектории в данной точке. (Связь между первой формулой и второй очевидна, учитывая v = ω R {\displaystyle v=\omega R\ } ).

    Выражения выше включают абсолютные величины. Их легко записать в векторном виде, домножив на e R {\displaystyle \mathbf {e} _{R}} - единичный вектор от центра кривизны траектории к данной её точке:

    a n = v 2 R e R = v 2 R 2 R {\displaystyle \mathbf {a} _{n}={\frac {v^{2}}{R}}\mathbf {e} _{R}={\frac {v^{2}}{R^{2}}}\mathbf {R} } a n = ω 2 R . {\displaystyle \mathbf {a} _{n}=\omega ^{2}\mathbf {R} .}

    Эти формулы равно применимы к случаю движения с постоянной (по абсолютной величине) скоростью, так и к произвольному случаю. Однако во втором надо иметь в виду, что центростремительное ускорение не есть полный вектор ускорения, а лишь его составляющая, перпендикулярная траектории (или, что то же, перпендикулярная вектору мгновенной скорости); в полный же вектор ускорения тогда входит еще и тангенциальная составляющая (тангенциальное ускорение ) a τ = d v / d t {\displaystyle a_{\tau }=dv/dt\ } , по направлению совпадающее с касательной к траектории (или, что то же, с мгновенной скоростью) .

    Мотивация и вывод

    То, что разложение вектора ускорения на компоненты - одну вдоль касательного к траектории вектора (тангенциальное ускорение) и другую ортогональную ему (нормальное ускорение) - может быть удобным и полезным, довольно очевидно само по себе. При движении с постоянной по модулю скоростью тангенциальная составляющая становится равной нулю, то есть в этом важном частном случае остается только нормальная составляющая. Кроме того, как можно увидеть ниже, каждая из этих составляющих имеет ярко выраженные собственные свойства и структуру, и нормальное ускорение содержит в структуре своей формулы достаточно важное и нетривиальное геометрическое наполнение. Не говоря уже о важном частном случае движения по окружности.

    Формальный вывод

    Разложение ускорения на тангенциальную и нормальную компоненты (вторая из которых и есть центростремительное или нормальное ускорение) можно найти, продифференцировав по времени вектор скорости , представленный в виде v = v e τ {\displaystyle \mathbf {v} =v\,\mathbf {e} _{\tau }} через единичный вектор касательной e τ {\displaystyle \mathbf {e} _{\tau }} :

    a = d v d t = d (v e τ) d t = d v d t e τ + v d e τ d t = d v d t e τ + v d e τ d l d l d t = d v d t e τ + v 2 R e n , {\displaystyle \mathbf {a} ={\frac {d\mathbf {v} }{dt}}={\frac {d(v\mathbf {e} _{\tau })}{dt}}={\frac {\mathrm {d} v}{\mathrm {d} t}}\mathbf {e} _{\tau }+v{\frac {d\mathbf {e} _{\tau }}{dt}}={\frac {\mathrm {d} v}{\mathrm {d} t}}\mathbf {e} _{\tau }+v{\frac {d\mathbf {e} _{\tau }}{dl}}{\frac {dl}{dt}}={\frac {\mathrm {d} v}{\mathrm {d} t}}\mathbf {e} _{\tau }+{\frac {v^{2}}{R}}\mathbf {e} _{n}\ ,}

    Здесь использовано обозначение для единичного вектора нормали к траектории и l {\displaystyle l\ } - для текущей длины траектории ( l = l (t) {\displaystyle l=l(t)\ } ); в последнем переходе также использовано очевидное d l / d t = v {\displaystyle dl/dt=v\ } .

    v 2 R e n {\displaystyle {\frac {v^{2}}{R}}\mathbf {e} _{n}\ }

    Нормальным (центростремительным) ускорением. При этом его смысл, смысл входящих в него объектов, а также доказательство того факта, что он действительно ортогонален касательному вектору (то есть что e n {\displaystyle \mathbf {e} _{n}\ } - действительно вектор нормали) - будет следовать из геометрических соображений (впрочем, то, что производная любого вектора постоянной длины по времени перпендикулярна самому этому вектору, - достаточно простой факт; в данном случае мы применяем это утверждение для d e τ d t {\displaystyle {\frac {d\mathbf {e} _{\tau }}{dt}}}

    Замечания

    Легко заметить, что абсолютная величина тангенциального ускорения зависит только от путевого ускорения, совпадая с его абсолютной величиной, в отличие от абсолютной величины нормального ускорения, которая от путевого ускорения не зависит, зато зависит от путевой скорости.

    Приведенные здесь способы или их варианты могут быть использованы для введения таких понятий, как кривизна кривой и радиус кривизны кривой (поскольку в случае, когда кривая - окружность, R совпадает с радиусом такой окружности; не слишком трудно также показать, что окружность в плоскости e τ , e n {\displaystyle \mathbf {e} _{\tau },e_{n}\ } с центром в направлении e n {\displaystyle e_{n}\ } от данной точки на расстоянии R от неё - будет совпадать с данной кривой - траекторией - с точностью до второго порядка малости по расстоянию до данной точки).

    История

    Первым правильные формулы для центростремительного ускорения (или центробежной силы) получил, по-видимому, Гюйгенс . Практически с этого времени рассмотрение центростремительного ускорения входит в обычную технику решения механических задач и т.д.

    Несколько позже эти формулы сыграли существенную роль в открытии закона всемирного тяготения (формула центростремительного ускорения использовалась для получения закона зависимости гравитационной силы от расстояния до источника гравитации, исходя из выведенного из наблюдений третьего закона Кеплера).

    К XIX веку рассмотрение центростремительного ускорения становится уже совершенно рутинным как для чистой науки, так и для инженерных приложений.

    ), составляющая ускорения точки при криволинейном движении, направленная по гл. нормали к траектории в сторону центра кривизны. При прямолинейном движении Н. у. равно нулю.

    Физический энциклопедический словарь. - М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1983 .

    НОРМАЛЬНОЕ УСКОРЕНИЕ

    (центростремительноеускорение) - составляющая ускорения точки при криволинейном движении, направленнаяпо гл. нормали к траектории в сторону центра кривизны. Численно Н. у. равно где v - скорость точки,- радиус кривизны траектории. При движении по окружности Н. у. может вычислятьсяпо ф-ле где R - радиус окружности,- угл. скорость вращения этого радиуса. При прямолинейном движении Н. у.

    Физическая энциклопедия. В 5-ти томах. - М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1988 .


    Смотреть что такое "НОРМАЛЬНОЕ УСКОРЕНИЕ" в других словарях:

      Составляющая ускорения точки при криволинейном движении, направленная по нормали к ее траектории в сторону центра кривизны. Нормальным ускорением называется также центростремительным. Нормальное ускорение численно равно v2/p, где v скорость точки … Большой Энциклопедический словарь

      нормальное ускорение - центростремительное ускорение — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом Синонимы центростремительное ускорение EN normal acceleration … Справочник технического переводчика

      Составляющая ускорения точки при криволинейном движении, направленная по нормали к её траектории в сторону центра кривизны. Нормальное ускорение называется также центростремительным. Нормальное ускорение численно равно υ2/ρ, где υ скорость точки … Энциклопедический словарь

      нормальное ускорение - statmenasis pagreitis statusas T sritis Standartizacija ir metrologija apibrėžtis Pagreičio sandas, nukreiptas taško judėjimo trajektorijos svarbiausio statmens kryptimi. atitikmenys: angl. normal acceleration vok. Normalbeschleunigung, f rus.… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

      нормальное ускорение - normalinis pagreitis statusas T sritis fizika atitikmenys: angl. normal acceleration vok. Normalbeschleunigung, f rus. нормальное ускорение, n pranc. accélération normale, f … Fizikos terminų žodynas

      Составляющая ускорения (См. Ускорение) точки при криволинейном движении, направленная по главной нормали к траектории в сторону центра кривизны; Н. у. называется также центростремительным ускорением. Численно Н. у. равно v2/ρ, где v… … Большая советская энциклопедия

      Центростремительное ускорение, составляющая ускорения точки при криволинейном движении, направленная по главной нормали к траектории точки в сторону центра кривизны. Н. у. ап = v2lr. где v скорость точки, r радиус кривизны траектории. При… … Большой энциклопедический политехнический словарь - Составляющая ускорения точки вдоль главной нормали к траектории при разложении ускорения по естественным осям … Политехнический терминологический толковый словарь



Понравилась статья? Поделитесь с друзьями!