Сформулируйте законы динамики поступательного и вращательного движения. Закон сохранения момента импульса

1. Импульс момента силы, Mdt, действующий на вращательное тело, равен изменению его момента импульса dL:
Mdt = d(J ω) или Mdt = dL
Где: Mdt – импульс момента силы (произведение момента силы М на промежуток времени dt)
Jdω = d(Jω) – изменение момента импульса тела,
Jω = L - момент импульса тела есть произведение момента инерции J на угловую скоростьω ω, а d(Jω) есть dL.

2. Кинематические характеристики Вращение твердого тела, как целого характеризуется углом φ, измеряющегося в угловых градусах или радианах, угловой скоростью
ω = dφ/dt
(измеряется в рад/с)
и угловым ускорением
ε = d²φ/dt² (измеряется в рад/с²).
При равномерном вращении (T оборотов в секунду), Частота вращения - число оборотов тела в единицу времени:
f = 1/T =
ω/2
Период вращения - время одного полного оборота. Период вращения T и его частота f связаны соотношением
T = 1/f

Линейная скорость точки, находящейся на расстоянии R от оси вращения

Угловая скорость вращения тела
ω = f/Dt = 2/T

Динамические характеристики Свойства твердого тела при его вращении описываются моментом инерции твёрдого тела. Эта характеристика входит в дифференциальные уравнения, полученные из уравнений Гамильтона или Лагранжа. Кинетическую энергии вращения можно записать в виде:
E=

В этой формуле момент инерции играет роль массы, а угловая скорость роль обычной скорости. Момент инерции выражает геометрическое распределение массы в теле и может быть найден из формулы:

Момент инерции механической системы относительно неподвижной оси a («осевой момент инерции») - физическая величина Ja, равная сумме произведений масс всех n материальных точек системы на квадраты их расстояний до оси:
= ∑

Где: mi - масса i-й точки, ri - расстояние от i-й точки до оси. Осевой момент инерции тела Ja является мерой инертности тела во вращательном движении вокруг оси a подобно тому, как масса тела является мерой его инертности в поступательном движении.

3. Маятник представляет собой замкнутую систему.
Если маятник находится в крайней точке, его потенциальная энергия максимальна, а кинетическая равна нулю.
Как только маятник начинает двигаться, егопотенциальная энергия уменьшается, а кинетическая - увеличивается.
В нижней точке кинетическая энергия максимальна, а потенциальная - минимальна. После этого начинается обратный процесс. Накопленная кинетическая энергия двигает маятник вверх и увеличивает, тем самым потенциальную энергию маятника. Кинетическая энергия уменьшается, пока маятник снова не остановится уже в другой крайней точке.
Можно сказать, что в процессе движения маятника происходит переход потенциальной энергии в кинетическую и наоборот.

Сумма кинетической и потенциальной энергии тел, составляющих замкнутую систему и взаимодействующих между собой силами тяготения и силами упругости, остается постоянной.
Или так: Полная механическая энергия замкнутой системы тел, взаимодействующих силами тяготения и силами упругости, остается неизменной.
(Сумма кинетической и потенциальной энергии тел называется полной механической энергией)

Вывод основного закона динамики вращательного движения. К выводу основного уравнения динамики вращательного движения. Динамика вращательного движения материальной точки. В проекции на тангенциальное направление уравнение движения примет вид: Ft = mt.

15.Вывод основного закона динамики вращательного движения.

Рис. 8.5. К выводу основного уравнения динамики вращательного движения.

Динамика вращательного движения материальной точки. Рассмотрим частицу массы m, вращающуюся вокруг токи О по окружности радиуса R , под действием результирующей силы F (см. рис. 8.5). В инерциальной системе отсчета справедлив 2 ой закон Ньютона. Запишем его применительно к произвольному моменту времени:

F = m· a .

Нормальная составляющая силы не способна вызвать вращения тела, поэтому рассмотрим только действие ее тангенциальной составляющей. В проекции на тангенциальное направление уравнение движения примет вид:

F t = m·a t .

Поскольку a t = e·R, то

F t = m·e·R (8.6)

Умножив левую и правую части уравнения скалярно на R, получим:

F t ·R= m·e·R 2 (8.7)
M = I·e. (8.8)

Уравнение (8.8) представляет собой 2 ой закон Ньютона (уравнение динамики) для вращательного движения материальной точки. Ему можно придать векторный характер, учитывая, что наличие момента сил вызывает появление параллельного ему вектора углового ускорения, направленного вдоль оси вращения (см. рис. 8.5):

M = I· e . (8.9)

Основной закон динамики материальной точки при вращательном движении можно сформулировать следующим образом:

произведение момента инерции на угловое ускорение равно результирующему моменту сил, действующих на материальную точку.


А также другие работы, которые могут Вас заинтересовать

3120. Множества и операции над ними 133 KB
Множества и операции над ними Написать программу, в которой для конечных упорядоченных множеств реализовать все основные операции с помощью алгоритма типа слияния. Допустима организация множеств в виде списка или в виде массива...
3121. Написание программы реализующей параллельную работу нескольких процессов 121.5 KB
Необходимо написать программу, реализующую параллельную работу нескольких процессов. Каждый процесс может состоять из одного или нескольких потоков. Любой из потоков, работающих в составе этих процессов, может быть приостановлен и вновь запущен неко...
3122. Реализация параллельной работы нескольких процессов программным методом 258 KB
При написании программы выяснилось, что имеющиеся в Borland Pascal функции вывода (Write) не подходят, т. к. в том случае, когда несколько процессов выводят информацию на экран может случиться
3123. Платежные карты: Бизнес-энциклопедия 115.64 MB
Платежные карты: Бизнес-энциклопедия Важнейшая социально-политическая задача, которую решает сегодня банковская система России, -повышение доступности финансовых услуг для граждан страны. Банковская активность, связанная с...
3124. Расчет режима резания при точении аналитическим способом 42 KB
Расчет режима резания при точении аналитическим способом Цель работы: изучить методику расчета режима резания аналитическим способом. Ознакомиться и приобрести навыки работы со справочной литературой. Задание: На токарно-винторезном станке 16К20 про...
3125. Расчет режима резания при фрезеровании 43 KB
Расчет режима резания при фрезеровании Цель работы: Изучить методику назначения режима резания по таблицам нормативов. Ознакомиться и приобрести навыки работы с нормативами. Задание: На горизонтально-фрезерном станке 6Р82Г,производиться...
3126. Адвокатура, общественные и частные правоохранительные органы 93 KB
Адвокатура, общественные и частные правоохранительные органы ВВЕДЕНИЕ. Адвокатура - это добровольное профессиональное объединение граждан, осуществляющее в установленном законом порядке защиту на предварительном следствии, дознании, в суде по уголов...
3127. Потенциал предприятия: формирование и оценка 433 KB
Теоретическая часть Сравнительный подход в оценке недвижимости и его методы: компании-аналог а, сделок отраслевых коэффициентов. Понятие ценовых мультипликаторов и их виды Сравнительный подход эффективен в случае существования активного рынка с...
3128. Анализ платежеспособных предприятий и разработка методов финансовой санации 268.5 KB
Введение Финансово-устойчивым является такой хозяйствующий субъект, который за счет собственных средств покрывает средства, вложенные в активы (основные фонды, нематериальные активы, оборотные средства), не допускает неоправданной дебиторской и кред...

Динамика вращательного движения

Основания и фундаменты рассчитывают по 2 предельным состояниям

По несущей способности: N – заданная расчетная нагрузка на основание в наиболее невыгодной комбинации; - несущая способность (предельная нагрузка) основания для данного направления нагрузки N ; - коэффициент условий работы основания (<1); - коэффициент надежности (>1).
По предельным деформациям: - расчетная абсолютная осадка фундамента; - расчетная относительная разность осадок фундаментов; , - предельные величины, соответственно абсолютной и относительной разности осадок фундаментов (СНиП 2.02.01-83*)

Динамика вращательного движения

Предисловие

Обращаю внимание студентов на то, что ЭТОТ материал в школе не рассматривался АБСОЛЮТНО (кроме понятия момента силы).

1. Закон динамики вращательного движения

a. Закон динамики вращательного движения

b. Момент силы

c. Момент пары сил

d. Момент инерции

2. Моменты инерции некоторых тел:

a. Кольцо (тонкостенный цилиндр)

b. Толстостенный цилиндр

c. Сплошной цилиндр

e. Тонкий стержень

3. Теорема Штейнера

4. Момент импульса тела. Изменение момента импульса тела. Импульс момента силы. Закон сохранения момента импульса

5. Работа при вращательном движении

6. Кинетическая энергия вращения

7. Сопоставление величин и законов для поступательного и вращательного движения

1a. Рассмотрим твердое тело, которое может вращаться вокруг неподвижной оси ОО (рис.3.1). Разобьем это твердое тело на отдельные элементарные массы Δm i . Равнодействующую всех сил, приложенных к Δm i , обозначим через . Достаточно рассмотреть случай, когда сила лежит в плоскости, перпендикулярной оси вращения: составляющие сил, параллельные оси, не могут влиять на вращение тела, так как ось закреплена. Тогда уравнение второго закона Ньютона для касательных составляющих силы и ускорения запишется в виде:

. (3.1)

Нормальная составляющая силы обеспечивает центростремительное ускорение и на угловое ускорение не влияет. Из (1.27): ,где – радиус вращения i -той точки. Тогда

. (3.2)

Умножим обе части (3.2) на :

Заметим, что

где α – угол между вектором силы и радиус-вектором точки (рис.3.1), – перпендикуляр, опущенный на линию действия силы из центра вращения (плечо силы). Введём понятие момента силы .

1b. Моментом силы относительно оси называется вектор, направленный по оси вращения и связанный с направлением силы правилом буравчика, модуль которого равен произведению силы на ее плечо: . Плечо силы l относительно оси вращения – это кратчайшее расстояние от линии действия силы до оси вращения. Размерность момента силы:

В векторной форме момент силы относительно точки:

Вектор момента силы перпендикулярен и силе, и радиус-вектору точки её приложения:

Если вектор силы перпендикулярен оси, то вектор момента силы направлен по оси по правилу правого винта, а величина момента силы относительно этой оси (проекция на ось) определяется формулой (3.4):

Момент силы зависит и от величины силы, и от плеча силы. Если сила параллельна оси, то .

1c. Пара сил – это две равные по величине и противоположные по направлению силы, линии действия которых не совпадают (рис.3.2). Плечо пары сил – это расстояние между линиями действия сил. Найдём суммарный момент пары сил и () в проекции на ось, проходящую через точку О:

То есть момент пары сил равен произведению величины силы на плкчо пары:

. (3.6)

Вернёмся к (3.3). С учётом (3.4) и (3.6):

. (3.7)

1d. Определение: скалярная величина , равная произведению массы материальной точки на квадрат ее расстояния до оси, называется моментом инерции материальной точки относительно оси ОО:

Размерность момента инерции

Векторы и совпадают по направлению с осью вращения, связаны с направлением вращения по правилу буравчика, поэтому равенство (3.9) можно переписать в векторной форме:

. (3.10)

Просуммируем (3.10) по всем элементарным массам, на которые разбито тело:

. (3.11)

Здесь учтено, что угловое ускорение всех точек твердого тела одинаково, и его можно вынести за знак суммы. В левой части равенства стоит сумма моментов всех сил (и внешних, и внутренних), приложенных к каждой точке тела. Но по третьему закону Ньютона, силы, с которыми точки тела взаимодействуют друг с другом (внутренние силы), равны по величине и противоположны по направлению и лежат на одной прямой, поэтому их моменты компенсируют друг друга. Таким образом, в левой части (3.11) остается суммарный момент только внешних сил: .

Сумма произведений элементарных масс на квадрат их расстояний от оси вращения называется моментом инерции твердого тела относительно данной оси:

. (3.12)

Таким образом, ; – это и есть основной закон динамики вращательного движения твёрдого тела (аналог второго закона Ньютона ): угловое ускорение тела прямо пропорционально суммарному моменту внешних сил и обратно пропорционально моменту инерции тела :

. (3.13)

Момент инерции I твердого тела является мерой инертных свойств твердого тела при вращательном движении и аналогичен массе тела во втором законе Ньютона. Он существенно зависит не только от массы тела, но и от ее распределения относительно оси вращения (в направлении, перпендикулярном оси).

В случае непрерывного распределения массы сумма в (3.12) сводится к интегралу по всему объему тела:

2a. Момент инерции тонкого кольца относительно оси, проходящей через его центр перпендикулярно плоскости кольца.

,

поскольку для любого элемента кольца его расстояние до оси одинаково и равно радиусу кольца: .

2b. Толстостенный цилиндр (диск) с внутренним радиусом и внешним радиусом .

Вычислим момент инерции однородного диска плотностью ρ , высотой h, внутренним радиусом и внешним радиусом (рис.3.3) относительно оси, проходящей через центр масс перпендикулярно плоскости диска. Разобьем диск на тонкие кольца толщиной и высотой так, что внутренний радиус кольца равен , внешний – . Объем такого кольца , где – площадь основания тонкого кольца. Его масса:

Подставим в (3.14) и проинтегрируем по r ():



Масса диска , тогда окончательно:

. (3.17)

2c. Сплошной цилиндр (диск).

В частном случае сплошного диска или цилиндра радиусом R подставим в (3.17) R 1 =0, R 2 =R и получим:

. (3.18)

Момент инерции шара радиуса R и массой относительно оси, проходящей через его центр (рис.3.4), равен (без доказательства):


2e. Момент инерции тонкого стержня массой и длиной относительно оси, проходящей через его конец перпендикулярно стержню (рис.3.5).

Стержень разобьём на бесконечно малые участки длиной . Масса такого участка . Подставим в (3.14) и проинтегрируем от 0 до :

Если ось проходит через центр стержня перпендикулярно ему, можно рассчитать момент инерции половины стержня по (3.20) и затем удвоить:

. (3.21)

3. Если ось вращения не проходит через центр масс тела (рис.3.6), вычисления по формуле (3.14) могут быть довольно сложными. В этом случае расчет момента инерции облегчается применением теоремы Штейнера : момент инерции тела относительно произвольной оси равен сумме момента инерции I c тела относительно оси, проходящей через центр масс тела параллельно данной оси, и произведения массы тела на квадрат расстояния между осями:

. (3.22)

Посмотрим, как работает теорема Штейнера, если применить её к стержню:

Нетрудно убедиться, что получилось тождество, поскольку в этом случае расстояние между осями равно половине длины стержня .

4. Момент импульса тела. Изменение момента импульса тела. Импульс момента силы. Закон сохранения момента импульса.

Из закона динамики вращательного движения и определения углового ускорения следует:

.

Если , то . Введём момент импульса твёрдого тела как

Соотношение (3.24) – это основной закон динамики твёрдого тела для вращательного движения. Его можно переписать так:

и тогда это будет аналог второго закона Ньютона для поступательного движения в импульсной форме (2.5)

Выражение (3.24) можно проинтегрировать:

и сформулировать закон изменения момента импульса: изменение момента импульса тела равно импульсу суммарного момента внешних сил . Величина называется импульсом момента силы и аналогична импульсу силы в формулировке второго закона Ньютона для поступательного движения (2.2) ; момент импульса является аналогом импульса .

Размерность момента импульса

Момент импульса твёрдого тела относительно его оси вращения – это вектор, направленный по оси вращения по правилу буравчика.

Момент импульса материальной точки относительно точки О (рис.3.6) – это:

где – радиус-вектор материальной точки, – её импульс. Вектор момента импульса направлен по правилу буравчика перпендикулярно плоскости, в которой лежат векторы и : на рис.3.7 – к нам из-за рисунка. Величина момента импульса

Твёрдое тело, вращающееся относительно оси, разобьём на элементарные массы и просуммируем по всему телу моменты импульса каждой массы (то же самое можно записать в виде интеграла; это непринципиально):

.

Поскольку угловая скорость всех точек одинакова и направлена по оси вращения, то можно записать в векторной форме:

Таким образом, доказана эквивалентность определений (3.23) и (3.26).

Если суммарный момент внешних сил равен нулю, то момент импульса системы не изменяется (см.3.25):

. Это закон сохранения момента импульса . Это возможно, когда:

а) система замкнута (или );

б) у внешних сил нет касательных составляющих (вектор силы проходит через ось/центр вращения);

в) внешние силы параллельны закреплённой оси вращения.

Примеры использования/действия закона сохранения момента импульса:

1. гироскоп;

2. скамья Жуковского;

3. фигуристка на льду.

5. Работа при вращательном движении.

Пусть тело повернулось на угол под действием силы и угол между перемещением и силой равен ; – радиус-вектор точки приложения силы (рис.3.8), тогда работа силы равна.

ЛАБОРАТОРНАЯ РАБОТА № 3

ПРОВЕРКА ОСНОВНОГО ЗАКОНА ДИНАМИКИ

ВРАЩАТЕЛЬНОГО ДВИЖЕНИЯ ТВЕРДОГО ТЕЛА

Приборы и принадлежности: установка ""маятник Обербека"", набор грузов с указанной массой, штангенциркуль.

Цель работы: экспериментальная проверка основного закона динамики вращательного движения твердого тела относительно неподвижной оси и вычисление момента инерции системы тел.

Краткая теория

При вращательном движении все точки твердого тела движутся по окружностям, центры которых лежат на одной прямой, называемой осью вращения. Рассмотрим случай, когда ось неподвижна. Основной закон динамики вращательного движения твердого тела гласит, что момент силы М , действующий на тело, равен произведению момента инерции тела I на его угловое ускорение https://pandia.ru/text/78/003/images/image002_147.gif" width="61" height="19">. (3.1)

Из закона следует, что если момент инерции I будет постоянным, то https://pandia.ru/text/78/003/images/image004_96.gif" width="67" height="21 src="> представляет собой прямую линию. Наоборот, если зафиксировать постоянный момент силы М , то и уравнение будет представлять собой гиперболу.

Закономерности, связывающие между собой величины e , М , I , можно выявить на установке, которая называется маятником Обербека (рис. 3.1). Груз, прикрепленный к нити, намотанной на большой или малый шкив, приводит систему во вращение. Меняя шкивы и изменяя массу груза m , изменяют вращающий момент М , а передвигая грузы m 1 вдоль крестовины и фиксируя их в различных положениях, изменяют момент инерции системы I .

Груз m , опускаясь на нити, движется с постоянным ускорением

Из связи линейного и углового ускорений любой точки, лежащей на ободе шкива, следует, что угловое ускорение системы

По второму закону Ньютона m g – Т = m а , откуда сила натяжения нити, приводящая блок во вращение, равна

T = m (g - a ). (3.4)

Система приводится во вращение моментом М = R Т . Следовательно,

или . (3.5)

По формулам (3.3) и (3.5) можно вычислить e и М , экспериментально проверить зависимость e = f (М ), и из (3.1) рассчитать момент инерции I .

Так как момент инерции системы относительно неподвижной оси равен сумме моментов инерции элементов системы относительно той же оси, то полный момент инерции маятника Обербека равен

(3.6)

где I – момент инерции (маятника); I 0 – постоянная часть момента инерции, состоящая из суммы моментов инерции оси, малого и большого шкивов и крестовины; 4m 1l2 - переменная часть момента инерции системы, равная сумме моментов инерции четырех грузов, которые можно перемещать на крестовине.

Определив из (3.1) полный момент инерции I , можно вычислить постоянную составляющую часть момента инерции системы

I 0 = I - 4m 1l 2 . (3.7)

Изменяя момент инерции маятника при постоянном моменте сил, можно экспериментально проверить зависимость e = f (I ).

Описание лабораторной установки

Установка состоит из основания 1, на котором установлена вертикальная стойка (колонка) 4. На вертикальной стойке располагаются верхний 6, средний 3 и нижний 2 кронштейны.

На верхнем кронштейне 6 размещается узел подшипников 7 с малоинерционным шкивом 8. Через последний перекинута капроновая нить 9, которая закрепляется на шкиве 12 одним концом, а ко второму крепится наборный груз 15.

"СТОП"" – в течение времени, когда нажата эта кнопка, система расторможена и можно вращать крестовину;

кнопка ""СТАРТ"" – при нажатии на кнопку обнуляется и сразу же включается секундомер, система растормаживается на время до пересечения наборным грузом 15 луча фотоэлектрического датчика 14.

На задней панели блока электронного расположен выключатель ""Сеть"" (""01"") – при включении выключателя срабатывает электромагнит и затормаживает систему, на секундомере высвечиваются нули.

ПРЕДОСТЕРЕЖЕНИЕ!!! Запрещается быстро раскручивать крестовину 11, так как любой из грузов 10 (m 1) при этом может сорваться, летящий же с большой скоростью стальной груз представляет опасность. Чтобы не сломать электромагнитный тормоз, вращать крестовину 11 с грузами 10 (m 1) разрешается только при нажатой кнопке ""СТОП"" или при выключенном питании установки (выключатель ""Сеть"" (""01"") на задней панели блока электронного).

Упражнение №1 . Определение зависимости e (M )

углового ускорения e от вращающего момента М

при постоянном моменте инерции I =const

1. На концах крестовины 11 на одинаковом расстоянии от ее оси вращения установите и закрепите грузы 10 (m 1).

2. Замерьте штангенциркулем диаметры шкивов d 1 и d 2 и запишите их в табл. 3.1.

3. По шкале на вертикальной стойке 4 определите высоту h опускания наборного груза 15 (m ), равную расстоянию между риской фотоэлектрического датчика 14 и верхним краем визира 5 (риска фотоэлектрического датчика находится на одной высоте с верхним краем нижнего кронштейна 2, окрашенным в красный свет).

4. Установите минимальную массу наборного груза 15 (m ) и запишите ее в табл. 3.1 (массы грузов указаны на них).

5. Включите выключатель ""Сеть"" (""01""), расположенный на задней панели блока электронного. При этом должны загореться табло секундомера и включиться электромагнит. Вращать крестовину сейчас нельзя! Если один из элементов не сработал, сообщите об этом лаборанту.

6. Нажмите и удерживайте кнопку ""СТОП"", растормозив систему. При нажатой кнопке ""СТОП"" укрепите нить в прорезях на малом шкиве и затем, вращая крестовину, намотайте нить на малый шкив, поднимая при этом наборный груз 15. Когда нижний обрез груза будет находиться строго против верхнего края визира 5, отожмите кнопку ""СТОП"" – система затормозится.

7. Нажмите на кнопку ""СТАРТ"". Система растормозится, груз начнет ускоренно опускаться, а секундомер отсчитывать время. Когда груз пересечет световой луч фотодатчика, секундомер автоматически выключится и система затормозится. Запишите в табл. 3.1 измеренное время t 1.

Таблица 3.1

d 1=

d 2=

t ср

8. Замеры времени выполните по 3 раза для трех значений массы наборного груза 15 (m ). Повторите измерения на большом шкиве. Результаты замеров занесите в табл. 3.1. Выключите установку из сети.

9. Для любой массы m рассчитайте tср и выполните оценочный расчет момента инерции I , используя формулы (3.2), (3.3), (3.5), (3.1). Заполните полностью соответствующую строку в табл. 3.2 и подойдите к преподавателю на проверку.

Таблица 3.2

t ср ,

10. При оформлении отчета для всех значений tср рассчитайте a , e , M , I . Результаты измерений и расчетов занесите в табл. 3.2.

11. Рассчитайте среднее значение момента инерции Iср , вычислите методом Стьюдента абсолютную погрешность результата измерений (при расчетах принять t a ,n =2,57 для n= 6 и a = 0,95).

12. Постройте график зависимости e = f (М ), взяв значения e и M из табл. 3.2. Напишите выводы.

Упражнение №2 . Определение зависимости e (I )

углового ускорения e от момента инерции I

при постоянном вращающем моменте M =const

1. Укрепите грузы 10 (m 1) на концах крестовины на равном расстоянии от ее оси вращения. Замерьте расстояние l от центра масс груза m 1 до оси вращения крестовины и запишите в табл. 3.3. Запишите в табл. 3.4 массу груза m 1, выбитую на нем.

2. Выберите и запишите в табл. 3.4 радиус R шкива 12 и массу m наборного груза 15 (нежелательно брать одновременно большой шкив и большую массу). В упр. 2 выбранные R и m не изменяйте.

3. Для выбранных R и m три раза определите время t 1 опускания наборного груза 15 (m ). Результаты занесите в табл. 3.3.

Таблица 3.3

t ср

4. Выключите установку из сети. Сдвиньте все грузы 10 (m 1) на 1-2 см к оси вращения крестовины. Замерьте новое расстояние l и занесите его в табл. 3.3. Включите установку в сеть и измерьте трижды время t 2 опускания наборного груза 15 (m ). Замеры выполните для 6 различных значений l . Результаты занесите в табл. 3.3. Отключите установку от сети.

5. По формуле (3.7) выполните оценочный расчет I 0, взяв значение I и l из упр. 1.

6. Для любого l из табл. 3.3 рассчитайте tср и по формулам (3.2), (3.3) и (3.6) рассчитайте a , e и I . Заполните полностью соответствующую строку в табл. 3.4 и подойдите к преподавателю на проверку.

7. При оформлении отчета по формуле (3.7) вычислите среднее значение I 0, используя Iср и l из упр. 1. Используя полученное значение I 0, по формуле (3.6) вычислите I i для всех l из табл. 3.3. Результаты занесите в три последних столбца табл. 3.4.

Таблица 3.4

4m 1l2 ,

8. Используя формулы (3.2) и (3.3), рассчитайте Лабораторные работы" href="/text/category/laboratornie_raboti/" rel="bookmark">лабораторной работы соблюдайте общие требования техники безопасности в лаборатории механики в соответствии с инструкцией. Подключение установки к блоку электронному производится строго в соответствии с паспортом установки.

Контрольные вопросы

1. Дайте определение вращательного движения твердого тела относительно неподвижной оси.

2. Какая физическая величина является мерой инертности при поступательном движении? При вращательном движении? В каких единицах они измеряются?

3. Чему равен момент инерции материальной точки? Твердого тела?

4. При каких условиях момент инерции твердого тела минимален?

5. Чему равен момент инерции тела относительно произвольной оси вращения?

6. Как будет изменяться угловое ускорение системы, если при неизменяемых радиусе шкива R и массе груза m грузы на концах крестовины удалять от оси вращения?

7. Как изменится угловое ускорение системы, если при неизменном грузе m и неизменном положении грузов на крестовине увеличить радиус шкива?

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Курс физики: Учеб. пособ. для втузов. – М.: Высш. шк., 1998, с. 34-38.

2. , Курс физики: Учеб. пособ. для втузов. – М.: Высш. шк., 2000, с. 47-58.



Понравилась статья? Поделитесь с друзьями!