Размножение многочлена на множители. Разложение многочленов на множители

Частично использовать разложение на множители разность степеней мы уже умеем - при изучении темы «Разность квадратов» и «Разность кубов» мы научились представлять как произведение разность выражений, которые можно представить как квадраты или как кубы некоторых выражений или чисел.

Формулы сокращенного умножения

По формулам сокращенного умножения:

разность квадратов можно представить как произведение разности двух чисел или выражений на их сумму

Разность кубов можно представить как произведение разности двух чисел на неполный квадрат суммы

Переход к разности выражений в 4 степени

Опираясь на формулу разности квадратов, попробуем разложить на множители выражение $a^4-b^4$

Вспомним, как возводится степень в степень - для этого основание остается прежним, а показатели перемножаются, т. е ${(a^n)}^m=a^{n*m}$

Тогда можно представить:

$a^4={{(a}^2)}^2$

$b^4={{(b}^2)}^2$

Значит, наше выражение можно представить, как $a^4-b^4={{(a}^2)}^2$-${{(b}^2)}^2$

Теперь в первой скобке мы вновь получили разность чисел, значит вновь можно разложить на множители как произведение разности двух чисел или выражений на их сумму: $a^2-b^2=\left(a-b\right)(a+b)$.

Теперь вычислим произведение второй и третьей скобок используя правило произведения многочленов, - умножим каждый член первого многочлена на каждый член второго многочлена и сложим результат. Для этого сначала первый член первого многочлена - $a$ - умножим на первый и второй член второго (на $a^2$ и $b^2$),т.е. получим $a\cdot a^2+a\cdot b^2$, затем второй член первого многочлена -$b$- умножим на первый и второй члены второго многочлена (на $a^2$ и $b^2$),т.е. получим $b\cdot a^2 + b\cdot b^2$ и составим сумму получившихся выражений

$\left(a+b\right)\left(a^2+b^2\right)=a\cdot a^2+a\cdot b^2+ b \cdot a^2 + b\cdot b^2 = a^3+ab^2+a^2b+b^3$

Запишем разность одночленов 4 степени с учетом вычисленного произведения:

$a^4-b^4={{(a}^2)}^2$-${{(b}^2)}^2={(a}^2-b^2)(a^2+b^2)$=$\ \left(a-b\right)(a+b)(a^2+b^2)\ $=

Переход к разности выражений в 6 степени

Опираясь на формулу разности квадратов попробуем разложить на множители выражение $a^6-b^6$

Вспомним, как возводится степень в степень - для этого основание остается прежним, а показатели перемножаются, т. е ${(a^n)}^m=a^{n\cdot m}$

Тогда можно представить:

$a^6={{(a}^3)}^2$

$b^6={{(b}^3)}^2$

Значит, наше выражение можно представить, как $a^6-b^6={{(a}^3)}^2-{{(b}^3)}^2$

В первой скобке мы получили разность кубов одночленов, во второй сумму кубов одночленов, теперь вновь можно разложить на множители разность кубов одночленов как произведение разности двух чисел на неполный квадрат суммы $a^3-b^3=\left(a-b\right)(a^2+ab+b^2)$

Исходное выражение принимает вид

$a^6-b^6={(a}^3-b^3)\left(a^3+b^3\right)=\left(a-b\right)(a^2+ab+b^2)(a^3+b^3)$

Вычислим произведение второй и третье скобок используя правило произведения многочленов, - умножим каждый член первого многочлена на каждый член второго многочлена и сложим результат.

$(a^2+ab+b^2)(a^3+b^3)=a^5+a^4b+a^3b^2+a^2b^3+ab^4+b^5$

Запишем разность одночленов 6 степени с учетом вычисленного произведения:

$a^6-b^6={(a}^3-b^3)\left(a^3+b^3\right)=\left(a-b\right)(a^2+ab+b^2)(a^3+b^3)=(a-b)(a^5+a^4b+a^3b^2+a^2b^3+ab^4+b^5)$

Разложение на множители разности степеней

Проанализируем формулы разности кубов, разности $4$ степеней, разности $6$ степеней

Мы видим, что в каждом из данных разложений присутствует некоторая аналогия, обобщая которую получим:

Пример 1

Разложить на множители ${32x}^{10}-{243y}^{15}$

Решение: Сначала представим каждый одночлен как некоторый одночлен в 5 степени:

\[{32x}^{10}={(2x^2)}^5\]\[{243y}^{15}={(3y^3)}^5\]

Используем формулу разности степеней

Рисунок 1.

Калькулятор онлайн.
Выделение квадрата двучлена и разложение на множители квадратного трехчлена.

Эта математическая программа выделяет квадрат двучлена из квадратного трехчлена , т.е. делает преобразование вида:
\(ax^2+bx+c \rightarrow a(x+p)^2+q \) и раскладывает на множители квадратный трехчлен : \(ax^2+bx+c \rightarrow a(x+n)(x+m) \)

Т.е. задачи сводятся к нахождению чисел \(p, q \) и \(n, m \)

Программа не только даёт ответ задачи, но и отображает процесс решения.

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Если вы не знакомы с правилами ввода квадратного трехчлена, рекомендуем с ними ознакомиться.

Правила ввода квадратного многочлена

В качестве переменной может выступать любая латинсая буква.
Например: \(x, y, z, a, b, c, o, p, q \) и т.д.

Числа можно вводить целые или дробные.
Причём, дробные числа можно вводить не только в виде десятичной, но и в виде обыкновенной дроби.

Правила ввода десятичных дробей.
В десятичных дробях дробная часть от целой может отделяться как точкой так и запятой.
Например, можно вводить десятичные дроби так: 2.5x - 3,5x^2

Правила ввода обыкновенных дробей.
В качестве числителя, знаменателя и целой части дроби может выступать только целое число.

Знаменатель не может быть отрицательным.

При вводе числовой дроби числитель отделяется от знаменателя знаком деления: /
Целая часть отделяется от дроби знаком амперсанд: &
Ввод: 3&1/3 - 5&6/5x +1/7x^2
Результат: \(3\frac{1}{3} - 5\frac{6}{5} x + \frac{1}{7}x^2 \)

При вводе выражения можно использовать скобки . В этом случае при решении введённое выражение сначала упрощается.
Например: 1/2(x-1)(x+1)-(5x-10&1/2)

Пример подробного решения

Выделение квадрата двучлена. $$ ax^2+bx+c \rightarrow a(x+p)^2+q $$ $$2x^2+2x-4 = $$ $$2x^2 +2 \cdot 2 \cdot\left(\frac{1}{2} \right)\cdot x+2 \cdot \left(\frac{1}{2} \right)^2-\frac{9}{2} = $$ $$2\left(x^2 + 2 \cdot\left(\frac{1}{2} \right)\cdot x + \left(\frac{1}{2} \right)^2 \right)-\frac{9}{2} = $$ $$2\left(x+\frac{1}{2} \right)^2-\frac{9}{2} $$ Ответ: $$2x^2+2x-4 = 2\left(x+\frac{1}{2} \right)^2-\frac{9}{2} $$ Разложение на множители. $$ ax^2+bx+c \rightarrow a(x+n)(x+m) $$ $$2x^2+2x-4 = $$
$$ 2\left(x^2+x-2 \right) = $$
$$ 2 \left(x^2+2x-1x-1 \cdot 2 \right) = $$ $$ 2 \left(x \left(x +2 \right) -1 \left(x +2 \right) \right) = $$ $$ 2 \left(x -1 \right) \left(x +2 \right) $$ Ответ: $$2x^2+2x-4 = 2 \left(x -1 \right) \left(x +2 \right) $$

Решить

Обнаружено что не загрузились некоторые скрипты, необходимые для решения этой задачи, и программа может не работать.
Возможно у вас включен AdBlock.
В этом случае отключите его и обновите страницу.

У вас в браузере отключено выполнение JavaScript.
Чтобы решение появилось нужно включить JavaScript.
Вот инструкции, как включить JavaScript в вашем браузере .

Т.к. желающих решить задачу очень много, ваш запрос поставлен в очередь.
Через несколько секунд решение появится ниже.
Пожалуйста подождите сек...


Если вы заметили ошибку в решении , то об этом вы можете написать в Форме обратной связи .
Не забудте указать какую задачу вы решаете и что вводите в поля .



Наши игры, головоломки, эмуляторы:

Немного теории.

Выделение квадрата двучлена из квадратного трехчлена

Если квадратный трехчлен aх 2 +bx+c представлен в виде a(х+p) 2 +q, где p и q - действительные числа, то говорят, что из квадратного трехчлена выделен квадрат двучлена .

Выделим из трехчлена 2x 2 +12x+14 квадрат двучлена.


\(2x^2+12x+14 = 2(x^2+6x+7) \)


Для этого представим 6х в виде произведения 2*3*х, а затем прибавим и вычтем 3 2 . Получим:
$$ 2(x^2+2 \cdot 3 \cdot x + 3^2-3^2+7) = 2((x+3)^2-3^2+7) = $$ $$ = 2((x+3)^2-2) = 2(x+3)^2-4 $$

Т.о. мы выделили квадрат двучлена из квадратного трехчлена , и показоли, что:
$$ 2x^2+12x+14 = 2(x+3)^2-4 $$

Разложение на множители квадратного трехчлена

Если квадратный трехчлен aх 2 +bx+c представлен в виде a(х+n)(x+m), где n и m - действительные числа, то говорят, что выполнена операция разложения на множители квадратного трехчлена .

Покажем на примере как это преобразование делается.

Разложим квадратный трехчлен 2x 2 +4x-6 на множители.

Вынесем за скобки коэффициент a, т.е. 2:
\(2x^2+4x-6 = 2(x^2+2x-3) \)

Преобразуем выражение в скобках.
Для этого представим 2х в виде разности 3x-1x, а -3 в виде -1*3. Получим:
$$ = 2(x^2+3 \cdot x -1 \cdot x -1 \cdot 3) = 2(x(x+3)-1 \cdot (x+3)) = $$
$$ = 2(x-1)(x+3) $$

Т.о. мы разложили на множители квадратный трехчлен , и показоли, что:
$$ 2x^2+4x-6 = 2(x-1)(x+3) $$

Заметим, что разложение на множители квадратного трехчлена возможно только тогда, когда, квадратное уравнение, соответсвующее этому трехчлену имеет корни.
Т.е. в нашем случае разложить на множители трехчлен 2x 2 +4x-6 возможно, если квадратное уравнение 2x 2 +4x-6 =0 имеет корни. В процессе разложения на множители мы установили, что уравнение 2x 2 +4x-6 =0 имеет два корня 1 и -3, т.к. при этих значениях уравнение 2(x-1)(x+3)=0 обращается в верное равенство.

Книги (учебники) Рефераты ЕГЭ и ОГЭ тесты онлайн Игры, головоломки Построение графиков функций Орфографический словарь русского языка Словарь молодежного слэнга Каталог школ России Каталог ССУЗов России Каталог ВУЗов России Список задач

Рассматривая умножение многочленов, мы запомнили несколько формул, а именно: формулы для (a + b)², для (a – b)², для (a + b) (a – b), для (a + b)³ и для (a – b)³.

Если данный многочлен окажется совпадающим с одною из этих формул, то его явится возможным разложить на множители. Напр., многочлен a² – 2ab + b², мы знаем, равен (a – b)² [или (a – b) · (a – b), т. е. удалось a² – 2ab + b² разложить на 2 множителя]; также

Рассмотрим второй из этих примеров. Мы видим, что данный здесь многочлен подходит к формуле, получающейся от возведения в квадрат разности двух чисел (квадрат первого числа, минус произведение двойки на первое число и на второе, плюс квадрат второго числа): x 6 есть квадрат первого числа, а, следовательно, само первое число есть x 3 , квадратом второго числа является последний член данного многочлена, т. е. 1, само второе число есть, следовательно, также 1; произведением двойки на первое число и на второе является член –2x 3 , ибо 2x 3 = 2 · x 3 · 1. Поэтому наш многочлен получился от возведения в квадрат разности чисел x 3 и 1, т. е. он равен (x 3 – 1) 2 . Рассмотрим еще 4-ый пример. Мы видим, что данный многочлен a 2 b 2 – 25 можно рассматривать, как разность квадратов двух чисел, а именно квадратом первого числа служит a 2 b 2 , следовательно, само первое число есть ab, квадратом второго числа является 25, почему само второе число есть 5. Поэтому наш многочлен можно рассматривать получившимся от умножения суммы двух чисел на их разность, т. е.

(ab + 5) (ab – 5).

Иногда случается, что в данном многочлене члены расположены не в том порядке, к которому мы привыкли, напр.

9a 2 + b 2 + 6ab – мысленно мы можем переставить второй и третий члены, и тогда нам станет ясным, что наш трехчлен = (3a + b) 2 .

… (переставим мысленно первый и второй члены).

25a 6 + 1 – 10x 3 = (5x 3 – 1) 2 и т. п.

Рассмотрим еще многочлен

a 2 + 2ab + 4b 2 .

Мы видим, что первый член его представляет собою квадрат числа a и третий член представляет собою квадрат числа 2b, но второй член не является произведением двойки на первое число и на второе, – такое бы произведение было бы равно 2 · a · 2b = 4ab. Поэтому нельзя применить к этому многочлену формулу квадрата суммы двух чисел. Если бы кто написал, что a 2 + 2ab + 4b 2 = (a + 2b) 2 , то это было бы неверно – надо тщательно рассмотреть все члены многочлена, прежде чем применять к нему разложение на множители по формулам.

40. Соединение обоих приемов . Иногда при разложении многочленов на множители приходится комбинировать и прием вынесения общего множителя за скобки и прием применения формул. Вот примеры:

1. 2a 3 – 2ab 2 . Вынесем сначала общего множителя 2a за скобки, – получим 2a (a 2 – b 2). Множитель a 2 – b 2 , в свою очередь, разлагается по формуле на множители (a + b) и (a – b).

Иногда приходится применять прием разложения по формулам многократно:

1. a 4 – b 4 = (a 2 + b 2) (a 2 – b 2)

Мы видим, что первый множитель a 2 + b 2 не подходит ни к одной из знакомых формул; мало того, вспоминая особые случаи деления (п. 37), мы установим, что a 2 + b 2 (сумма квадратов двух чисел) вовсе на множители не раскладывается. Второй из полученных множителей a 2 – b 2 (разность квадратом двух чисел) разлагается на множители (a + b) и (a – b). Итак,

41. Применение особых случаев деления . На основании п. 37 мы можем сразу написать, что, напр.,

Разложение многочленов на множители – это тождественное преобразование, в результате которого многочлен преобразуется в произведение нескольких сомножителей – многочленов или одночленов.

Существует несколько способов разложения многочленов на множители.

Способ 1. Вынесение общего множителя за скобку.

Это преобразование основывается на распределительном законе умножения: ac + bc = c(a + b). Суть преобразования заключается в том, чтобы выделить в двух рассматриваемых компонентах общий множитель и «вынести» его за скобки.

Разложим на множители многочлен 28х 3 – 35х 4 .

Решение.

1. Находим у элементов 28х 3 и 35х 4 общий делитель. Для 28 и 35 это будет 7; для х 3 и х 4 – х 3 . Иными словами, наш общий множитель 7х 3 .

2. Каждый из элементов представляем в виде произведения множителей, один из которых
7х 3: 28х 3 – 35х 4 = 7х 3 ∙ 4 – 7х 3 ∙ 5х.

3. Выносим за скобки общий множитель
7х 3: 28х 3 – 35х 4 = 7х 3 ∙ 4 – 7х 3 ∙ 5х = 7х 3 (4 – 5х).

Способ 2. Использование формул сокращенного умножения. «Мастерство» владением этим способом состоит в том, чтобы заметить в выражении одну из формул сокращенного умножения.

Разложим на множители многочлен х 6 – 1.

Решение.

1. К данному выражению мы можем применить формулу разности квадратов. Для этого представим х 6 как (х 3) 2 , а 1 как 1 2 , т.е. 1. Выражение примет вид:
(х 3) 2 – 1 = (х 3 + 1) ∙ (х 3 – 1).

2. К полученному выражению мы можем применить формулу суммы и разности кубов:
(х 3 + 1) ∙ (х 3 – 1) = (х + 1) ∙ (х 2 – х + 1) ∙ (х – 1) ∙ (х 2 + х + 1).

Итак,
х 6 – 1 = (х 3) 2 – 1 = (х 3 + 1) ∙ (х 3 – 1) = (х + 1) ∙ (х 2 – х + 1) ∙ (х – 1) ∙ (х 2 + х + 1).

Способ 3. Группировка. Способ группировки заключается в объединение компонентов многочлена таким образом, чтобы над ними было легко совершать действия (сложение, вычитание, вынесение общего множителя).

Разложим на множители многочлен х 3 – 3х 2 + 5х – 15.

Решение.

1. Сгруппируем компоненты таким образом: 1-ый со 2-ым, а 3-ий с 4-ым
(х 3 – 3х 2) + (5х – 15).

2. В получившемся выражении вынесем общие множители за скобки: х 2 в первом случае и 5 – во втором.
(х 3 – 3х 2) + (5х – 15) = х 2 (х – 3) + 5(х – 3).

3. Выносим за скобки общий множитель х – 3 и получаем:
х 2 (х – 3) + 5(х – 3) = (х – 3)(х 2 + 5).

Итак,
х 3 – 3х 2 + 5х – 15 = (х 3 – 3х 2) + (5х – 15) = х 2 (х – 3) + 5(х – 3) = (х – 3) ∙ (х 2 + 5).

Закрепим материал.

Разложить на множители многочлен a 2 – 7ab + 12b 2 .

Решение.

1. Представим одночлен 7ab в виде суммы 3ab + 4ab. Выражение примет вид:
a 2 – (3ab + 4ab) + 12b 2 .

Раскроем скобки и получим:
a 2 – 3ab – 4ab + 12b 2 .

2. Сгруппируем компоненты многочлена таким образом: 1-ый со 2-ым и 3-ий с 4-ым. Получим:
(a 2 – 3ab) – (4ab – 12b 2).

3. Вынесем за скобки общие множители:
(a 2 – 3ab) – (4ab – 12b 2) = а(а – 3b) – 4b(а – 3b).

4. Вынесем за скобки общий множитель (а – 3b):
а(а – 3b) – 4b(а – 3b) = (а – 3 b) ∙ (а – 4b).

Итак,
a 2 – 7ab + 12b 2 =
= a 2 – (3ab + 4ab) + 12b 2 =
= a 2 – 3ab – 4ab + 12b 2 =
= (a 2 – 3ab) – (4ab – 12b 2) =
= а(а – 3b) – 4b(а – 3b) =
= (а – 3 b) ∙ (а – 4b).

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

На данном уроке мы вспомним все ранее изученные методы разложения многочлена на множители и рассмотрим примеры их применения, кроме того, изучим новый метод - метод выделения полного квадрата и научимся применять его при решении различных задач.

Тема: Разложение многочленов на множители

Урок: Разложение многочленов на множители. Метод выделения полного квадрата. Комбинация методов

Напомним основные методы разложения многочлена на множители, которые были изучены ранее:

Метод вынесения общего множителя за скобки, то есть такого множителя, который присутствует во всех членах многочлена. Рассмотрим пример:

Напомним, что одночлен есть произведение степеней и чисел. В нашем примере в обоих членах есть некоторые общие, одинаковые элементы.

Итак, вынесем общий множитель за скобки:

;

Напомним, что перемножив вынесенный множитель на скобку можно проверить правильность вынесения.

Метод группировки. Не всегда в многочлене можно вынести общий множитель. В таком случае нужно его члены разбить на группы таким образом, чтобы в каждой группе можно было вынести общий множитель и постараться разбить так, чтобы после вынесения множителей в группах появился общий множитель у всего выражения, и можно было бы продолжить разложение. Рассмотрим пример:

Сгруппируем первый член с четвертым, второй с пятым, и третий соответственно с шестым:

Вынесем общие множители в группах:

У выражения появился общий множитель. Вынесем его:

Применение формул сокращенного умножения. Рассмотрим пример:

;

Распишем выражение подробно:

Очевидно, что перед нами формула квадрата разности, так как есть сумма квадратов двух выражений и из нее вычитается их удвоенное произведение. Свернем по формуле:

Сегодня мы выучим еще один способ - метод выделения полного квадрата. Он базируется на формулах квадрата суммы и квадрата разности. Напомним их:

Формула квадрата суммы(разности);

Особенность этих формул в том, что в них есть квадраты двух выражений и их удвоенное произведение. Рассмотрим пример:

Распишем выражение:

Итак, первое выражение это , а второе .

Для того, чтобы составить формулу квадрата суммы или разности не хватает удвоенного произведения выражений. Его нужно прибавить и отнять:

Свернем полный квадрат суммы:

Преобразуем полученное выражение:

Применим формулу разности квадратов, напомним, что разность квадратов двух выражений есть произведение и суммы на их разность:

Итак, данный метод заключается, прежде всего, в том, что нужно выявить выражения a и b, которые стоят в квадрате, то есть определить, квадраты каких выражений стоят в данном примере. После этого нужно проверить наличие удвоенного произведения и если его нет, то прибавить и отнять его, от этого смысл примера не изменится, но многочлен можно будет разложить на множители, используя формулы квадрата суммы или разности и разности квадратов, если есть такая возможность.

Перейдем к решению примеров.

Пример 1 - разложить на множители:

Найдем выражения, которые стоят в квадрате:

Запишем, каким должно быть их удвоенное произведение:

Прибавим и отнимем удвоенное произведение:

Свернем полный квадрат суммы и приведем подобные::

Распишем по формуле разности квадратов:

Пример 2 - решить уравнение:

;

В левой части уравнения стоит трехчлен. Нужно разложить его на множители. Используем формулу квадрата разности :

У нас есть квадрат первого выражения и удвоенное произведение, не хватает квадрата второго выражения, прибавим и отнимем его:

Свернем полный квадрат и приведем подобные члены:

Применим формулу разности квадратов:

Итак, имеем уравнение

Мы знаем, что произведение равно нулю только если хотя бы один из множителей равен нулю. Составим на этом основании уравнения:

Решим первое уравнение:

Решим второе уравнение:

Ответ: или

;

Поступаем аналогично предыдущему примеру - выделяем квадрат разности.



Понравилась статья? Поделитесь с друзьями!