Определение перпендикулярных прямой и плоскости в пространстве. Перпендикулярные прямая и плоскость, признак и условия перпендикулярности прямой и плоскости

План-конспект урока по геометрии в 10 классе на тему «Перпендикулярность прямой и плоскости»

Цели урока:

обучающие

    введение признака перпендикулярности прямой и плоскости;

    формировать представления учащихся о перпендикулярности прямой и плоскости, их свойствах;

    формировать умения учащихся решать типичные задачи по теме, умения доказывать утверждения;

развивающие

    развивать самостоятельность, познавательную активность;

    развивать умение анализировать, делать выводы, систематизировать полученную информацию,

    развивать логическое мышление;

    развивать пространственное воображение.

воспитательные

    воспитание культуры речи учащихся, усидчивости;

    прививать учащимся интерес к предмету.

Тип урока: Урок изучения и первичного закрепления знаний.

Формы работы учащихся: фронтальный опрос.

Оборудование: компьютер, проектор, экран.

Литература: «Геометрия 10-11», Учебник. Атанасян Л.С. и др.

(2009, 255с.)

План урока:

Организационный момент (1 минуты);

Актуализация знаний (5 минут);

Изучение нового материала (15 минут);

Первичное закрепление изученного материала (20 минуты);

Подведение итогов (2 минуты);

Домашнее задание (2 минуты).

Ход урока.

Организационный момент (1 минуты)

Приветствие учеников. Проверка готовности учащихся к уроку: проверка наличия тетрадей, учебников. Проверка отсутствующих на уроке.

Актуализация знаний (5 минут)

Учитель. Какая прямая называется перпендикулярной к плоскости?

Ученик. Прямая перпендикулярная любой прямой лежащей в этой плоскости называется прямой перпендикулярной этой плоскости.

Учитель. Как звучит лемма о двух параллельных прямых перпендикулярных третьей?

Ученик. Если одна из двух параллельных прямых перпендикулярна к третьей прямой, то и другая прямая перпендикулярна к этой прямой.

Учитель. Теорема о перпендикулярности двух параллельных прямых к плоскости.

Ученик. Если одна из двух параллельных прямых перпендикулярна к плоскости, то и вторая прямая перпендикулярна к этой плоскости.

Учитель. Как звучит теорема обратная данной?

Ученик. Если две прямые перпендикулярный одной и той же плоскости, то они параллельны.

Проверка домашнего задания

Домашнее задание проверяется, если у учеников возникли трудности при его решении.

Изучение нового материала (15 минут)

Учитель. Мы с вами знаем, что если прямая перпендикулярная к плоскости, то она будет перпендикулярна к любой прямой лежащей в этой плоскости, но в определении перпендикулярность прямой к плоскости дается как факт. На практике же часто приходится определить будет ли являться прямая перпендикулярной к плоскости или нет. Такие примеры можно привести из жизни: при строительстве зданий сваи вбивают перпендикулярно поверхности земли, иначе конструкция может рухнуть. Определением прямой перпендикулярной плоскости в этом случае воспользоваться невозможно. Почему? Сколько прямых можно провести в плоскости?

Ученик. В плоскости можно провести бесконечно много прямых

Учитель. Правильно. И проверить перпендикулярность прямой к каждой отдельной плоскости невозможно, так как это займет бесконечно много времени. Для того чтобы понять является ли прямая перпендикулярной к плоскости введем признак перпендикулярности прямой и плоскости. Запишите в тетради. Если прямая перпендикулярна к двум пересекающимся прямым, лежащим в плоскости, то она перпендикулярна к этой плоскости.

Запись в тетради. Если прямая перпендикулярна к двум пересекающимся прямым, лежащим в плоскости, то она перпендикулярна к этой плоскости.

Учитель. Таким образом нам нет необходимости проверять перпендикулярность прямой для каждой прямой плоскости, достаточно проверить перпендикулярность лишь для двух прямых этой плоскости.

Учитель. Давайте докажем это признак.

Дано: p и q – прямые, p q = O , a p , a q , p ϵ α, q ϵ α.

Доказать: a α.

Учитель. И все таки для доказательства воспользуемся определением прямой перпендикулярной плоскости, как оно звучит?

Ученик. Если прямая перпендикулярна плоскости, то она перпендикулярна любой прямой лежащей в этой плоскости.

Учитель. Правильно. Начертим в плоскости α любую прямую m . Проведем через точку О прямую l ║ m . На прямой a отметим точки А и В так чтобы точка О была серединой отрезка АВ. Проведем прямую z таким образом, чтобы она пересекала прямые p , q , l , точки пересечения этих прямых обозначим P , Q , L соответственно. Соединим концы отрезка АВ с точками P ,Q и L .

Учитель. Что мы можем сказать о треугольниках ∆APQ и ∆BPQ ?

Ученик. Эти треугольники будут равны (по 3 признаку равенства треугольников).

Учитель. Почему?

Ученик. Т.к. прямые p и q – серединные перпендикуляры, то AP = BP , AQ = BQ , а сторона PQ – общая.

Учитель. Правильно. Что мы можем сказать о треугольниках ∆APL и ∆BPL ?

Ученик. Эти треугольники тоже будут равны (по 1 признаку равенства треугольников).

Учитель. Почему?

Ученик. AP = BP , PL – общая сторона, APL =  BPL (из равенства ∆ APQ и ∆ BPQ )

Учитель. Правильно. А значит AL = BL . Значит каким будет ∆ALB ?

Ученик. Значит ∆ALB будет равнобедренным.

Учитель. LO – медиана в ∆ALB , значит чем она будет являться в этом треугольнике?

Ученик. Значит LO будет являться еще и высотой.

Учитель. Следовательно прямая l будет перпендикулярна прямой a . А так как прямая l – любая прямая принадлежащая плоскости α, то по определению прямая a α. Что и требовалось доказать.

Доказывается при помощи призентации

Учитель. А что делать если прямая a не пересекает точку О, но остается перпендикулярной к прямым p и q ? Если прямая а пересекает любую другую точку данной плоскости?

Ученик. Можно построить прямую а 1 , которая будет параллельна прямой а, будет пересекать точку О, а по лемме о двух параллельных прямых перпендикулярных третьей можно доказать, что a 1 ⊥ p , a 1 ⊥ q .

Учитель. Правильно.

Первичное закрепление изученного материала (20 минут)

Учитель. Для того чтобы закрепить изученный нами материал решим номер 126. Прочтите задание.

Ученик. Прямая МВ перпендикулярна к сторонам АВ и ВС треугольника АВС. Определите вид треугольника МВD , где D – произвольная точка прямой АС.

Рисунок.

Дано: ∆ ABC , MB BA , MB BC , D ϵ AC .

Найти: ∆MBD.

Решение.

Учитель. Можно через вершины треугольника провести плоскость?

Ученик. Да, можно. Плоскость можно провести по трем точкам.

Учитель. Как будут расположены прямые ВА и СВ относительно этой плоскости?

Ученик. Эти прямые будут лежать в этой плоскости.

Учитель. Получается, что мы имеем плоскость, и в ней две пересекающиеся прямые. Как относится прямая МВ к этим прямым?

Ученик. Прямая МВ ⊥ ВА, МВ ⊥ ВС.

Запись на доске и в тетрадях. Т.к. МВ ⊥ ВА, МВ ⊥ ВС

Учитель. Если прямая перпендикулярна двум пересекающимся прямым лежащим в плоскости, то прямая будет относится к этой плоскости?

Ученик. Прямая МВ будет перпендикулярна плоскости АВС.

⊥ АВС.

Учитель. Точка D – произвольная точка на отрезке АС, значит как будет относится прямая BD к плоскости АВС?

Ученик. Значит BD принадлежит плоскости АВС.

Запись на доске и в тетрадях. Т.к. BD ϵ ABC

Учитель. Какими относительно друг друга будут являться прямые МВ и BD ?

Ученик. Эти прямые будут перпендикулярны по определению прямой перпендикулярной к плоскости.

Запись на доске и в тетрадях. ↔ МВ ⊥ BD

Учитель. Если МВ перпендикулярно BD , то каким будет треугольник MBD ?

Ученик. Треугольник MBD будет прямоугольным.

Запись на доске и в тетрадях. ↔ ∆MBD – прямоугольный.

Учитель. Правильно. Решим номер 127. Прочтите задание.

Ученик. В треугольнике ABC сумма углов A и B равна 90°. Прямая BD перпендикулярна к плоскости ABC . Докажите, что CD AC.

Ученик выходит к доске. Рисует чертеж.

Запись на доске и в тетради.

Дано: ∆ ABC ,  A +  B = 90°, BD ABC .

Докажите: CD AC .

Доказательство:

Учитель. Чему равна сумма углов треугольника?

Ученик. Сумма углов в треугольнике равна 180°.

Учитель. Чему будет равен угол C в треугольнике ABC ?

Ученик. Угол C в треугольнике ABC будет равен 90°.

Запись на доске и в тетрадях.  C = 180° - A - B = 90°

Учитель. Если угол С равен 90°, то как относительно друг друга будут располагаться прямые АС и ВС?

Ученик. Значит АС ⊥ ВС.

Запись на доске и в тетрадях. ↔ АС ⊥ ВС

Учитель. Прямая BD перпендикулярна плоскости ABC . Что из этого следует?

Ученик. Значит BD перпендикулярно любой прямой из ABC .

BD ⊥ ABC BD перпендикулярно любой прямой из ABC (по определению)

Учитель. В соответствии с этим, как будут относится прямые BD и AC ?

Ученик. Значит эти прямые будут перпендикулярны.

BD ⊥ AC

Учитель. АС перпендикулярно двум пересекающимся прямым лежащим в плоскости DBC , но АС не проходит через точку пересечения. Как это исправить?

Ученик. Через точку В проведем прямую а параллельную АС. Так как АС перпендикулярно BC и BD , то и а будет перпендикулярно BC и BD по лемме.

Запись на доске и в тетрадях. Через точку В проведем прямую а ║АС ↔ а ⊥ BC , а ⊥ BD

Учитель. Если прямая а будет перпендикулярно BC и BD , то что можно сказать о взаимном расположении прямой а и плоскости BDC ?

Ученик. Значит прямая а будет перпендикулярна плоскости BDC , а значит и прямая АС будет перпендикулярна BDC .

Запись на доске и в тетрадях. ↔ а ⊥ BDC ↔ АС ⊥ BDC .

Учитель. Если АС перпендикулярна BDC , то как относительно друг друга будут располагаться прямые АС и DC ?

Ученик. АС и DC будут перпендикулярны по определению прямой перпендикулярной к плоскости.

Запись на доске и в тетрадях. Т.к. АС ⊥ BDC ↔ АС ⊥ DC

Учитель. Молодец. Решим номер 129. Прочитайте задание.

Ученик. Прямая AM перпендикулярна к плоскости квадрата ABCD , диагонали которого пересекаются в точке О. Докажите, что: а) прямая BD перепендикулярна к плоскости AMO ; б) MO BD .

К доске выходит ученик. Рисует чертеж.

Запись на доске и в тетради.

Дано: ABCD – квадрат, AM ABCD , AC BD = O

Доказать: BD AMO, MO BD

Доказательство:

Учитель. Нам нужно доказать чтопрямая BD AMO . Какие условия для этого должны выполняться?

Ученик. Нужно чтобы прямая BD была перпендикулярна хотябы двум пересекающимся прямым из плоскости AMO .

Учитель. В условии сказано что BD перпендикулярна двум пересекающимся прямым из AMO ?

Ученик. Нет.

Учитель. Но мы знаем, что AM перпендикулярна ABCD . Какой вывод можно из этого сделать?

Ученик. Значит, что AM перпендикулярна любой прямой из этой плоскости, тоесть AM перпендикулярна BD .

AM ABCD AM BD (по определению).

Учитель. Одна прямая перпендикулярна BD есть. Обратите внимание на квадрат, как будут распологаться относительно друг друга прямые AC и BD ?

Ученик. AC будет перпендикулярна BD по свойству диагоналей квадрата.

Запись на доске и в тетради. Т.к. ABCD – квадрат, то AC BD (по свойству диагоналей квадрата)

Учитель. Мы нашли две пересекающиеся прямые лежащие в плоскости AMO перпендикулярные прямой BD . Что из этого следует?

Ученик. Значит, что BD перпендикулярна плоскости AMO .

Запись на доске и в тетрадях. Т.к. AC BD и AM BD BD AMO (по признаку)

Учитель. Какая прямая называется прямой перпендикулярной к плоскости?

Ученик. Прямая называется перпендикулярной к плоскости, если она перпендикулярна любой прямой из этой плоскости.

Учитель. А значит как взаимо расположены прямые BD и OM ?

Ученик. Значит BD перпендикулярно OM . Что и требовалось доказать.

Запись на доске и в тетрадях. ↔ BD MO (по определению). Что и требовалось доказать.

Подведение итогов (2 минуты)

Учитель. Сегодня мы изучили признак перпендикулярности прямой и плоскости. Как он звучит?

Ученик. Если прямая перпендикулярна двум пересекающимся прямым лежащим в плоскости, то эта прямая перпендикулярна этой плоскости.

Учитель. Правильно. Мы научились применять этот признак при решении задач. Кто отвечал у доски и помогал с места молодцы.

Домашнее задание (2 минуты)

Учитель. Параграф 1, пункты 15 -17, учить: лемму, определение и все теоремы. №130, 131.


В этой статье мы поговорим о перпендикулярности прямой и плоскости. Сначала дано определение прямой, перпендикулярной к плоскости, приведена графическая иллюстрация и пример, показано обозначение перпендикулярных прямой и плоскости. После этого сформулирован признак перпендикулярности прямой и плоскости. Далее получены условия, позволяющие доказывать перпендикулярность прямой и плоскости, когда прямая и плоскость заданы некоторыми уравнениями в прямоугольной системе координат в трехмерном пространстве. В заключении показаны подробные решения характерных примеров и задач.

Навигация по странице.

Перпендикулярные прямая и плоскость – основные сведения.

Рекомендуем для начала повторить определение перпендикулярных прямых , так как определение прямой, перпендикулярной к плоскости, дается через перпендикулярность прямых.

Определение.

Говорят, что прямая перпендикулярна к плоскости , если она перпендикулярна любой прямой, лежащей в этой плоскости.

Также можно сказать, что плоскость перпендикулярна к прямой, или прямая и плоскость перпендикулярны.

Для обозначения перпендикулярности используют значок вида «». То есть, если прямая c перпендикулярна к плоскости , то можно кратко записать .

В качестве примера прямой, перпендикулярной к плоскости, можно привести прямую, по которой пересекаются две смежных стены комнаты. Эта прямая перпендикулярна к плоскости и к плоскости потолка. Канат в спортивном зале можно также рассматривать как отрезок прямой, перпендикулярной к плоскости пола.

В заключении этого пункта статьи отметим, что если прямая перпендикулярна к плоскости, то угол между прямой и плоскостью считается равным девяноста градусам.

Перпендикулярность прямой и плоскости - признак и условия перпендикулярности.

На практике часто возникает вопрос: «Перпендикулярны ли заданные прямая и плоскость»? Для ответа на него существует достаточное условие перпендикулярности прямой и плоскости , то есть, такое условие, выполнение которого гарантирует перпендикулярность прямой и плоскости. Это достаточное условие называют признаком перпендикулярности прямой и плоскости. Сформулируем его в виде теоремы.

Теорема.

Для перпендикулярности заданных прямой и плоскости достаточно, чтобы прямая была перпендикулярна двум пересекающимся прямым, лежащим в этой плоскости.

Доказательство признака перпендикулярности прямой и плоскости Вы можете посмотреть в учебнике геометрии за 10 -11 классы.

При решении задач на установление перпендикулярности прямой и плоскости также часто применяется следующая теорема.

Теорема.

Если одна из двух параллельных прямых перпендикулярна к плоскости, то и вторая прямая перпендикулярна к плоскости.

В школе рассматривается много задач, для решения которых применяется признак перпендикулярности прямой и плоскости, а также последняя теорема. Здесь мы не будем на них останавливаться. В этом пункте статьи основное внимание сосредоточим на применении следующего необходимого и достаточного условия перпендикулярности прямой и плоскости.

Это условие можно переписать в следующем виде.

Пусть - направляющий вектор прямой a , а - нормальный вектор плоскости . Для перпендикулярности прямой a и плоскости необходимо и достаточно, чтобы выполнялось и : , где t – некоторое действительное число.

Доказательство этого необходимого и достаточного условия перпендикулярности прямой и плоскости основано на определениях направляющего вектора прямой и нормального вектора плоскости.

Очевидно, это условие удобно использовать для доказательства перпендикулярности прямой и плоскости, когда легко находятся координаты направляющего вектора прямой и координаты нормального вектора плоскости в зафиксированной в трехмерном пространстве. Это справедливо для случаев, когда заданы координаты точек, через которые проходят плоскость и прямая, а также для случаев, когда прямую определяют некоторые уравнения прямой в пространстве , а плоскость задана уравнением плоскости некоторого вида.

Рассмотрим решения нескольких примеров.

Пример.

Докажите перпендикулярность прямой и плоскости .

Решение.

Нам известно, что числа, стоящие в знаменателях канонических уравнений прямой в пространстве , являются соответствующими координатами направляющего вектора этой прямой. Таким образом, - направляющий вектор прямой .

Коэффициенты при переменных x , y и z в общем уравнении плоскости являются координатами нормального вектора этой плоскости, то есть, - нормальный вектор плоскости .

Проверим выполнение необходимого и достаточного условия перпендикулярности прямой и плоскости.

Так как , то векторы и связаны соотношением , то есть, они коллинеарны. Следовательно, прямая перпендикулярна плоскости .

Пример.

Перпендикулярны ли прямая и плоскость .

Решение.

Найдем направляющий вектор заданной прямой и нормальный вектор плоскости, чтобы проверить выполнений необходимого и достаточного условия перпендикулярности прямой и плоскости.

Направляющим вектором прямой является

Для того, чтобы прямая в пространстве была плоскости, необходимо и достаточно, чтобы на эпюре горизонтальная проекция прямой былагоризонтальной проекции горизонтали, а фронтальная проекция - к фронтальной проекции фронтали этой плоскости.

Определение расстояния от точки до плоскости (рис. 19)

1.Из точки опустить перпендикуляр на плоскость (для этого в плоскости

провести h,f);

2.Найти точку пересечения прямой с плоскостью (см. рис.18);

3.Найти н.в. отрезка перпендикуляра (см. рис 7).

Второй раздел Метод замены плоскостей проекций

(к задачам 5, 6,7)

Данную геометрическую фигуру оставляют в системе плоскостей проекций неподвижной. Новые плоскости проекции устанавливают так, чтобы получаемые на них проекции обеспечивали рациональное решение рассматриваемой задачи. При этом каждая новая система плоскостей проекций должна быть системой ортогональной. После проецирования объектов на плоскости, они совмещаются в одну посредством вращения их вокруг общих прямых (осей проекций) каждой пары взаимно перпендикулярных плоскостей.

Так например, пусть в системе двух плоскостей П 1 и П 2 задана точка А. Дополним систему еще одной плоскостью П 4 (рис. 20), П 1 П 4 . Она имеет общую линию Х 14 с плоскостью П 1 . Строим проекцию А 4 на П 4 .

АА 1 =А 2 А 12 =А 4 А 14.

На рис. 21, где плоскости П 1 , П 2 и П 4 приведены в совмещение, этот факт определен результатом А 1 А 4 Х 14 , а А 14 А 4 А 2 А 12.

Расстояние новой проекции точки до новой оси проекции (А 4 А 14) равно расстоянию от заменяемой проекции точки до заменяемой оси (А 2 А 12).

Большое количество метрических задач начертательной геометрии решаются на основе следующих четырех задач:

1. Преобразование прямой общего положения в прямую уровня (рис.22):

а) П 4 || АВ (ось Х 14 || А 1 В 1);

б) А 1 А 4 Х 14 ; В 1 В 4 Х 14 ;

в) А 4 А 14 =А 12 А 2 ;

В 4 В 14 =В 12 В 2 ;

А 4 В 4 - н.в.

2. Преобразование прямой общего положения в проецирующую (рис.23):

а) П 4 || АВ (Х 14 || А 1 В 1);

А 1 А 4 Х 14 ;

В 1 В 4 Х 14 ;

А 14 А 4 =А 12 А 2 ;

В 14 В 4 =В 12 В 2 ;

А 4 В 4 - н.в.;

б) П 5 АВ (Х 45 А 4 В 4);

А 4 А 5 Х 45 ;

В 4 В 5 Х 45 ;

А 45 А 5 =В 45 В 5 =А 14 А 1 =В 14 В 1 ;

3. Преобразование плоскости общего положения в проецирующее положение (рис.24):

Плоскость можно привести в проецирующее положение, если одну прямую плоскости сделать проецирующей. В плоскости АВС проведем горизонталь (h 2 ,h 1), которую за одно преобразование можно сделать проецирующей. Проведем плоскость П 4 перпендикулярно горизонтали; на эту плоскость она спроецируется точкой, а плоскость треугольника - прямой линией.

4. Преобразование плоскости общего положения в плоскость уровня (рис.25).

Плоскость сделать плоскостью уровня с помощью двух преобразований. Вначале плоскость надо сделать проецирующей (см. рис. 25), а затем провести П 5 || А 4 В 4 С 4 , получим А 5 В 5 С 5 - н.в.

Задача №5

Определить расстояние от точки С до прямой общего положения (рис.26).

Решение сводится ко 2-й основной задаче. Тогда расстояние по эпюре определяется как расстояние между двумя точками

А 5 В 5 D 5 и С 5.

Проекция С­ 4 D 4 || Х 45.

Задача №6

Определить расстояние от ()Dдо плоскости, заданной точками А,В,С, (рис. 27).

Задачу решают, используя 2-ю основную задачу. Расстояние (Е 4 D 4), от ()D 4 до прямой A 4 C 4 В 4 ,в которую спроецировалась плоскость АВС, является натуральной величиной отрезкаED.

Проекция D­ 1 E 1 || Х 14 ;

Е 2 Е Х12 =Е 4 Е Х14.

Построить самостоятельно D­ 1 E 1.

Построить самостоятельно D­ 2 E 2.

Задача №7

Определить натуральную величину треугольника АВС (см. решение 4-й основной задачи) (рис.25)

Определение. Прямая пересекающая плоскость, называется перпендикулярной этой плоскости, если она перпендикулярна любой прямой, которая лежит в данной плоскости и проходит через точку пересечения.
Признак перпендикулярности прямой и плоскости. Если прямая перпендикулярна двум пересекающимся прямым плоскости, то она перпендикулярна данной плоскости.
Доказательство. Пусть а – прямая перпендикулярная прямым b и с , принадлежащим плоскости a . А – точка пересечения прямых. В плоскости a через точку А проведем прямую d , не совпадающую с прямыми b и с . Теперь в плоскости a проведем прямую k , пересекающую прямые d и с и не проходящую через точку А. Точки пересечения соответственно D, В и С. Отложим на прямой а в разные стороны от точки А равные отрезки АА 1 и АА 2 . Треугольник А 1 СА 2 равнобедренный, т.к. высота АС является так же и медианой (признак 1), т.е. А 1 С=СА 2 . Подобно в треугольнике А 1 ВА 2 равны стороны А 1 В и ВА 2 . Следолвательно, треугольники А 1 ВС и А 2 ВС равны по третьему признаку Поэтому равны углы А 1 ВD и А 2 ВD. Значит, равны и треугольники А 1 ВD и А 2 ВD по первому признаку . Поэтому А 1 D и А 2 D. Отсюда треугольник А 1 DА 2 равнобедренный по определению. В равнобедренном треугольнике А 1 D А 2 D А – медиана (по построению), а значит и высота, то есть угол А 1 АD прямой, а значит прямая а перпендикулярна прямой d . Таким образом можно доказать, что прямая а перпендикулярна любой прямой проходящей через точку А и принадлежащей плоскости a . Из определения следует, что прямая а перпендикулярна плоскости a .

Построение прямой перпендикулярной данной плоскости из точки, взятой вне этой плоскости.
Пусть a - плоскость, А – точка, из которой надо опустить перпендикуляр. В плоскости проведем некоторую прямую а . Через точку А и прямую а проведем плоскость b (прямая и точка определяют плоскость, причем только одну). В плоскости b из точки А опустим на прямую а перпендикуляр АВ. Из точки В в плоскости a восстановим перпендикуляр и обозначим прямую, на которой лежит этот перпендикуляр за с . Через отрезок АВ и прямую с проведем плоскость g (две пересекающиеся прямые определяют плоскость, причем только одну). В плоскости g из точки А опустим на прямую с перпендикуляр АС. Докажем, что отрезок АС – перпендикуляр к плоскости b . Доказательство. Прямая а перпендикулярна прямым с и АВ (по построению), а значит она перпендикулярна и самой плоскости g , в которой лежат эти две пересекающиеся прямые (по признаку перпендикулярности прямой и плоскости). А раз она перпендикулярна этой плоскости, то она перпендикулярна и любой прямой в этой плоскости, значит прямая а перпендикулярна АС. Прямая АС перпендикулярна двум прямым, лежащим в плоскости α : с (по построению) и а (по доказанному), значит она перпендикулярна плоскости α (по признаку перпендикулярности прямой и плоскости)

Теорема 1 . Если две пересекающиеся прямые параллельны соответственно двум перпендикулярным прямым, то они тоже перпендикулярны.
Доказательство. Пусть а и b - перпендикулярные прямые, а 1 и b 1 - параллельные им пересекающиеся прямые. Докажем, что прямые а 1 и b 1 перпендикулярны.
Если прямые а , b , а 1 и b 1 лежат в одной плоскости, то они обладают указанным в теореме свойством, как это известно из планиметрии.
Допустим теперь, что наши прямые не лежат в одной плоскости. Тогда прямые а и b лежат в некоторой плоскости α , а прямые а 1 и b 1 - в некоторой плоскости β . По признаку параллельности плоскостей плоскости α и β параллельны. Пусть С - точка пересечения прямых а и b , а С 1 - пересечения прямых а 1 и b 1 . Проведем в плоскости параллельных прямых а и а а и а 1 в точках А и А 1 . В плоскости параллельных прямых b и b 1 прямую, параллельную прямой СС 1 . Она пересечет прямые b и b 1 в точках B и B 1 .
Четырехугольники САА 1 С 1 и СВВ 1 С 1 - параллелограммы, так как у них противолежащие стороны параллельны. Четырехугольник АВВ 1 А 1 также параллелограмм. У него стороны АА 1 и ВВ 1 параллельны, потому что каждая из них параллельна прямой СС 1 .Таким образом четырехугольник лежит в плоскости, проходящей через параллельные прямые АА 1 и ВВ 1 . А она пересекает параллельные плоскости α и β по параллельным прямые АВ и А 1 В 1 .
Так как у параллелограмма противолежащие стороны равны, то АВ=А 1 В 1 , АС=А 1 С 1 , ВС=В 1 С 1 . По третьему признаку равенства треугольники АВС и А 1 В 1 С 1 равны. Итак, угол А 1 С 1 В 1 , равный углу АСВ, прямой, т.е. прямые а 1 и b 1 перпендикулярны. Ч.т.д.

Свойства перпендикулярных прямой и плоскости.
Теорема 2 . Если плоскость перпендикулярна одной из двух параллельных прямых, то она перпендикулярна и другой.
Доказательство. Пусть а 1 и а 2 - две параллельные прямые и α - плоскость, перпендикулярна прямой а 1 . Докажем, что эта плоскость перпендикулярна и прямой а 2 .
Проведем через точку А 2 пересечения прямой а 2 с плоскостью α произвольную прямую с 2 в плоскости α . Проведем в плоскости α через точку А 1 пересечения прямой а 1 с плоскостью α прямую с 1 , параллельную прямой с 2 . Так как прямая а 1 перпендикулярна плоскости α , то прямые а 1 и с 1 перпендикулярны. А по теореме 1 параллельные им пересекающиеся прямые а 2 и с 2 тоже перпендикулярны. Таким образом, прямая а 2 перпендикулярна любой прямой с 2 в плоскости α . А это значит, что прямая а 2 перпендикулярна плоскости α . Теорема доказана.

Теорема 3 . Две прямые, перпендикулярные одной и той же плоскости, параллельны между собой.
Имеем плоскость α и две перпендикулярные ей прямые а и b . Докажем, что а || b .
Через точки пересечения прямыми плоскости проведем прямую с . По признаку получаем а ^ c и b ^ c . Через прямые а и b проведем плоскость (две параллельные прямые определяют плоскость и притом только одну). В этой плоскости мы имеем два параллельные прямые а и b и секущую с . Если сумма внутренних односторонних углов равна 180 о, то прямые параллельны. У нас как раз такой случай - два прямых угла. Поэтому а || b .

Построение взаимно перпендикулярных прямых и плоскостей является важной графической операцией при решении метрических задач.

Построение перпендикуляра к прямой или плоскости основывается на свойстве прямого угла, которое формулируется следующим образом: если одна из сторон прямого угла параллельна плоскости проекций, а другая не перпендикулярна ей, то угол проецируется в натуральную величину на эту плоскость.

Рисунок 28

Сторона ВС прямого угла АВС, изображенного на рисунке 28, параллельна плоскости П 1 . Следовательно, проекция угла АВС на эту плоскость будет представлять прямой угол А 1 В 1 С 1 =90.

Прямая перпендикулярна плоскости, если она перпендикулярна двум пересекающимся прямым, лежащим в этой плоскости. При построении перпендикуляра из множества прямых принадлежащих плоскости, выбирают прямые уровня - горизонталь и фронталь. В этом случае горизонтальную проекцию перпендикуляра проводят перпендикулярно горизонтали, а фронтальную -перпендикулярно фронтали. На примере, изображенном на рисунке 29, показано построение перпендикуляра к плоскости, заданной треугольником АВС, из точки К. Для этого сначала проводим горизонталь и фронталь в плоскости. Затем из фронтальной проекции точки К проводим перпендикуляр к фронтальной проекции фронтали, а из горизонтальной проекции точки - перпендикуляр к горизонтальной проекции горизонтали. Затем строим точку пересечения данного перпендикуляра с плоскостью при помощи вспомогательной секущей плоскости Σ. Искомая точка - F. Таким образом, полученный отрезок КF является перпендикуляром к плоскости АВС.


Рисунок 29

На рисунке 29 изображено построение перпендикуляра КF к плоскости АВС.

Две плоскости перпендикулярны, если прямая, лежащая в одной плоскости, перпендикулярна двум пересекающимся прямым другой плоскости. Построение плоскости перпендикулярной данной плоскости АВС показано на рисунке 30. Через точку М проводится прямая МN, перпендикулярная плоскости АВС. Горизонтальная проекция этой прямой перпендикулярна АС, так как АС является горизонталью, а фронтальная проекция перпендикулярна АВ, так как АВ - фронталь. Затем через точку М проводится произвольная прямая EF. Таким образом, плоскость перпендикулярна АВС и задана двумя пересекающимися прямыми EF и MN.


Рисунок 30

Этот способ применяется для определения натуральных величин отрезков общего положения, а также углов наклона их к плоскостям проекций. Для того, чтобы определить натуральную величину отрезка этим способом, необходимо достроить прямоугольный треугольник к одной из проекций отрезка. Другим катетом будет являться разность высот или глубин конечных точек отрезка, а гипотенуза - натуральной величиной.

Рассмотрим пример: на рисунке 31 дан отрезок АВ общего положения. Требуется определить его натуральную величину и углы его наклона к фронтальной и горизонтальной плоскостям проекций.

Проводим перпендикуляр к одному из концов отрезка на горизонтальной плоскости. Откладываем на нем разность высот (ZA-ZB) концов отрезка и достраиваем прямоугольный треугольник. Гипотенуза его является натуральной величиной отрезка, а угол между натуральной величиной и проекцией отрезка - натуральной величиной угла наклона отрезка к плоскости П 1 . Порядок построений на фронтальной плоскости тот же самый. По перпендикуляру откладываем разность глубин концов отрезка (YA-YB). Полученный угол между натуральной величиной отрезка и его фронтальной проекцией - это угол наклона отрезка к плоскости П 2 .


Рисунок 31

1. Сформулируйте теорему о свойстве прямого угла.

2. В каком случае прямая перпендикулярна плоскости?

3. Сколько прямых и сколько плоскостей, перпендикулярных данной плоскости, можно провести через точку пространства?

4. Для чего применяется способ прямоугольного треугольника?

5. Как при помощи этого способа определить угол наклона отрезка общего положения к горизонтальной плоскости проекций?



Понравилась статья? Поделитесь с друзьями!