Происхождение земли простыми словами. Гипотезы происхождения Земли

По мнению геохимиков США, столкновение Земли с небесным телом Тейя, которое предположительно произошло около 4.5 миллиардов лет назад, если и имело место быть, не внесло больших изменений в структуру недр. По крайней мере, в раскаленный шар наша планета точно не превращалась.

Современная гипотеза происхождения Земли до сих пор является предметом жарких кабинетных споров, однако большинство ученых сходятся в том, что началось все из протопланетного облака из космической пыли и газа. Одни ученые были уверены, что оно было холодным, другие — что, наоборот, раскаленным, поскольку оно было выдернуто из молодого Солнца гравитацией массивной звезды, проходившей в то время неподалеку. Последняя версия сегодня стремительно теряет своих поклонников, поскольку астрофизиками было доказано, что подобная трактовка событий крайне маловероятна. Поэтому сегодня главенствует гипотеза о холодном протопланетном облаке.

Приблизительно 4.54 миллиарда лет назад из этого протопланетного облака и начала формироваться Земля. Сам процесс происходил, вероятно, следующим образом: поскольку в этом облаке «легкие» и «тяжелые» элементы еще не были сильно перемешаны, то в результате действия силы тяжести вторые (железо и другие родственные металлы) начали опускаться к будущему центру планеты, выдавливая на поверхность более «легкие» элементы. Этот процесс ученые назвали гравитационной дифференциацией.

Таким образом, железо накапливалось в центре облака, формируя будущее ядро. Но во время опускания потенциальная энергия слоя «тяжелых» элементов начала уменьшаться, соответственно стала увеличиваться кинетическая энергия, то есть происходил нагрев. Считается, что это тепло разогрело нашу планету до 1200 градусов по Цельсию (местами — и до 1600 градусов).

Однако воздействие самого совершенного в природе холодильника - космоса, привело к тому, что поверхность облака из «легких» элементов начала быстро остывать, превращаясь из расплава в твердое вещество. Именно так формировалась земная кора. А та область, где гравитационная дифференциация продолжилась (по расчетам некоторых геофизиков, этот процесс будет продолжаться еще около полутора миллиарда лет), и высокая температура сохранилась, стала современной мантией.

Примерно 4.5 миллиарда лет назад твердой часть Земли полностью сформировалась (хотя атмосфера и гидросфера появились несколько позже). И именно в то время, согласно данным последних исследований, произошла катастрофа, результатом которой было появление спутника и возврат в неструктурированное состояние. По мнению многих ученых, скорее всего, произошло столкновение с неким массивным небесным телом (получившим название планета Тейя).

При этом отдельные геофизики уверены, что столкновение было столь внушительным, что верхняя часть Земли опять расплавилась. То есть какое-то время планета была шаром из расплавленного однородного вещества, после чего за несколько десятков миллионов лет опять обзавелась твердой поверхностью.

И все же некоторые ученые выразили сомнение в том, что последствия этого столкновения были настолько весомыми. Они уверены, что даже столкновение с небесным телом не могло кардинально изменить сложившуюся структуру нашей планеты. Совсем недавно эта версия получила доказательства своей правдоподобности. А представили эти доказательства камни, обнаруженные возле Костомукши.

Введение

Земля – третья по порядку от Солнца планета в Солнечной системе. Она занимает пятое место по размеру и массе среди больших планет, но из внутренних планет так называемой «земной» группы, в которую входят Меркурий, Венера, Земля и Марс, она является самой крупной.

Состав и строение Земли в последние десятилетия продолжают оставаться одной из наиболее интригующих проблем современной геологии. Знания о внутреннем строении Земли пока очень поверхностны, так как получены на основании косвенных доказательств. Прямые свидетельства относятся только к поверхностной пленке планеты, чаще всего не превышающей полутора десятков километров. Помимо этого, важно изучать положение планеты Земля в космическом пространстве. Во-первых, чтобы понять закономерности и механизм развития Земли и земной коры, надо знать исходное состояние Земли при ее формировании. Во-вторых, изучение других планет доставляет ценнейший материал для познания ранних стадий развития нашей планеты. И, в-третьих, сравнение строения и эволюции Земли с другими планетами Солнечной системы позволяет понять, почему именно Земля стала родиной человечества.

Изучение внутреннего строения Земли актуально и жизненно важно. С ним связаны образование и размещение многих видов полезных ископаемых, рельефа земной поверхности, возникновение вулканов и землетрясений. Знания о строении Земли необходимы и для составления геологических и географических прогнозов.

Глава 1. Гипотезы происхождения Земли

На протяжении многих веков вопрос о происхождении Земли оставался монополией философов, так как фактический материал в этой области почти полностью отсутствовал. Первые научные гипотезы относительно происхождения Земли и Солнечной системы, основанные на астрономических наблюдениях, были выдвинуты только лишь в XVIII веке. С тех пор не переставали появляться все новые и новые теории, соответственно росту наших космогонических представлений.

Одна из первых гипотез была высказана в 1745 году французским естествоиспытателем Ж. Бюффоном. Согласно гипотезе, наша планета образовалась в результате остывания одного из сгустков солнечного вещества, выброшенного Солнцем при катастрофическом столкновении его с крупной кометой.

Мысль Бюффона об образовании Земли из солнечной плазмы была использована в целой серии более поздних и совершенных гипотез «горячего» происхождения Земли. Ведущее место занимает небулярная гипотеза, разработанная немецким философом И. Кантом в 1755 г. и французским математиком П. Лапласом в 1796 г. независимо друг от друга (рис.1). Согласно гипотезе, Солнечная система образовалась из единой раскаленной газовой туманности. Вращение вокруг оси обусловило дискообразную форму туманности. После того, как центробежная сила в экваториальной части туманности превысила силу тяготения, по всей периферии диска начали отделяться газовые кольца. Их остывание привело к формированию планет и их спутников, а из ядра туманности возникло Солнце.

Рис. 1. Небулярная гипотеза Лапласа. На этом рисунке наглядно представлено сгущение вращающейся газовой туманности в Солнце, планеты и астероиды

Гипотеза Лапласа была научной, поскольку основывалась на законах природы, известных из опыта. Однако после Лапласа были открыты новые явления в Солнечной системе, которые его теория не могла объяснить. Например, оказалось, что планеты Уран, Венера вращаются вокруг своей оси не в ту сторону, куда вращаются остальные планеты. Были лучше изучены свойства газов и особенности движения планет и их спутников. Эти явления также не согласовывались с гипотезой Лапласа и от нее пришлось отказаться.

Определенным этапом в развитии взглядов на образование Солнечной системы была гипотеза английского астрофизика Джеймса Джинса (рис.2). Он считал, что планеты образовались в результате катастрофы: какая-то относительно большая звезда прошла совсем близко от уже существовавшего Солнца, следствием чего явился выброс из поверхностных слоев Солнца струи газа, из которых впоследствии образовались планеты. Но гипотеза Джинса, так же как гипотеза Канта-Лапласа, не может объяснить несоответствие в распределении момента количества движения между планетами и Солнцем.

Рис. 2. Образование солнечной системы по Джинсу

Принципиально новая идея заложена в гипотезах «холодного» происхождения Земли. Наиболее глубоко разработана метеоритная гипотеза, предложенная советским ученым О. Ю. Шмидтом в 1944 г (рис.3). Согласно гипотезе, несколько миллиардов лет тому назад «наше» Солнце встретило при своем движении во Вселенной большую газопылевую туманность. Значительная часть туманности последовала за Солнцем и стала вращаться вокруг него. Отдельные мелкие частицы слипались в крупные сгустки. Сгустки по мере своего движения также сталкивались друг с другом и обрастали все новым материалом, образуя плотные комья – зародыши будущих планет.

Рис. 3. Образование солнечной системы по метеоритной гипотезе

О. Ю. Шмидта

По О. Ю. Шмидту, в период формирования Земли ее поверхность оставалась холодной, сгустки сжимались, за счет этого начался процесс самогравитации вещества, внутренняя часть постепенно нагревалась от тепла, выделяемого при распаде радиоактивных элементов. С годами у гипотезы Шмидта появилось много слабых сторон, одна из них – это предположение о захвате Солнцем части встретившегося газопылевого облака. Исходя из закона механики, для захвата Солнцем вещества необходимо было полностью остановить это вещество, а Солнце должно было обладать громадной силой притяжения, способной остановить это облако и притянуть его к себе. К недостаткам метеоритной гипотезы относится малая вероятность захвата Солнцем газово – пылевого (метеоритного) облака и отсутствие объяснения концентрического внутреннего строения Земли .

Со временем сложилось еще много теорий, касающихся происхождения Земли и Солнечной системы в целом. На основе взглядов О.Ю. Шмидта (1944), В. Амбарцумяна (1947), B.C. Сафронова (1969) и других ученых сформировалась современная теория планетарного образования Земли и других планет Солнечной системы (рис. 4). Причиной появления планет нашей системы явился взрыв сверхновой звезды. Ударная волна от взрыва около 5 млрд лет назад сильно сжала газопылевую туманность. Концентрация материального вещества (пыли, смесей газов, водорода, гелия, углерода, тяжелых металлов, сульфидов) оказалась настолько значительной, что это привело к началу термоядерного синтеза, росту температуры, давлению, появлению явления самогравитации в первичном Солнце и зарождению протопланет .

Рис. 4. Образование солнечной системы (современная теория)

1 – взрыв сверхновой звезды порождает ударные волны, воздействующие на газопылевое облако; 2 – газопылевое облако начинает фрагментироваться и сплющиваться, закручиваясь при этом; 3 – первичная солнечная небула (туманность); 4 – образование Солнца и гигантских, богатых газом планет – Юпитера и Сатурна; 5 – ионизированный газ – солнечный ветер сдувает газ из внутренней зоны системы и с мелких планетезималей; 6 – образование внутренних планет из планетезималей в течение 100 млн лет и формирование облаков Оорта, состоящих из комет

Первичная Земля оказалось связана с Луной приливными взаимодействиями. Луна определила наклон оси ее вращения своей орбитой и массой и обусловила климатическую зональность Земли, возникновение электрического и магнитного полей .

После образования земного ядра (на границе архея и протерозоя), содержащего около 63% современной массы, дальнейший рост Земли происходил уже более спокойно и равномерно по тектономагматическим циклам. Таких циклов ученые-тектонисты насчитали около 14. Значительная тектоническая активность на Земле наблюдалась около 2,6 млрд лет назад, перемещение литосферных плит в то время происходило со скоростью 2-3 м в год. Поверхность Земли была окутана плотной углекисло-азотной атмосферой с давлением до 4-5 атм. и температурой до +30…+100 °С. Возник первый неглубокий Мировой океан, дно которого было покрыто базальтами и серпентинитом.

В раннем протерозое произошло насыщение первичной водой третьего (серпентинитового) слоя океанической коры. Это сразу сказалось на снижении давления углекислого газа в первичной атмосфере. В свою очередь, уменьшение углекислого газа в атмосфере привело к резкому снижению температуры на поверхности Земли. Появление кислорода и озонового слоя в атмосфере способствовало формированию биосферы и географической оболочки .

Процесс расслоения, дифференциации недр на Земле он происходит и сейчас, обеспечивая существование жидкого внешнего ядра и конвекцию в мантии. Атмосфера и гидросфера возникли в результате конденсации газов, выделявшихся на ранней стадии развития планеты .


Похожая информация.


Лишь сравнительно не так давно люди получили фактический материал, дающий возможность выдвигать научно обоснованные гипотезы о происхождении Земли, однако этот вопрос волновал умы философов еще с незапамятных времен.

Первые представления

Хоть первые представления о жизни Земли и основывались только на эмпирических наблюдениях природных явлений, тем не менее в них основополагающую роль зачастую занимал фантастический вымысел, чем объективная реальность. Но уже в те времена, возникли идеи и воззрения, которые и в наши дни поражают нас своим сходством с нашими представлениями о происхождении Земли.

Так, к примеру, римский философ и поэт Тит Лукреций Кар, который известен как автор дидактической поэмы «О природе вещей», считал, что Вселенная бесконечна и в ней существует множество миров, подобных нашему. О том же написано у древнегреческого ученого Гераклита (500 лет до н.э.): «Мир, единый из всего, не создан никем из богов и никем из людей, а был, есть и будет вечно живым огнем, закономерно воспламеняющимся и закономерно угасающим».


После того как пала Римская империя для Европы наступила тяжелая пора средневековья – период господства богословия и схоластики. Этот период затем сменился эпохой Возрождения, труды , Николая Коперника, Галилео Галилея подготовили появление прогрессивных космогонических идей. Они были высказаны в разное время Р.Декартом, И.Ньютоном, Н.Стеноном, И.Кантом и П.Лапласом.

Гипотезы происхождения Земли
Гипотеза Р. Декарта

Так, в частности, Р.Декарт утверждал что, наша планета прежде была раскаленным телом, подобно Солнцу. А впоследствии она остыла и начала представлять из себя потухшее небесное тело, в недрах которого все же сохранился огонь. Раскаленное ядро покрывала плотная оболочка, которая состояла из вещества, подобного веществу солнечных пятен. Выше находилась новая оболочка – из мелких осколков, возникших в результате распада пятен.

Гипотеза И. Канта

1755 год — немецкий философ И.Кант предположил, что вещество, из которого состоит тело Солнечной системы – все планеты и кометы, до начала всех преобразований было разложено на первичные элементы и заполняло весь тот объем Вселенной, в котором движутся теперь образовавшиеся из них тела. Эти представления Канта о том, что Солнечная система могла образоваться в результате скопления первичного дисперсного рассеянного вещества, кажутся в наше время на удивление правильными.

Гипотеза П. Лапласа

1796 год — французский ученый П.Лаплас высказывал сходные идеи о происхождении Земли, ничего не зная о имеющемся трактате И.Канта. Появившаяся гипотеза о происхождении Земли получила, таким образом, название гипотезы Канта-Лапласа. По этой гипотезе Солнце и движущиеся вокруг него планеты образовались из единой туманности, которая, при вращении, распадалась на отдельные сгустки вещества – планеты.

Изначально огненно-жидкая Земля остывала, покрывалась коркой, которая коробилась по мере остывания недр и уменьшения их объема. Следует отметить, что гипотеза Канта-Лапласа больше 150 лет преобладала в ряду других космогонических воззрений. Именно исходя из этой гипотезы, геологи объясняли все геологические процессы, происходившие в недрах Земли и на ее поверхности.

Гипотеза Э. Хладни

Огромное значение для разработки достоверных научных гипотез о происхождении Земли конечно имеют метеориты – пришельцы из далекого космоса. Все по тому, что метеориты падали на нашу планету всегда. Однако далеко не всегда они считались пришельцами из космоса. Одним из первых, объяснивших правильно появление метеоритов, был немецкий физик Э.Хладни, который доказал в 1794 г., что метеориты – это остатки болидов, имеющих неземное происхождение. По его утверждению, метеориты являются странствующими в космосе кусками межпланетной материи, вероятно и осколками планет.

Современной концепции происхождения Земли

Но такого рода мысли в те времена разделяли далеко не все, однако, изучая каменные и железные метеориты, ученые смогли получить любопытные данные, которые использовались в космогонических построениях. Был, к примеру, выяснен химический состав метеоритов – в основном оказалось, что это окислы кремния, магния, железа, алюминия, кальция, натрия. Следовательно, возникла возможность узнать состав других планет, который оказался сродни химическому составу нашей Земли. Определили и абсолютный возраст метеоритов: он находится в пределах 4,2-4,6 миллиардов лет. В настоящий момент к этим данным добавились сведения о химическом составе и возрасте пород Луны, а также атмосфер и пород Венеры и Марса. Эти новые данные показывают, в частности, что наш естественный спутник Луна образовался из холодного газопылевого облака и начал «функционировать» 4,5 миллиарда лет тому назад.

Огромная роль в обосновании современной концепции происхождения Земли и Солнечной системы принадлежит советскому ученому, академику О.Шмидту, который внес значительный вклад в решение этой проблемы.

Так по крупицам, по отдельным разрозненным фактам постепенно складывалась научная основа современных космогонических взглядов… Большинство современных космогонистов придерживается следующей точки зрения.

Исходным веществом для образования Солнечной системы послужило газопылевое облако, находившееся в экваториальной плоскости нашей Галактики. Вещество этого облака пребывало в холодном состоянии и содержало как правило летучие компоненты: водород, гелий, азот, пары воды, метан, углерод. Первичное планетное вещество было весьма однородным, а его температура довольно низкой.

Вследствие сил тяготения межзвездные облака начинали сжиматься. Вещество уплотнялось до стадии звезд, в то-же время возрастала его внутренняя температура. Движение атомов внутри облака ускорялось, и, сталкиваясь друг с другом, атомы иногда объединялись. Происходили термоядерные реакции, в процессе которых водород превращался в гелий, при этом выделялось огромное количество энергии.

В неистовстве мощных стихий появилось Протосолнце. Рождение его произошло как результат вспышки сверхновой звезды – явление не такое уж редкое. В среднем такая звезда возникает в любой Галактике каждые 350 миллионов лет. Во время вспышки сверхновой звезды излучается гигантская энергия. Вещество, выброшенное в результате этого термоядерного взрыва, образовало вокруг Протосолнца широкое, постепенно уплотнявшееся газовое плазменное облако. Оно представляло из себя своеобразную туманность в виде диска с температурой в несколько миллионов градусов Цельсия. Из этого протопланетного облака в дальнейшем возникли планеты, кометы, астероиды и другие небесные тела Солнечной системы. Образование Протосолнца и протопланетного облака вокруг него произошло, возможно, около 6 миллиардов лет назад.

Прошли сотни миллионов лет. Со временем газообразное вещество протопланетного облака остывало. Из горячего газа конденсировались наиболее тугоплавкие элементы и их окислы. По мере дальнейшего охлаждения, продолжавшегося миллионы лет, в облаке появились пылевидные твердые частицы, и ранее раскаленное газовое облако снова стало сравнительно холодным.

Постепенно вокруг молодого Солнца в результате конденсации пылевидного вещества образовался широкий кольцеобразный диск, который в последствии распался на холодные рои твердых частиц и газа. Из внутренних частей газопылевого диска стали образовываться планеты типа Земли, состоящие как правило из тугоплавких элементов, а из периферических частей диска – большие планеты, богатые легкими газами и летучими элементами. В самой же внешней зоне появилось огромное количество комет.

Первичная Земля

Так примерно 5,5 миллиарда лет назад из холодного планетного вещества возникли первые планеты, в том числе и первичная Земля. В те времена она была космическим телом, но еще не планетой, у нее не было ядра и мантии и не существовало даже твердых поверхностных участков.

Образование Протоземли было чрезвычайно важной вехой – это было рождение Земли. В те времена на Земле не протекали обычные, хорошо нам известные геологические процессы, потому этот период эволюции планеты называют догеологическим, или астрономическим.

Протоземля представляла из себя холодное скопление космического вещества. Под влиянием гравитационного уплотнения, нагревания от беспрерывных ударов космических тел (комет, метеоритов) и выделения тепла радиоактивными элементами поверхность Протоземли начала нагреваться. О величине разогрева среди ученых нет единого мнения. Как считает советский ученый В.Фесенко, вещество Протоземли нагрелось до 10 000°С и как следствие этого перешло в расплавленное состояние. По предположению же других ученых, температура едва могла достигать 1 000°С, а третьи отрицают даже саму возможность расплавления вещества.

Как бы там ни было, но разогрев Протоземли способствовал дифференциации ее материала, которая продолжалась на протяжении всей последующей геологической истории.

Дифференциация вещества Протоземли привела к концентрации тяжелых элементов во внутренних ее областях, а на поверхности – более легких. Это, в свою очередь, предопределило дальнейшее разделение на ядро и мантию.

Изначально наша планета не имела атмосферы. Это можно объяснить тем, что газы из протопланетного облака были потеряны на первых стадиях образования, потому как тогда еще масса Земли не могла удержать легкие газы вблизи своей поверхности.

Образование ядра и мантии, а в дальнейшем и атмосферы завершило первую стадию развития Земли – догеологическую, или астрономическую. Земля стала твердой планетой. После чего и начинается ее длительная геологическая эволюция.

Таким образом, 4-5 миллиардов лет назад на поверхности нашей планеты господствовали солнечный ветер, жаркие лучи Солнца и космический холод. Поверхность постоянно подвергалась бомбардировке космическими телами – от пылинок до астероидов…

Такие органеллы, как митохондрии и жгутики, скорее всего, возникли также в процессе фагоцитоза. Предшественники современных клеток, поглощая пищу, обзавелись симбионтами, дружественными микроорганизмами. Они, используя питательные вещества, попадающие в цитоплазму, стали осуществлять функции регуляции различных внутриклеточных процессов. Согласно концепции симбиогенеза, таким образом в клетке появились уже названные митохондрии и жгутики. Многие современные исследования подтверждают справедливость гипотезы.

Альтернативы

РНК-мир как предшественник всего живого имеет «конкурентов». Среди них есть и креационистские теории, и научные гипотезы. Многие века существовало предположение о самозарождение жизни: мухи и черви появляются в гниющих отходах, мыши — в старом тряпье. Опровергнутая мыслителями XVII-XVIII веков, она получила второе рождение в прошлом столетии в теории Опарина-Холдейна. Согласно ей, жизнь возникла в результате взаимодействия органических молекул в первичном бульоне. Предположения ученых были косвенно подтверждены в знаменитом эксперименте Стенли Миллера. Именно эту теорию и сменила в начале нашего века гипотеза РНК-мира.

Параллельно существует мнение, что жизнь имеет изначально внеземное происхождение. Принесли ее на нашу планеты, согласно теории Панспермии, все те же астероиды и кометы, которые «позаботились» о формировании океанов и морей. По сути, эта гипотеза не объясняет появление жизни, а констатирует ее как факт, неотъемлемое свойство материи.

Если обобщить все вышесказанное, становится понятно, что происхождение Земли и жизни на ней на сегодняшний день - это все-таки открытые вопросы. Современные ученые, конечно, намного ближе к разгадке всех тайн нашей планеты, чем мыслители Античности или Средневековья. Однако многое еще требует прояснения. Различные гипотезы происхождения Земли сменяли друг друга в те моменты, когда обнаруживались новые сведения, не вписывающиеся в старую картину. Вполне возможно, что подобное может случиться и в не столь отдаленном будущем, и тогда на смену устоявшимся теориям придут новые.

Научный подход к вопросу о происхождении Земли и Солнечной системы стал возможен после укрепления в науке мысли о материальном единстве во Вселенной. Возникает наука о происхождении и развитии небесных тел - космогония.

Первые попытки дать научное обоснование вопросу о происхождении и развитии Солнечной системы были сделаны 200 лет назад.

Все гипотезы о происхождении Земли можно разбить на две основные группы: небулярные (лат. «небула» - туман, газ) и катастрофические. В основе первой группы лежит принцип образования планет из газа, из пылевых туманностей. В основе второй группы - различные катастрофические явления (столкновение небесных тел, близкое прохождение друг от друга звезд и т.д.).

Одна из первых гипотез была высказана в 1745 году французским естествоиспытателем Ж.Бюффоном. Согласно этой гипотезе, наша планета образовалась в результате остывания одного из сгустков солнечного вещества, выброшенного Солнцем при катастрофическом столкновении его с крупной кометой. Мысль Ж.Бюффона об образовании Земли (и других планет) из плазмы была использована в целой серии более поздних и более совершенных гипотез «горячего» происхождения нашей планеты.

Небулярные теории. Гипотеза Канта и Лапласа

Среди небулярных теорий, безусловно, ведущее место занимает гипотеза, разработанная немецким философом И.Кантом (1755). Независимо от него другой ученый - француский математик и астроном П. Лаплас - пришел к тем же выводам, но разработал гипотезу более глубоко (1797). Обе гипотезы сходны между собой по существу и часто рассматриваются как одна, а авторов ее считают основоположниками научной космогонии.

Гипотеза Канта - Лапласа относится к группе небулярных гипотез. Согласно их концепции, на месте Солнечной системы располагалась ранее огромная газо-пылевая туманность (пылевая туманность из твердых частиц, по мнению И. Канта; газовая - по предположению П.Лапласа). Туманность была раскаленной и вращалась. Под действием законов тяготения материя ее постепенно уплотнялась, сплющивалась, образуя в центре ядро. Так образовалось первичное солнце. Дальнейшее охлаждение и уплотнение туманности привелок увеличению угловой скорости вращения, вследствие чего на экваторе произошло отделение наружной части туманности от основной массы в виде колец, вращающихся в экваториальной плоскости: их образовалось несколько. В качестве примера Лаплас приводил кольца Сатурна.

Неравномерно охлаждаясь, кольца разрывались, и вследствие притяжения между частицами происходило образование планет, обращающихся вокруг Слнца. Остывающие планеты покрывались твердой коркой, на поверхности которой стали развиваться геологические процессы.

И.Кант и П.Лаплас верно подметили основные и характерные черты строения Солнечной системы:

  • 1) подавляющая часть массы (99,86%) системы сосредоточена в Солнце;
  • 2) планеты обращаются почти по круговым орбитам и почти в одной и той же плоскости;
  • 3) все планеты и почти все их спутники вращаются в одну и ту же сторону, все планеты вращаются вокруг своей оси в ту же сторону.

Значительной заслугой И.Канта и П. Лапласа явилось создание гипотезы, в основу которой была положена идея развития материи. Оба ученых считали, что туманность обладала вращательным движением, вследствие чего произошло уплотнение частиц и образование планет и Солнца. Они полагали, что движение неотделимо от материи и так же вечно,как и сама материя.

Гипотеза Канта-Лапласа существовала в течене почти двух сотен лет. Впоследствии была доказана ее несостоятельность. Так, стало известно, что спутники некоторых планет, например Урана и Юпитера, вращаются в ином направлении, чем сами планеты. По данным современной физики, газ, отделившийся от центрального тела, должен рассеятьсяи не может сформироваться в газовые кольца, а позднее - в планеты. Другими существенными недостатками гипотезы Канта и Лапласа являются следующие: небулярный катастрофический происхождение земля

  • 1. Известно, что момент количества движения во вращающемся теле всегда остается постоянным и распределяется равномерно по всему телу пропорционально массе, расстоянию и угловой скорости соответствующей части тела. Этот закон распространяется и на туманность, из которой сформировались Солнце и планеты. В Солнечной системе количество движения не соответствует закону распределения количества движения в массе, возникшей из одного тела. В планета Солнечной системы сосредоточено 98% момента количества движения системы, а Солнце имеет только 2%, в то время как на долю Солнца приходится 99,86% всей массы Солнечной системы.
  • 2. Если сложить моменты вращения Солнца и других планет, то при расчетах окажется, что первичное Солнце вращалось с той же скоростью, с какой сейчас вращается Юпитер. В связи с этим Солнце должно было обладать тем же сжатием, что и Юпитер. А этого, как показывают расчеты, недостаточно, чтобы вызвать дробление вращающегося Солнца, которое, как считали Кант и Лаплас, распалось вследствие избытка вращения.
  • 3. В настоящее время доказано, что звезда, обладающая избытком вращения, распадается на части, а не образует семейство планет. Примером могут служить спектрально-двойные и кратные системы.


Понравилась статья? Поделитесь с друзьями!