Структура и свойства воды. Вода: ее состав, строение молекулы, физические свойства

Выясним сначала структуру термодинамического предшественника воды - льда. Тем самым мы повторим путь всех исследователей воды. Каждый из них, пытаясь понять структуру воды, рано или поздно приходил к необходимости разобраться в структуре льда.

В 1910 г. американский физик П. Бриджмен и немецкий исследователь Г. Тамман обнаружили, что лед может образовывать несколько полиморфных кристаллических модификации. Сейчас известно 9 модификаций льда, у них различные кристаллические решетки, различные плотности и температуры плавления. Всем нам хорошо знакомым лед называется "льдом I", другие модификации льда существуют при давлениях, превышающих 2000 ат. Например, лед Ш, образующийся при давлении 2115 ат, тяжелее воды, а лед VI (при давлении около 20 000 ат) плавится при температуре, превышающей 80 °C. В обычных условиях мы можем наблюдать лишь лед I, он и изучен наиболее полно. Ниже речь идет именно о нем.

Каждая молекула воды может образовывать до четырех водородных связей, если вблизи окажется достаточное количество подходящих соседей, причем благодаря свойству кооперативности каждая последующая связь требует для своего образования меньше энергии, поэтому она будет образовываться с большей вероятностью, чем предыдущая.

Во льду все молекулы связаны между собой водородными связями. При этом четыре связи каждой молекулы локально организованы в тетраэдрическую структуру, т.е. четыре близлежащие молекулы располагаются в вершинах трехгранной пирамиды, в центре которой находится пятая молекула воды.

Таким образом, тетраэдрическая форма отдельной молекулы повторяется в кристаллической структуре льда. Возможно, определенную роль здесь играет то, что угол H-O-H молекулы H 2 O почти равен идеальному тетраэдрическому углу 109°, а молекулы воды, как мы знаем, объединяются с помощью водородных связен, которые они образуют именно в направлении O-H. Эти трехгранные пирамиды могут также объединятся в некую сверхструктуру. Во льду такая сложная трехмерная сверхструктура из тетраэдров простирается на весь объем.

Начиная с любого атома кислорода, переходя от соседа к соседу по водородным связям, можно строить бесконечное число различных замкнутых фигур. Все такие фигуры представляют собой некие "гофрированные" многоугольники причем число сторон всегда кратно шести, а самый короткий путь от молекулы "к себе самой" проходит по сторонам обычного шестиугольника. Поэтому структуру льда называют шестиугольной, или гексагональной.

Если забыть о тетраэдрах, то можно увидеть, что молекулярная структура льда состоит из зигзагообразных слоев, причем каждая молекула H 2 O связана с тремя молекулами своего слоя и одной молекулой соседнего слоя. Количество соседей одной молекулы (в данном случае равное четырем) называется координационным числом и легко измеряется рентгеноструктурным методом. Как видим, ажурная сеть водородных связей превращает молекулярную структуру льда в рыхлую конструкцию с большим количеством пустот.

Если очень сдавить лед I, то он перейдет в другие кристаллические формы, и хотя структура его несколько изменится, но основные элементы тетраэдрической конструкции сохранятся. При умеренных давлениях (лед II, VI и IX) часть водородных связей выходит из тетраэдрической структуры (благодаря чему лед становится несколько плотнее), но любые четыре ближайшие атома кислорода по-прежнему объединяются водородными связями. Даже при очень больших давлениях (лед VIII и VII) локально сохраняется тетраэдрическая структура.

Впервые молекулярную структуру льда установил в начале нашего века английский ученый Уильям Брэгг, разработавший рентгеноструктурный метод анализа кристаллов. Он обнаружил, что каждая молекула H 2 O во льду окружена четырьмя другими молекулами. Но он смог исследовать именно молекулярную структуру льда, установить же, как в этой структуре располагаются атомы кислорода и водорода, ни Брэгг да и никто другой в то время не могли. Брэгг пользовался рентгеноструктурным методом, который в то время позволял наблюдать лишь сравнительно крупные атомы, такие, как кислород или кремний. Небольшие атомы вроде водорода не видны при рентгеноструктурном анализе. Лишь в конце 40-х годов XX века, когда появились новые, более чувствительные спектроскопические методы, удалось установить расположение атомов водорода в структуре льда.

Однако еще в 1932 г. ученик Брэгга профессор Бернал смог чисто умозрительно понять, как должны располагаться в молекулярной структуре льда атомы кислорода и водорода.

Бернал шел от конфигурации молекулы H 2 O. Он понял, что именно молекула воды определяет всю структуру льда. Рассуждал Бернал следующим образом: каждый атом водорода может "зацепиться" только за один "чужой" атомом кислорода, связывая тем самым два атома кислорода ("свой" и "чужой" атомы) одной водородной связью, следовательно, каждая молекула H 2 O может соединиться с помощью водородных связей с четырьмя соседними молекулами, две из которых образуют свои атомы водорода и две - атомы соседних молекул, а так как молекула H 2 O "однобока", то такая конфигурация должна быстро заполнить пространство, образуя тетраэдрическую структуру.

Эти гипотезы были позднее подтверждены спектроскопическими исследованиями и сейчас известны как "правила Бернала-Фаулера". Действительно, оказалось, что каждый атом кислорода связан с четырьмя атомами водорода, находящимися на линии O-O. С двумя "своими" атомами он связан ковалентной связью, а с двумя "чужими" - с помощью водородной связи. Вообще говоря, определения "свой", "чужой" не совсем точно описывают молекулярную жизнь льда. Как было установлено, ни один водород не фиксирован на своем месте. Каждый водород точно знает только свою связь O-O, но на этой линии у него есть два возможных положения - около "своего" и около "чужого" атомов кислорода. В каждом из этих положений он проводит в среднем половину своего жизненного времени. Если обозначить, как это принято в химии, черточкой валентную связь, а точками - водородную, то можно сказать, что во льду непрерывно идет реакция:

O-H....O ↔ O....H-O

Как видим, молекулярная жизнь льда довольно динамична. Но это касается только атомов водорода атомы кислорода прочно сидят на своих местах и расстояние в каждой паре O-O сохраняется неизменным и равным 2,76 A.

Очевидно, что непоседливость атомов водорода безусловно должна влиять на электрические и диэлектрические свойства льда. Лед обладает довольно высокой электропроводностью. Возможно, эта особенность льда объясняется тем, что в присутствии внешнего электрического поля перескоки атомов водорода становятся более направленными.

Структура реального льда не является абсолютно идеальной, в ней, как и в любом другом кристалле, встречают дефекты. Датский исследователь И. Бьеррум установил, что дефекты льда могут быть двух видов: 1) на линии O-O нет ни одного атома водорода (бьеррумовский Л-дефект); 2) на линии O-O находится два атома водорода (Д-дефект). Разумеется энергия дефекта больше энергии бездефектной связи, поэтому дефекты не сидят на одной и той же связи все время, а довольно интенсивно мигрируют по всей структуре льда. При этом они ведут себя так, как будто они являются некими частицами разных знаков. Два одинаковых дефекта (например, Д-дефекты) будут отталкиваться - ведь один дефект приводит к увеличению локальной энергии, а уж два дефекта иметь рядом тем более энергетически невыгодно. Интуитивно также ясно, что два различных дефекта будут притягиваться и при встрече аннигилировать - уничтожать друг друга.

Во льду концентрация дефектов невелика - всего один на 2,5 миллиона молекул. Так что бьеррумовские дефекты для льда - это тонкости, почти незаметные для структуры льда. Иное дело в воде, где концентрация таких дефектов возрастает в 25 тысяч раз и составляет величину один дефект на 100 молекул. Величина эта настолько значительна, что становится ясно - в воде бьеррумовские дефекты играют существенную роль. Была предпринята даже попытка описывать воду как лед с большой концентрацией дефектов, которая, в общем-то, оказалась не очень состоятельной, но тем не менее построенная таким образом теория смогла объяснить некоторые явления.

Теперь перейдем к воде в жидком состоянии. Современное понимание молекулярной структуры воды ведет свою историю со статьи английских ученых Бернала и Фаулера, которая появилась в 1933 г. в августовском номере только что созданного международного журнала по химической физике Journal of Chemical Physics. Эта статья остается одной из самых замечательных вех на тернистом пути познания природы.

В то время существовало довольно простое - скорее филологическое, чем естественнонаучное - объяснение аномальных свойств воды. Считалось, что вода, ассоциированная жидкость, т.е. ее молекулы объединяются в большие дегидрольные супермолекулы (H 2 O) 2 , (H 2 O) 3 , . . . (H 2 O) n , благодаря которым вода и обладает аномальными свойствами. Было совершенно не ясно, почему и как именно молекулы H 2 O объединяются, как распределяются различные ассоциаты по объему воды. И самое главное, такой подход, вообще говоря, не объяснял природу особых свойств воды.

Пытаясь найти собственное понимание молекулярной структуры воды, Бернал начал с анализа экспериментальных фактов. Нельзя сказать, чтобы в то время, в 30-е годы XX века, этих фактов было достаточно, но все-таки они были. Благодаря блестящим исследованиям создателя рентгеноструктурного анализа кристаллов Уильяма Брэгга прояснилась молекулярная структура льда. Кроме данных о структуре льда, в распоряжении Бернала были рентгенограммы жидкой воды, а также полученные с помощью таких рентгенограмм так называемые функции радиального распределения, т.е. относительное содержание молекул, находящихся на тех или иных расстояниях друг от друга. Помимо чисто экспериментальных фактов, Бернал имел возможность, разумеется, пользоваться идеями, гипотезами и предположениями, которых к началу 30-х годов накопилось уже довольно много. Однако обилие этих идей могло скорее помешать, чем помочь разработке теории воды. За исключением, пожалуй, одной старой идеи, восходящей еще к знаменитому Вильгельму Рентгену, который высказал предположение, что молекулярная структура льда каким-то образом должна повторяться и в структуре жидкой воды. Одно время эта идея пользовалась большой популярностью среди ученых, но все попытки применить ее к описанию природы аномальных свойств воды оканчивались неудачей. Даже самое простое свойство воды - то, что она тяжелее льда, - не удавалось объяснить с помощью этой идеи. Более того, казалось, что эта особенность воды просто противоречит ей. В самом деле, если допустить существование в воде какой-то сильно искаженной структуры льда, то вода должна быть легче. Любое нарушение четкой структуры, любой беспорядок только увеличивает объем, занимаемый структурой. Следовательно, такая вода должна быть легче льда.

В общем, несмотря на красоту и заманчивость рентгеновской идеи, воспользоваться ею до 30-х годов никто не смог. Она так и оставалась в "банке идей" скорее как эстетическая, чем логическая категория, как общее утверждение, что "вода - это жидкость, еще сохранившая воспоминание о кристаллической структуре, из которой она произошла" (формулировка французского физика Клемена Дюваля).

Анализируя природу воды, Бернал много времени потратил на изучение льда. Он был уже близок к той теории льда, о которой мы говорили выше. Но сама по себе теория льда, не способная перейти в теорию воды, особой ценности не представляет. А вот с водой все по-прежнему оставалось неясно.

И тут вмешался случай, которому было угодно, чтобы дождливой осенью 1932 г. профессор Бернал поехал с группой английских ученых в Советский Союз. Случаю было также угодно, чтобы в день отлета английской делегации на Москву опустился густой осенний туман. Аэрофлот в то время не баловал своих клиентов роскошными залами, поэтому Берналу не оставалось ничего другого, как бродить в тумане вокруг аэродрома. Совершенно случайно его спутником в этих прогулках оказался очень любознательный человек, профессор Р. Фаулер. "Больше всего прочего, - вспоминал позднее Бернал, - нас занимал туман, нас окружавший, и естественно, что о нем и пошла речь. Туман состоит из воды... и профессор Фаулер, большой знаток термодинамики, но не очень сведующий в структурных вопросах, попросил меня объяснить структуру воды, как я эти проблему понимаю. И тут я задумался над ней заново - в свете наших московских дискуссий". Прогулка двух профессоров продолжалась более двенадцати часов и оказалась очень плодотворной, им удалось найти простое и красивое решение проблемы воды. Через несколько месяцев совместная работа Бернала и Фаулера появилась в печати и стала основой современного понимания молекулярной природы воды.

Рассказывая Фаулеру о воде, профессор Бернал упомянул и старую идею Рентгена, в которую уже мало кто верил. Совершенно неожиданно они нашли чрезвычайно важный аргумент в пользу этой идеи. Он был получен методом "от простого". "А что было бы с водой, - спросил Фаулер, если бы оно не обладала молекулярной структурой? Например, какова была бы плотность такой воды?" В такой воде каждая молекула H 2 O должна быть окружена не менее чем шестью соседями, как при любой плотной упаковке. Можно рассчитать, что плотность такой воды была бы не 1 г/см 3 , а 1,8 г/см 3 . Так как ни при каких температурах плотность реальной воды и близко не приближается к этой цифре, то отсюда следует, что в жидкой воде при любой температуре существует какая-то молекулярная структура, скорее всего похожая на молекулярную структуру льда. Именно эта структура удерживает молекулы воды от плотной упаковки.

Позднее это предположение было подтверждено рентгеноструктурным анализом, с помощью которого удалось установить, что так называемое "координационное число" воды (т.е. среднее число соседей любой молекулы) равно 4,4. Так как координационное число льда равно 4, то число соседей "среднестатистической" молекулы H 2 O при переходе из твердого в жидкое состояние возрастает лишь на 0,4 соседа. Следовательно, из каждых 10 молекул воды 8 по-прежнему окружены четырьмя соседями, а около двух других появятся две новые молекулы.

Да но как теперь быть с аномальным поведением льда при плавлении? Ведь выше мы как будто пришли к выводу, что искажение структуры должно приводить к снижению плотности любой субстанции. Обсуждая это противоречие, Бернал и Фаулер пришли в конце концов к выводу, что при плавлении льда происходит не искажение, а перестройка структуры, при этом дальний порядок льда разрушается, но внутри небольших областей молекулярная кристаллоподобная конструкция сохраняется. В то время уже было известно, что подобная перестройка может привести к увеличению плотности. Бернал и Фаулер в своей статье сослались на данные рентгеноструктурного анализа тридимита и кварца, которые очень близки к соответствующим данным для льда и воды. Тридимит и кварц - это два различных кристаллических состояния кремнезема SiO 2 . Химический состав кварца и тридимита одинаков, молекулярные структуры также одинаковы - как в кварце, так и в тридимите молекулы образуют тетраэдрические конструкции. Но плотность кварца приблизительно на 10% больше плотности тридимнта. Почему же одна и та же структура, одни и те же молекулы, а плотность разная? Ответ на этот вопрос Берналу и Фаулеру был известен. Так как и кислород и кремний являются достаточно крупными атомами, то они хорошо видны на рентгенограммах, поэтому все тонкости структур этих кристаллов в 30-е годы уже были выяснены. Эти тонкости состоят в том, что расстояние между ближайшими молекулами в этих кристаллах одинаковы, а вот расстояние до следующих (не ближайших) соседей у них различно, т.е. первые координационные сферы у них одинаковы, а размер второй сферы у кварца 4,2 A, а у тридимита - 4,5 A. Это и объясняет различия плотности кварца и тридимита.

Если же вспомнить, что, во-первых, лед также имеет тетраэдрическую структуру и, во-вторых, что плотность льда и воды отличаются на 9%, то легко понять уверенность Бернала и Фаулера в том, что структура льда подобна структуре тридимита, а структура воды подобна структуре кварца. Далеко не все детали их теории выдержали испытание временем, позднее появились более изощренные теории, но их статья в Journal of Chemical Physics остается одной из наиболее важных вех на теоретическом пути познания воды.

Как это часто бывает, теория Бернала-Фаулера оказалась верной лишь в своей методологической части, а многие ее детали не подтвердились дальнейшими экспериментами. В частности, никаких кварцеподобных структур обнаружить в жидкой воде не удалось. А вот представление о воде как о жидкости с сильно развитым ажурным каркасом находило все больше и больше подтверждений.

Бесспорным достижением XX века явилось ясное понимание того, что структура льда как-то сохраняется и в воде, или, пользуясь формулировкой Клемена Дюваля, - вода помнит свое происхождение. Но почему она помнит, а другие жидкости лишены этой способности? Ведь лед (если забыть, что он существует не в "своем" температурном диапазоне), в общем-то, довольно обычный кристалл. Наличие у него особой молекулярной структуры не так уж и странно. Все кристаллы образуют какие-нибудь (подчас удивительные) структуры. Но при плавлении они порождают вполне тривиальные, обычные жидкости. Лед тоже плавится и тоже порождает жидкость, но она необычна. Почему? Чтобы ответить на этот вопрос, вспомним, что молекулы большинства веществ удерживаются в узлах своих кристаллических структур довольно слабыми вандерваальсовыми или электрическими силами. Молекулы же H 2 O удерживаются в гексагональной структуре льда водородными связями, отличие которых от вандерваальсова и электростатического взаимодействий весьма существенно. Водородные связи значительно сильнее и, самое главное, их действие строго направлено в пространстве. Последнее свойство приводит к тому, что водородная связь при плавлении льда разрушается только "сразу", она не может постепенно "ухудшаться", прежде чем окончательно разорваться . Это очень важное отличие льда от других кристаллов. Ведь при нагревании кристалла в первую очередь усиливается тепловое движение отдельных молекул которые постепенно все дальше и дальше отклоняются от всего узла идеальной кристаллической структуры. И вот здесь проявляется эффект направленности водородных связей. Предположим, что все молекулы кристалла сидят в узлах идеальной структуры. И вдруг одна молекула выскакивает из своего узла и удаляется от него на некоторое расстояние. В обычном веществе эта молекула все равно сохраняет связь со своими соседями по кристаллической решетке. Конечно, сцепление между ними ухудшается, энергия взаимодействия увеличивается, но связь остается. Если же подобное событие происходит во льду, то непоседливая молекула обязательно разорвет все свои водородные связи, она не может "чуть-чуть" отклониться от узла кристаллической решетки, сохранив при этом все свои водородные связи. Ведь водородные связи ее соседей протянуты в совершенно определенную точку пространства, и если молекула уходит из этой точки, то тем самым она теряет возможность "замкнуть" свои два протона и два неподеленных электрона. На первый взгляд, может показаться, что как раз вода должна быстро забыть свое кристаллическое прошлое. Получается, что молекулы H 2 O "порывают" со своим прошлым сразу и бесповоротно. Строго говоря, так и должно быть, если бы сразу большое количество молекул во льду могло разорвать все свои водородные связи. Но чтобы такое событие произошло в молекулярной жизни льда, нужно сконцентрировать в одном месте сразу довольно большую (по молекулярным масштабам) энергию.

Отдельная молекула воды не может постепенно накапливать энергию, чтобы по достижении определенного энергетического уровня оторваться от соседей. Воспользовавшись известным физическим лексиконом, можно сказать, что каждая молекула льда сидит в глубокой энергетической яме с совершенно отвесными краями. Выскочить из такой ямы очень трудно, а если выскочившая молекула "оступится", она сразу окажется внизу, в структуре идеального льда. Поэтому, во-первых, вероятность разрыва водородных связей мала, а во-вторых освободив из кристаллической структуры всего одну молекулу H 2 O, лед отдаст сразу довольно большую энергетическую дань кинетическим процессам плавления и тем самым может сохранять значительное число молекул в кристаллической структуре.

Энергетические ямы, в которых находятся другие вещества, имеют иной вид. Между состояниями, соответствующими кристаллу и жидкости, находится целый ряд промежуточных состояний. Поэтому молекулы обычных веществ могут постепенно накапливать энергию, переходя из одной промежуточной ямы в другую. Если же какая-либо молекула потеряет часть энергии, то она окажется не в самом низу ямы, а может задержаться в каком-либо промежуточном состоянии. В результате этого довольно быстро в процесс плавления вовлекаются все молекулы кристалла. Средняя энергия молекул постепенно растет, при этом индивидуальные колебания энергии молекул не слишком велики. Если изобразить плавление обычного кристалла в некоем фазово-энергетическом пространстве, то можно будет увидеть, что при плавлении все молекулы держатся довольно компактной группой. В самом деле, каждая точка такого пространства обозначает энергетический уровень молекул. В начале плавления все точки сольются в одну сплошную точку, соответствующую кристаллическому состоянию. В процессе плавления обычного вещества эта точка поползет вверх, постепенно размываясь и распадаясь на отдельные точки. Потом центральная точка распадется на более мелкие точки, которые, в свою очередь, будут также распадаться, и завершится этот процесс образованием большого, относительно плотного роя точек с центром, соответствующим жидкому состоянию. Картина плавления льда в такой интерпретации будет выглядеть совершенно иначе. Своеобразие энергетического профиля молекул льда позволяет достаточно большому числу молекул H 2 O во время плавления сохранять кристаллическую гексагональную структуру из водородных связей, в каждый момент времени в процессе плавления фактически участвует лишь небольшое количество молекул воды. В начале плавления все молекулы "сидят" на энергетическом уровне, соответствующем состоянию льда. По мере нагревания льда отдельные молекулы вырываются из кристаллической структуры и сразу оказываются на энергетическом уровне молекул без водородных связей. Между этими двумя уровнями идет непрерывный обмен, часть "жидких" молекул встраивается в гексагональную структуру, из которой за это же время какая-то часть молекул освобождается. По мере нагревания льда число уходящих из ледяной структуры молекул растет, а число возвращающихся падает. Но даже после полного завершения плавления достаточно большая часть водородных связей, существовавших во льду, сохраняется и в воде.

Описанная выше картина плавления льда - это идеализация, соответствующая так называемой двухструктурной модели воды, т.е. модели, в которой допускаются только два состояния молекул H 2 O - либо совершенно свободные мономеры, либо полностью включенные в гексагональную структуру. В этой связи может возникнуть вопрос: а допустима ли такая смесь мономеров и гексагональной решетки? Вспомним: структура льда рыхлая, в ней много пустот, атомы расположены довольно просторно. Каждая полость окружена шестью молекулами H 2 O, а каждая молекула - шестью полостями, которые образуют сплошные микроскопические каналы. Автор одной из первых физических теорий воды советский ученый О. Самойлов вычислил размер полостей и установил, что в них вполне может разместиться одна молекула воды, не задевая и не разрушая основного каркаса водородных связей. Самойлов высказал еще в 40-х годах XX века предположение, что в процессе плавления льда часть водородных связей разрывается, появляются свободные мономеры H 2 O, которые и заполняют частично полости водородного каркаса.

В 1952 г. американским ученым Хеггсу, Хастеду и Буханану удалось по данным зависимости диэлектрических свойств воды от температуры установить, что при 25 °C в жидкой воде 67% всех молекул H 2 O сохраняют все четыре водородные связи, 23,2% по три водородные связи, 7,6% - по две водородные связи и лишь 0,2% - полностью свободных молекул. Несомненно, реальная структура воды сложнее той, которую предполагают двухструктурные модели, однако благодаря своей простоте они довольно наглядны и в качестве "нулевого" приближения подходят.

Были предложены и другие теории молекулярного состояния воды. Например, английский физик Д.Ж. Попл предполагал, что при плавлении льда водородные связи вообще не рвутся, а как-то "изгибаются". Профессор Бернал, развивая его идею, построил новую теорию воды, согласно которой молекулы H 2 O образуют небольшие замкнутые кольца из четырех, пяти и более молекул. Но подавляющее большинство этих колец, считал Бернал, состоит только из пяти молекул, так как угол H-O-H в молекуле воды близок к 108° - углу правильного пятиугольника.

Л. Полинг в 1952 г. высказал предположение, что структура воды подобна структуре клатратных гидратов типа Cl 2 10H 2 O. Эйринг выдвинул теорию значащих структур, которая предполагает, что в воде существует две кристаллоподобные структуры: лед I и лед III. Водородные связи в структуре льда III несколько сжаты и слегка изогнуты, поэтому лед этот на 20% плотнее льда I.

Г. Намети и X. Шерага предположили, что каждая молекула воды может находиться в одном из пяти допустимых энергетических состояний, определяемых тем, сколько водородных связей она образует (0, 1, 2, 3 или 4). Предполагается, что молекулы собираются в льдоподобные "рои". Проделав обычный для статистической механики анализ, Намети и Шерага нашли количество молекул воды в отдельных роях, образующих 4, 3 и 2 водородные связи. Полученный таким образом молярный объем системы имеет минимум при 4 °C, другие параметры также неплохо соответствуют экспериментальным результатам. Однако теория Намет и Шерага, как и двухструктурная модель, противоречит целому ряду спектроскопических данных. Это общий недостаток всех теории, предполагающих существование четко различающихся структур в воде. В реальной воде, по-видимому существует широкий и непрерывный спектр различных молекулярных структур.

Все теории (здесь мы упомянули лишь некоторые) более или менее согласуются с наблюдаемыми экспериментальными данными, но для каждой из них рано или поздно обнаруживались факты, которые они не могли объяснить. Это, разумеется, не означает, что теории неверны. Каждая из них представляла определенную степень приближения к истинной реальной картине физического состояния воды и работала на будущую окончательную теорию.

С появлением компьютеров и возможностей моделировать на них самые разные процессы удалось резко сократить число достоверных теорий. С помощью таких экспериментов удалось точно определить, какая доля молекул воды сохраняет все четыре водородные связи, какая - три, две, одну и сколько в воде совершенно свободных молекул-мономеров. На рисунке показана полученная с помощью машинного эксперимента гистограмма распределения водородных связей в воде при 10 °C.

Как видим, в воде существует довольно значительная часть всех видов молекул - от полностью свободных до полночью связанных. Гистограммы для других температур похожи но в случае более высоких температур максимум гистограммы (который в случае 10 °C приходится на значение 2,3 водородные связи на молекулу) смещается в область меньших значений числа водородных связей.

Оказалось, что в воде с равным успехом образуются как пяти-, так и шестиугольники, без какого-либо предпочтения одних другим. Это, кстати, означает, что водородные связи могут растягиваться и искривляться. Полученный таким образом результат перечеркнул все модели "айсбергов", которые постулировали, что вода - это море полностью свободных молекул, в котором плавают более или менее крупные фрагменты ледяных структур. Хотя кластеры с 1, 2, 3 ... числом водородных связей и присутствуют, но доля их мала. Так как ледяные структуры образуют только шестиугольники, то такой поход, разумеется, совершенно исключает возможность появления в воде пятиугольных структур.

Обобщая результаты многочисленных компьютерных экспериментов, можно сказать, что топологию молекулярной структуры воды нельзя трактовать в виде какой-либо гексагональной структуры льда со случайно разорванными водородными связями. Более того, эта структура представляет собой единое целое в любом объеме воды. Машинные эксперименты показали, что сеть водородных связей находится выше "порога критической перколяции". Это означает, что в любом объеме воды всегда найдется по крайней мере одна сплошная цепочка из водородных связей, пронизывающая весь объем воды.

Как же теперь, в свете результатов компьютерных экспериментов, можно представить физическую природу воды? На молекулярном уровне вода, по-видимому, представляет собой случайным образом организованную трехмерную сеть водородных связей. Локально эта сеть стремится к тетраэдрической конфигурации. Это означает, что ближайшие соседи среднестатистической молекулы воды в основном располагаются в вершинах четырехгранной пирамиды, окружающей молекулу воды. Сеть содержит значительное число сильно напряженных водородных связей, причем именно эти связи играют фундаментальную роль в возникновении особых аномальных свойств воды. Любая молекула воды, связи которой достаточно напряжены, может быстро изменить все свое ближайшее окружение, переключив свои напряженные связи на новых соседей. Все это приводит к тому, что общая топология всей сети водородных связей воды чрезвычайно изменчива и разнообразна. В процессе плавления льда четкая, но рыхлая тетраэдрическая структура заменяется менее определенной, но более компактной сетью водородных связей. Увеличение плотности происходит за счет образования более компактных локальных структур (например, переход к пятиугольникам из водородных связей) и за счет искривления водородных связей. При нагревании талой воды переход к более компактным структурам доминирует до 4 °C, после которого превалируют процессы, связанные с обычным термическим расширением.

Структура жидкости

Применение термина "структура" для описания льда понятно, лед кристалл и, разумеется, обладает внутренней структурой. Но что такое структура жидкости? "Разве отсутствие структуры - текучесть - не является определяющим качеством жидкости?" - писал Бернал. Оказывается, жидкость обладает структурой, и не одной, а несколькими. Все дело во временном масштабе.

Если с какой-либо фиксированной молекулой воды связать систему координат, то для наблюдателя, находящегося в этой системе, структура воды будет зависеть от характерного масштаба времени, с которым он будет наблюдать молекулярную жизнь воды. У воды существуют два характерных временных параметра. Как и у всякого вещества, будь то жидкость или твердое тело, существует период колебаний отдельной молекулы τ υ . Для воды эта величина составляет значение 10 -13 с. В жидкости, кроме периода колебаний молекул около своего положения равновесия τ υ , имеется еще одно характерное время - время "оседлой жизни" τ D , т.е. среднее время существования данного локального окружения одной молекулы. Для воды τ D ~ 10 -11 с, т.е. прежде чем перескочить на новое место, молекула воды совершает 100 колебаний на одном месте.

Два эти параметра разбивают временную шкалу на три области, каждой из которых соответствует своя структура жидкости. Если наблюдатель будет пользоваться достаточно малым временным масштабом, т.е. будет смотреть в течение времени, много меньшего τ υ , то он увидит хаотически разбросанные молекулы, среди которых трудно усмотреть какой-либо порядок. Тем не менее это беспорядочное расположение молекул называют мгновенной, или М-структурой.

Чтобы понять, почему все-таки этот беспорядок называют структурой, наблюдателю необходимо перейти к более длительному временному масштабу. Но не слишком, точнее, больше чем τ υ , но меньше чем τ D . На этом временном интервале реальные молекулы уже не будут видны, наблюдатель сможет увидеть лишь точки, вокруг которых они совершают свои колебания. Оказывается, что эти точки в воде расположены довольно регулярно и образуют четкую структуру, называемую К-структурой, что означает "колебательно усредненная".

М- и К-структуры воды подобны таким же структурам льда. Чтобы увидеть различия этих структур у воды и льда, нужно понаблюдать за ними несколько дольше, т.е. с характерным временем, много большим чем τ D . Наблюдаемую в этом случае картину называют Д-структурой - диффузионно усредненной. В отличие от льда Д-структура воды полностью размыта из-за частых перескоков молекул воды на большие расстояния (эти перескоки составляют процесс самодиффузии молекул воды). Д-структура образуется диффузионным усреднением К-структур и не может быть описана каким-либо особым расположением точек в пространстве. Сторонний наблюдатель видит, что, по сути дела, никакой Д-структуры жидкости и не существует (заметим, что именно Д-структура как полное статистическое усреднение ансамбля молекул определяет термодинамические свойства воды.).

И тем не менее Д-структура существует, и ее можно увидеть. Наблюдатель, находящийся на некоторой молекуле воды, увидит, что его собственная молекула, перемещается хаотически по всему объему воды, каждый раз оказывается в более или менее упорядоченном окружении. Он увидит, что чаще всего "его" молекулу будут окружать четыре других молекулы H 2 O, иногда соседей окажется пять, иногда шесть, в среднем как мы знаем, их будет 4,4. Таким образом, Д-структурой воды можно считать картину, видимую наблюдателем.

Такой подход к описанию структуры воды чаще всего используется при интерпретации спектроскопических данных, потому что различные спектроскопические методы - рентгеновский, ЯМР, диэлектрическая релаксация, комбинационное рассеяние нейтронов - способны "считывать" молекулярные данные с различным характерным временем разрешения.

Перемещение молекул доказывается обычно броуновским движением. Каплю воды, в которой плавают очень легкие частицы твердого нерастворимого вещества, рассматривают под микроскопом и наблюдают, что частицы беспорядочно перемещаются в массе воды. Каждая такая частица состоит из множества молекул и не облачает самопроизвольным движением. Частицы испытывают удары со стороны движущихся молекул воды, которые заставляют их всё время менять направление движения, а это означает, что сами молекулы воды движутся беспорядочно.

Вода в нашей жизни – самое распространенное и самое обычное вещество. Человеческий организм состоит из воды на 70%, и окружающая нас природная среда тоже содержит 70% воды.

Из школьных учебников мы знаем, что молекула воды состоит из атома кислорода и двух атомов водорода, т.е. одна из самых маленьких и самых легких молекул. При всей обыденности и очевидности для нас тех свойств воды, которые мы постоянно используем, существуют парадоксы жидкой воды, определяющие даже формы жизни на Земле.

    Жидкая вода имеет плотность большую, чем плотность льда. Поэтому при замерзании объем льда увеличивается, лед плавает на поверхности воды.

    Плотность воды максимальна при 4 о С, а не в точке плавления, уменьшается и справа, и слева от этой температуры.

    Вязкость воды уменьшается с повышением давления.

    Температура кипения воды находится вне общей зависимости температуры кипения от молекулярной массы веществ (рис.1.1). Иначе она должна быть не выше 60 о С.

    Теплоемкость воды как минимум вдвое выше, чем у любой другой жидкости.

    Теплота парообразования (~ 2250 кдж/кг) как минимум втрое выше, чем у любой другой жидкости, в 8 раз больше, чем у этанола.

Рассмотрим это последнее свойство воды. Теплота испарения – это энергия, необходимая для разрыва связей между молекулами при переходе их из конденсированной фазы в газообразную. Значит, причина всех парадоксальных свойств – в природе межмолекулярных связей воды, а это, в свою очередь, определяется структурой молекулы воды.

Рис.1.1. Область соотношений молекулярной массы различных соединений и их температуры кипения.

    1. Какая же она – молекула воды?

В 1780г. Лавуазье экспериментально установил, что вода состоит из кислорода и водорода, что два объема водорода взаимодействуют с одним объемом кислорода и что отношение масс водорода и кислорода в воде составляет 2:16. К 1840 году стало ясно, что молекулярная формула воды Н 2 О.

Три ядра в молекуле образуют равнобедренный треугольник с двумя протонами в основании (рис.1.2). Электронная формула молекулы воды [(1S 2)] [(1S 2)(2S 2)(2P 4)].

Рис.1.2. Образование системы связывающих м.о. из 2р-орбиталей атома кислорода и 1 s -орбиталей атома кислорода и 1 s -орбитали атомов водорода.

За счет участия двух электронов водорода 1sв связи с двумя электронами 2р кислорода возникаетspгибридизация и образуются гибридныеsp 3 орбитали с характерным углом между ними в 104,5 о, а также два полюса противоположных зарядов. Длина связи О-Н равна 0,95Å (0,095 нм), расстояние между протонами – 1,54Å (0,154 нм). На рис.1.3 представлена электронная модель молекулы воды.

Рис.1.3. Электронная модель молекулы Н 2 О.

Восемь электронов попарно вращаются по четырем орбиталям, расположенным в трех плоскостях (углы 90 о ), вписывающихся в куб. 1, 2 – неподеленные пары электронов.

Самое главное следствие из этого рассмотрения: несимметричность распределения зарядов превращает молекулу Н 2 О в диполь: на двух положительных концах размещены протоны, на двух отрицательных – неподеленные пары р-электронов кислорода.

Таким образом, молекулу воды можно рассматривать как треугольную пирамиду – тетраэдр, по углам которого размещены четыре заряда – два положительных и два отрицательных.

Эти заряды формируют свое ближайшее окружение, разворачивая соседние молекулы воды строго определенным образом – так, что между двумя атомами кислорода всегда находится только один атом водорода. Проще всего такую межмолекулярную структуру представить и изучать на воде в твердом состоянии. На рис.1.4 представлена структура льда.

Рис. 1.4. Гексагональная структура льда

Структура скреплена с помощью связей О-Н…О. Такое соединение двух атомов кислорода соседних молекул воды при посредничестве одного водородного атома называется водородной связью.

Водородная связь возникает по следующим причинам:

1 – у протона всего один электрон, поэтому электронное отталкивание двух атомов минимально. Протон просто погружается в электронную оболочку соседнего атома, сокращая расстояние между атомами на 20-30% (до 1 Å);

2 – соседний атом должен иметь большую величину электроотрицательности. В условных величинах (по Полингу) электроотрицательность F– 4,0; О – 3,5;N– 3,0;Cl– 3,0;C– 2,5;S– 2,5.

Молекула воды может иметь четыре водородные связи, в двух она выступает как донор электрона, в двух – как акцептор электрона. И связи эти могут возникать как с соседними молекулами воды, так и с другими веществами.

Итак, дипольный момент, угол Н-О-Н и водородная связь О-Н…О определяют уникальные свойства воды и играют главную роль в формировании окружающего нас мира.

Пептиды, или короткие белки, содержатся во многих продуктах питания — мясе, рыбе, некоторых растениях. Когда мы съедаем кусок мяса, белок расщепляется в процессе пищеварения на короткие пептиды; они всасываются в желудок, тонкий кишечник, попадают в кровь, клетку, затем в ДНК и регулируют активность генов.

Перечисленные препараты желательно периодически применять всем людям после 40 лет для профилактики 1-2 раза в год, после 50 лет — 2-3 раза в год. Остальные препараты — по необходимости.

Как принимать пептиды

Поскольку восстановление функциональной способности клеток происходит постепенно и зависит от уровня существующего их поражения, эффект может наступить как через 1-2 недели после начала приема пептидов, так и через 1-2 месяца. Рекомендуется проведение курса в течение 1-3 месяцев. Важно учитывать, что трехмесячный прием натуральных пептидных биорегуляторов имеет пролонгированное действие, т.е. работает в организме еще порядка 2-3-х месяцев. Полученный эффект удерживается в течение полугода, а каждый следующий курс приема обладает эффектом потенцирования, т.е. эффектом усиления уже полученного.

Поскольку каждый пептидный биорегулятор имеет направленность действия на определенный орган и не влияет никак на другие органы и ткани, одновременный прием препаратов разного действия не только не противопоказан, но зачастую рекомендован (до 6-7 препаратов одновременно).
Пептиды совместимы с любыми лекарственными препаратами и биологическими добавками. На фоне приема пептидов дозы одновременно принимаемых лекарственных препаратов целесообразно постепенно снижать, что положительным образом скажется на организме больного.

Короткие регуляторные пептиды не подвергаются трансформации в желудочно-кишечном тракте, поэтому они могут спокойно, легко и просто применяться в капсулированном виде практически всеми желающими.

Пептиды в ЖКТ распадаются до ди- и три-пептидов. Дальнейший распад до аминокислот происходит в кишечнике. Это означает, что пептиды можно принимать даже без капсулы. Это очень важно, когда человек по каким-то причинам не может глотать капсулы. Это же касается и сильно ослабленных людей или детей, когда дозировку необходимо уменьшить.

Пептидные биорегуляторы можно принимать как в профилактических, так и в терапевтических целях.

  • Для профилактики нарушения функций различных органов и систем обычно рекомендуется по 2 капсулы 1 раз в день утром натощак в течение 30 дней, 2 раза в год.
  • В лечебных целях, для коррекции нарушения функций различных органов и систем с целью повышения эффективности комплексного лечения заболеваний рекомендуется по 2 капсулы 2-3 раза в день в течение 30 дней.
  • Пептидные биорегуляторы представлены в капсулированном виде (натуральные пептиды Цитомаксы и синтезированнные пептиды Цитогены) и в жидком виде.

    Эффективность натуральных (ПК) в 2-2,5 раза ниже, чем капсулированных. Поэтому их прием в лечебных целях должен быть более продолжительным (до полугода). Жидкие пептидные комплексы наносятся на внутреннюю поверхность предплечья в проекции хода вен или на запястье и растираются до полного впитывания. Через 7-15 минут происходит связывание пептидов с дендритными клетками, которые осуществляют их дальнейший транспорт до лимфоузлов, где пептиды делают «пересадку» и отправляются с током крови к нужным органам и тканям. Хотя пептиды — это белковые вещества, их молекулярная масса гораздо меньше, чем у белков, поэтому они легко проникают через кожу. Еще больше улучшает проникновение пептидных препаратов их липофилизация, то есть соединение с жировой основой, именно поэтому практически все пептидные комплексы наружного применения имеют в своем составе жирные кислоты.

    Не такдавно появилась первая в мировой практике серия пептидных препаратов для сублингвального применения

    Принципиально новый способ применения и наличие в составе каждого из препаратов целого ряда пептидов обеспечивают им максимально быстрое и эффективное действие. Данный препарат, попадая в подъязычное пространство с густой сетью капилляров, способен проникать прямо в кровоток, минуя всасывание через слизистую пищеварительного тракта и метаболическую первичную дезактивацию печени. С учетом непосредственного попадания в системный кровоток, скорость наступления эффекта в несколько раз превышает скорость при приеме препарата перорально.

    Линия Revilab SL — это комплексные синтезированные препараты, имеющие в своем составе 3-4 компонента очень коротких цепочек (по 2-3 аминокислоты). По концентрации пептидов — это среднее между капсулированными пептидами и ПК в растворе. По быстроте действия — занимает лидирующую позицию, т.к. всасывается и попадает к цели очень быстро.
    Данную линию пептидов имеет смысл вводить в курс на начальном этапе, а затем переходить на натуральные пептиды.

    Еще одна инновационная серия — линия мультикомпонентных пептидных препаратов. Линия включает в себя 9 препаратов, каждый из которых содержит целый ряд коротких пептидов, а также антиоксиданты и строительный материал для клеток. Идеальный вариант для тех, кто не любит принимать много препаратов, а предпочитает получить все в одной капсуле.

    Действие данных биорегуляторов нового поколения направлено на замедление процессов старения, поддержание нормального уровня обменных процессов, профилактику и коррекцию различных состояний; реабилитацию после тяжелых заболеваний, травм и операций.

    Пептиды в косметологии

    Пептиды можно включать не только в лекарства, но и в другие продукты. Например, российскими учеными разработана великолепная клеточная косметика с натуральными и синтезированными пептидами, которая оказывает воздействие на глубокие слои кожи.

    Внешнее старение кожи зависит от многих факторов: образа жизни, стрессов, солнечного света, механических раздражителей, климатических колебаний, увлечений диетами и т.д. С возрастом кожа обезвоживается, теряет эластичность, становится шероховатой, на ней появляется сеть морщин и глубоких бороздок. Всем нам известно, что процесс естественного старения закономерен и необратим. Противостоять ему невозможно, но его можно замедлить благодаря революционным ингредиентам косметологии — низкомолекулярным пептидам.

    Уникальность пептидов состоит в том, что они свободно проходят через роговой слой в дерму до уровня живых клеток и капилляров. Восстановление кожи идет глубоко изнутри и, как результат, — кожа долгое время сохраняет свою свежесть. К пептидной косметике не происходит привыкания — даже если перестать ею пользоваться, кожа просто физиологически будет стареть.

    Косметические гиганты создают все новые и новые «чудодейственные» средства. Мы доверчиво покупаем, используем, но чуда не происходит. Мы слепо верим надписям на банках, не подозревая, что зачастую это всего лишь маркетинговый прием.

    Например, большинство косметических компаний вовсю производят и рекламируют кремы от морщин с коллагеном в качестве основного ингредиента. Между тем, ученые пришли к выводу, что молекулы коллагена настолько велики, что просто не могут проникнуть в кожу. Они оседают на поверхности эпидермиса, а потом смываются водой. То есть, покупая кремы с коллагеном, мы буквально выкидываем деньги в трубу.

    В качестве еще одного популярного активного ингредиента антиэйдж-косметики используется ресвератрол. Он действительно является мощным антиоксидантом и иммуностимулятором, но только в виде микроинъекций. Если втирать его в кожу, чуда не произойдет. Опытным путем было доказано, что на выработку коллагена кремы с ресвератролом практически не влияют.

    НПЦРИЗ в соавторстве с учеными Санкт-Петербургского института биорегуляции и геронтологии разработал уникальную пептидную серию клеточной косметики (на основе натуральных пептидов) и серию (на основе синтезированных пептидов).

    В их основу заложена группа пептидных комплексов с различными точками приложения, оказывающих мощное и видимое омолаживающее действие на кожу. В результате применения происходит стимуляция регенерации клеток кожи, кровообращения и микроциркуляции, а также синтеза коллаген-эластинового каркаса кожи. Все это проявляется в лифтинге, а также улучшении текстуры, цвета и влажности кожи.

    В настоящее время разработано 16 видов кремов, в т.ч. омолаживающие и для проблемной кожи (с пептидами тимуса), для лица против морщин и для тела против растяжек и рубцов (с пептидами костно-хрящевой ткани), против сосудистых звездочек (с пептидами сосудов), антицеллюлитный (с пептидами печени), для век от отеков и темных кругов (с пептидами поджелудочной железы, сосудов, костно-хрящевой ткани и тимуса), против варикоза (с пептидами сосудов и костно-хрящевой ткани) и др. Все кремы, помимо пептидных комплексов, содержат и другие мощные активные ингредиенты. Важно, что кремы не содержат химических компонентов (консервантов и пр.).

    Эффективность действия пептидов доказана в многочисленных экспериментальных и клинических исследованиях. Конечно, чтобы выглядеть прекрасно, одних кремов мало. Нужно омолаживать свой организм и изнутри, применяя время от времени различные комплексы пептидных биорегуляторов и микронутриентов.

    Линейка косметических средств с пептидами, помимо кремов, включает в себя также шампунь, маску и бальзам для волос, декоративную косметику, тоники, сыворотки для кожи лица, шеи и области декольте и пр.

    Следует учитывать также, что на внешний вид существенно влияет потребляемый сахар.
    Из-за процесса под названием «гликация» сахар разрушительно действует на кожу. Избыток сахара увеличивает скорость деградации коллагена, что приводит к морщинам.

    Гликацию относят к основным теориям старения, наряду с окислительной и фотостарением.
    Гликация – взаимодействие сахаров с белками, в первую очередь коллагена, с образованием поперечных сшивок – это естественный для нашего организма, постоянный необратимый процесс в нашем теле и коже, приводящий к отвердению соединительной ткани.
    Продукты гликации – частицы A.G.E. (Advanced Glycation Endproducts) – оседают в клетках, накапливаются в нашем теле и приводят ко множеству негативных эффектов.
    В результате гликации кожа теряет тонус и становится тусклой, она обвисает и выглядит старой. Это напрямую связано с образом жизни: снизьте потребление сахара и мучного (что полезно и для нормального веса) и каждый день ухаживайте за кожей!

    Для противостояния гликации, торможения деградации белков и возрастных изменений кожи компания разработала антивозрастной препарат с мощным дегликирующим и антиоксидантным эффектом. Действие данного средства основано на стимулировании процесса дегликации, воздействующего на глубинные процессы старения кожи и способствующего разглаживанию морщин и повышению ее упругости. Препарат включает в себя мощный комплекс для борьбы с гликацией — экстракт розмарина, карнозин, таурин, астаксантин и альфа-липоевую кислоту.

    Пептиды — панацея от старости?

    По словам создателя пептидных препаратов В.Хавинсона, старение во многом зависит от образа жизни: «Никакие препараты не спасут, если человек не обладает набором знаний и правильным поведением — это соблюдение биоритмов, правильное питание, физкультура и прием тех или иных биорегуляторов». Что касается генетической предрасположенности к старению, то от генов, по его словам, мы зависим лишь на 25 процентов.

    Ученый утверждает, что пептидные комплексы обладают огромным восстановительным потенциалом. Но возводить их в ранг панацейности, приписывать пептидам несуществующие свойства (скорее всего по коммерческим соображениям) категорически неправильно!

    Заботиться о своем здоровье сегодня — означает дать себе шанс жить завтра. Мы сами должны улучшать свой образ жизни — заниматься спортом, отказываться от вредных привычек, лучше питаться. И конечно же, по мере возможности применять пептидные биорегуляторы, способствующие сохранению здоровья и увеличению продолжительности жизни.

    Пептидные биорегуляторы, разработанные российскими учеными несколько десятков лет назад, стали доступны широкому потребителю только в 2010 году. Постепенно о них узнает все больше людей во всем мире. Секрет сохранения здоровья и моложавости многих известных политиков, артистов, ученых кроется в применении пептидов. Вот только некоторые из них:
    Министр энергетики ОАЭ Шейх Саид,
    Президент Белоруссии Лукашенко,
    Президент Казахстана Назарбаев,
    Король Таиланда,
    академик Ж.И. Алферов, летчик-космонавт Г.М. Гречко и его жена Л.К.Гречко,
    артисты: В.Леонтьев, Е.Степаненко и Е.Петросян, Л. Измайлов, Т.Повалий, И.Корнелюк, И.Винер (тренер по художественной гимнастике) и многие-многие другие...
    Пептидные биорегуляторы применяют спортсмены 2-х олимпийских сборных России — по художественной гимнастике и гребле. Применение препаратов позволяет увеличить стрессоустойчивость наших гимнасток и способствует успехам сборной на международных чемпионатах.

    Если в молодости мы можем себе позволить делать профилактику здоровья периодически, когда нам хочется, то с возрастом, к сожалению, такой роскоши у нас нет. И если Вы не хотите завтра быть в таком состоянии, что Ваши близкие измучаются с Вами и будут ждать Вашей кончины с нетерпением, если Вы не хотите умереть среди чужих людей, потому что ничего не помните и все вокруг кажутся Вам чужими на самом деле, Вы должны с сегодняшнего дня принять меры и заботиться даже не столько о себе, сколько о своих близких.

    В Библии написано: «Ищите и обрящете». Возможно, Вы нашли свой способ оздоровления и омоложения.

    Все в наших руках, и только мы сами можем о себе позаботиться. Никто за нас этого не сделает!











    Задача, выполняемая Ячейкой Мэйера — «лёгкое» разложение молекул воды под действием электрического тока, сопровождаемого электромагнитным излучением.

    Для её решения разберёмся, что же вода из себя представляет? Каково строение молекул воды? Что известно о молекулах воды и их связях? В статье, я использовал различные публикации, имеющиеся в достаточном количестве в Интернете, но они размножены в большом количестве, поэтому, кто их автор, мне не понятно и ссылаться на источник с моей стороны глупо. Мало того, эти публикации «запутаны» до безобразия, что затрудняет восприятие, и значительно увеличивает время изучения. Анализируя статьи, я извлёк то, что может направить Вас на понимание того, с чем мы будем иметь дело в процессе добычи дешёвой энергии, а точнее в процессе разрыва молекул воды на составляющие – водород и кислород.

    Итак, рассмотрим наиболее весомые понятия о строении молекул воды!

    Вода — вещество, основной структурной единицей которого является молекула H 2 O, состоящая из одного атома кислорода и двух атомов водорода.

    Молекула воды имеет структуру как бы равнобедренного треугольника: в вершине этого треугольника расположен атом кислорода, а в основании его - два атома водорода. Угол при вершине составляет 104°27, а длина стороны - 0,096 нм. Эти параметры относятся к гипотетическому равновесному состоянию молекулы воды без ее колебаний и вращений. Геометрия молекулы воды и её электронные орбиты изображены на рисунке.

    Молекула воды представляет собой диполь, содержащий положительный и отрицательный заряды на полюсах. Если «свободную» молекулу воды — не связанную с другими молекулами, поместить в электрическое поле, то она «повернётся» отрицательными полюсами в сторону положительной пластины электрического поля, а положительными полюсами в сторону отрицательной пластины. Именно этот процесс изображён на рисунке 1, позиция — 3В, поясняющем работу Ячейки Мэйера в статье «Вода вместо бензина» .

    Если соединить прямыми линиями эпицентры положительных и отрицательных зарядов получится объемная геометрическая фигура — правильный тетраэдр. Таково строение самой молекулы воды.

    Благодаря наличию водородных связей каждая молекула воды образует водородную связь с 4-мя соседними молекулами, образуя ажурный сетчатый каркас в молекуле льда. Именно такое упорядоченное состояние молекул воды можно назвать «структурой». Каждая молекула может одновременно образовывать четыре водородные связи с другими молекулами под строго определенными углами, равными 109°28′, направленных к вершинам тетраэдра, которые не позволяют при замерзании создавать плотную структуру.

    Когда лёд плавится, его тетрагональная структура разрушается и образуется смесь полимеров, состоящая из три-, тетра-, пента-, и гексамеров воды и свободных молекул воды.

    В жидком состоянии вода – неупорядоченная жидкость. Эти водородные связи — спонтанные, короткоживущие, быстро рвутся и образуются вновь.

    Группируясь, тетраэдры молекул воды образуют разнообразные пространственные и плоскостные структуры.

    И из всего многообразия структур в природе базовой является гексагональная (шестигранная) структура, когда шесть молекул воды (тетраэдров) объединяются в кольцо.

    Такой тип структуры характерен для льда, снега и талой воды, которую из-за наличия такой структуры, называют «Структурированной водой». О полезных свойствах структурированной воды пишут много, но не это тема нашей статьи. Логично будет, что структурированная вода — образующая гексагональные структуры является наихудшим вариантом структуры воды, которую возможно использовать для разложения на водород и кислород. Поясню почему: Молекулы воды, группируясь по шесть в гексамер, имеют электронейтральный состав — у гексамеров нет положительных и отрицательных полюсов. Если поместить гексамер структурированной воды в электрическое поле, то он не будет никак на него реагировать. Поэтому логически можно заключить, что необходимо, чтобы в воде было как можно меньше организованных структур. На самом деле, всё наоборот, гексамер — это не завершённая структура, есть ещё более интересное понятие — кластер.

    Структуры объединённых молекул воды называют кластерами, а отдельные молекулы воды — квантами. Кластер — объёмное соединение молекул воды, в том числе гексамеров, у которого имеются и положительные и отрицательные полюса.

    В дистиллированной воде кластеры практически электронейтральны, потому что в результате испарения, произошло разрушение кластеров, а в результате конденсации, сильные связи между молекулами воды не появились. Однако, их электропроводность можно изменить. Если дистиллированную воду помешать магнитной мешалкой, связи между элементами кластеров будут частично восстановлены и электропроводность воды изменится. Другими словами, дистиллированная вода – это вода, у которой минимальное количество связей между молекулами . В ней диполи молекул находятся в разориентированном состоянии, поэтому диэлектрическая проницаемость дистиллированной воды очень высока, и она плохо проводит электрический ток. В то же время, для повышения управляемости кластерами воды, в неё добавляют кислоты или щёлочи, которые участвуя в молекулярных связях, не позволяют молекулам воды образовывать гексагональные структуры, образуя при этом электролиты. Дистиллированная вода является противоположностью структурированной воде, в которой связей между молекулами воды в кластеры огромное количество.

    На моём сайте имеются, и будут появляться статьи, которые, на первый взгляд «отдельные» и не имеют никакого отношения к другим статьям. На самом деле, большинство статей сайта имеет взаимосвязь в одно целое. В данном случае, описывая свойства дистиллированной воды, я использую Дипольную теорию электрического тока , это альтернативное понятие об электрическом токе, которое подтверждается и наукой и практикой лучше, чем классическое понятие.

    При воздействии энергии источника электрического тока, все диполи атомов воды (как проводника) поворачиваются, ориентируясь своими одноимёнными полюсами в одном направлении. Если молекулы воды до появления внешнего электрического поля создавали кластерную (взаимно ориентированную) структуру, то для ориентации во внешнем электрическом поле потребуется минимальное количество энергии источника электрического тока. Если же структура была не организованной (как у дистиллированной воды), то потребуется большое количество энергии.

    Заметьте, «в народе» бытует мнение, что дистиллированная вода и талая вода должны обладать одинаковыми электропроводными свойствами, ведь что у одной, что у другой отсутствуют химические примеси (как правило – соли), их химический состав одинаков, да и строение молекул воды что в талой воде, что в дистиллированной одинаково.

    На самом деле всё выглядит наоборот, отсутствие примесей совсем не говорит о свойствах электропроводности воды. Не понимая этого, некоторые люди, «убивают» аккумуляторные батареи ещё на этапе их заправки электролитом, подменяя дистиллированную воду на талую, или просто очищенную через угольный фильтр. Как правило, заправленный аккумулятор, который куплен на автомобильном рынке служит меньше, чем тот, который вы купили сухозаряженным и разбавив серную кислоту дистиллированной водой, заправили его сами. Это лишь потому, что «готовый» электролит, или заправленный аккумулятор – это в наше время средство заработка, а чтобы определить какая вода использовалась, надо провести дорогую экспертизу, никто этим не заморачивается. Торгашу не важно, сколько прослужит аккумулятор на твоём авто, а Вам тоже, возиться с кислотой не очень хочется. Зато, я Вас уверяю, аккумулятор, над которым попотеете Вы, при минусовых температурах будет намного бодрее, чем заправленный из уже готового бутылочного электролита.

    Продолжим!

    В воде кластеры периодически разрушаются и образуются снова. Время перескока составляет 10 -12 секунд.

    Так как, строение молекулы воды несимметрично, то центры тяжести положительных и отрицательных зарядов ее не совпадают. Молекулы имеют два полюса — положительный и отрицательный, создающие, как магнит, молекулярные силовые поля. Такие молекулы называют полярными, или диполями, а количественную характеристику полярности определяют электрическим моментом диполя, выражаемым произведением расстояния l между электрическими центрами тяжести положительных и отрицательных зарядов молекулы на заряд e в абсолютных электростатических единицах: p = l·e

    Для воды дипольный момент очень высокий: p = 6,13·10 -29 Кл·м.

    Кластеры воды на границах раздела фаз (жидкость-воздух) выстраиваются в определенном порядке, при этом все кластеры колеблются с одинаковой частотой, приобретая одну общую частоту. При таком движении кластеров, учитывая, что входящие в кластер молекулы воды являются полярными, то есть, имеют большой дипольный момент, следует ожидать появления электромагнитного излучения. Это излучение отличается от излучения свободных диполей, так как диполи являются связанными и колеблются совместно в кластерной структуре.

    Частота колебаний кластеров воды и соответственно, частота электромагнитных колебаний может быть определена по следующей формуле:

    где a — поверхностное натяжение воды при заданной температуре; М
    — масса кластера.

    Где V — объем кластера.

    Объем кластера определяется с учетом размеров фрактальной замкнутой структуры кластера или по аналогии с размерами домена белка.
    При комнатной температуре 18°С частота колебаний кластера f равна 6,79·10 9 Гц, то есть длина волны в свободном пространстве должна составлять λ = 14,18 мм.

    Но что, же будет происходить при воздействии на воду внешнего электромагнитного излучения? Поскольку вода является самоорганизованной структурой и содержит как упорядоченные в кластеры элементы, так и свободные молекулы, то при воздействии внешнего электромагнитного излучения будет происходить следующее. При сближении молекул воды (расстояние изменяется от R 0 до R 1 ) энергия взаимодействия изменяется на большую величину, чем при их взаимном удалении (расстояние изменяется от R 0 до R 2 ).

    Но, поскольку молекулы воды имеют большой дипольный момент, то в случае внешнего электромагнитного поля, они будут совершать колебательные движения (например, от R 1 до R 2 ). При этом в силу приведенной зависимости приложенное электромагнитное поле будет больше способствовать притяжению молекул и тем самым организованности системы в целом, т.е. образованию гексагональной структуры.

    При наличии же примесей в водной среде, они покрываются гидратной оболочкой таким образом, что общая энергия системы стремится принять минимальное значение. И если общий дипольный момент гексагональной структуры равен нулю, то в присутствие примесей гексагональная структура вблизи них нарушается таким образом, чтобы система приняла минимальное значение, в ряде случаев шестиугольники преобразуются в пятиугольники, и гидратная оболочка имеет форму близкую к шару. Примеси (например, ионы Na +) могут стабилизировать структуру, делать ее более устойчивой к разрушению.

    Самоорганизованная система воды при воздействии электромагнитного излучения не будет перемещаться как единое целое, но каждый элемент гексагональной, а в случае примесей локально и другого вида, структуры будет смещаться, т.е. будет происходить искажение геометрии структуры, т.е. возникать напряжения. Такое свойство воды очень напоминает полимеры. Но полимерные структуры обладают большими временами релаксации, которые составляют не 10 -11 –10 -12 с, а минуты и больше. Поэтому энергия квантов электромагнитного излучения, переходя во внутреннюю энергию организованной водной структуры в результате её искажений, будет накапливаться ею, пока не достигнет энергии водородной связи, которая в 500–1000 раз больше энергии электромагнитного поля. При достижении этой величины происходит разрыв водородной связи, и структура разрушается .

    Это можно сравнить со снежной лавиной, когда происходит постепенное, медленное накапливание массы, а затем стремительный обвал. В случае с водой происходит разрыв не только слабой связи между кластерами, но и более сильных связей — в строении молекул воды. В результате этого разрыва могут образовываться Н + , ОН – , и гидратированный электрон е – . Голубой цвет чистой воды обязан наличию именно этих электронов, а не только рассеянию естественного света.

    Заключение

    Таким образом, при воздействии электромагнитного излучения с водой происходит накапливание энергии в кластерной структуре до некоторого критического значения, затем происходит разрыв связей как между кластерами, так и других, происходит лавинообразное освобождение энергии, которая может затем трансформироваться в другие типы.

    Самое важное, уникальное по свойствам и составу вещество нашей планеты - это, конечно, вода. Ведь именно благодаря ей на Земле жизнь есть, в то время как на других известных сегодня объектах Солнечной системы ее нет. Твердая, жидкая, в виде пара - она нужна и важна любая. Вода и ее свойства составляют предмет изучения целой научной дисциплины - гидрологии.

    Количество воды на планете

    Если рассматривать показатель количества данного оксида во всех агрегатных состояниях, то его на планете около 75% от общей массы. При этом следует учитывать связанную воду в органических соединениях, живых существах, минералах и прочих элементах.

    Если учитывать только жидкое и твердое состояние воды, показатель падет до 70,8%. Рассмотрим, как распределяются эти проценты, где содержится рассматриваемое вещество.

    1. Соленой воды в океанах и морях, солончаковых озерах на Земле 360 млн км 2 .
    2. Пресная вода распределена неравномерно: ее в ледниках Гренландии, Арктики, Антарктиды заковано во льды 16,3 млн км 2 .
    3. В пресных реках, болотах и озерах сосредоточено 5,3 млн км 2 оксида водорода.
    4. Подземные воды составляют 100 млн м 3 .

    Именно поэтому космонавтам из далекого космического пространства видно Землю в форме шара голубого цвета с редкими вкраплениями суши. Вода и ее свойства, знание особенностей строения являются важными элементами науки. К тому же, в последнее время человечество начинает испытывать явную нехватку пресной воды. Может быть, такие знания помогут в решении данной проблемы.

    Состав воды и строение молекулы

    Если рассмотреть эти показатели, то сразу станут понятны и свойства, которые проявляет это удивительное вещество. Так, молекула воды состоит из двух атомов водорода и одного атома кислорода, поэтому имеет эмпирическую формулу Н 2 О. Кроме того, при построении самой молекулы большую роль играют электроны обоих элементов. Посмотрим, что собой представляют структура воды и ее свойства.

    Очевидно, что каждая молекула ориентирована вокруг другой, и все вместе они формируют общую кристаллическую решетку. Интересно то, что оксид построен в форме тетраэдра - атом кислорода в центре, а две пары электронов его и два атома водорода вокруг асимметрично. Если провести через центры ядер атомов линии и соединить их, то получится именно тетраэдрическая геометрическая форма.

    Угол между центром атома кислорода и ядрами водородов составляет 104,5 0 С. Длина связи О-Н = 0,0957 нм. Наличие электронных пар кислорода, а также его большее в сравнении с водородами сродство к электрону обеспечивают формирование в молекуле отрицательно заряженного поля. В противовес ему ядра водородов образуют положительно заряженную часть соединения. Таким образом, выходит, что молекула воды - диполь. Это определяет то, какой может быть вода, и ее физические свойства также зависят от строения молекулы. Для живых существ эти особенности играют жизненно важную роль.

    Основные физические свойства

    К таковым принято относить кристаллическую решетку, температуры кипения и плавления, особенные индивидуальные характеристики. Все их и рассмотрим.

    1. Строение кристаллической решетки оксида водорода зависит от агрегатного состояния. Оно может быть твердым - лед, жидким - основная вода при обычных условиях, газообразным - пар при повышении температуры воды свыше 100 0 С. Красивые узорные кристаллы формирует лед. Решетка в целом рыхлая, но соединение очень прочное, плотность низкая. Видеть ее можно на примере снежинок или морозных узоров на стеклах. У обычной воды решетка не имеет постоянной формы, она изменяется и переходит из одного состояния в другое.
    2. Молекула воды в космическом пространстве имеет правильную форму шара. Однако под действием земной силы тяжести она искажается и в жидком состоянии принимает форму сосуда.
    3. То, что по структуре оксид водорода - диполь, обуславливает следующие свойства: высокая теплопроводность и теплоемкость, которая прослеживается в быстром нагревании и долгом остывании вещества, способность ориентировать вокруг себя как ионы, так и отдельные электроны, соединения. Это делает воду универсальным растворителем (как полярным, так и нейтральным).
    4. Состав воды и строение молекулы объясняют способность этого соединения образовывать множественные водородные связи, в том числе с другими соединениями, имеющими неподеленные электронные пары (аммиак, спирт и прочие).
    5. Температура кипения жидкой воды - 100 0 С, кристаллизация наступает при +4 0 С. Ниже этого показателя - лед. Если же увеличивать давление, то температура кипения воды резко возрастет. Так, при высоких атмосферах в ней можно растопить свинец, но она при этом даже не закипит (свыше 300 0 С).
    6. Свойства воды весьма значимы для живых существ. Например, одно из самых важных - поверхностное натяжение. Это формирование тончайшей защитной пленки на поверхности оксида водорода. Речь идет о воде в жидком состоянии. Эту пленку разорвать механическим воздействием очень сложно. Учеными установлено, что понадобится сила, равная весу в 100 тонн. Как ее заметить? Пленка очевидна, когда вода капает из крана медленно. Видно, что она словно в какой-то оболочке, которая растягивается до определенного предела и веса и отрывается в виде круглой капельки, слегка искаженной силой тяжести. Благодаря поверхностному натяжению многие предметы могут находиться на поверхности воды. Насекомые, имеющие особые приспособления, могут свободно передвигаться по ней.
    7. Вода и ее свойства аномальны и уникальны. По органолептическим показателям данное соединение - бесцветная жидкость без вкуса и запаха. То, что мы называем вкусом воды, - это растворенные в ней минералы и другие компоненты.
    8. Электропроводность оксида водорода в жидком состоянии зависит от того, сколько и каких солей в нем растворены. Дистиллированная вода, не содержащая никаких примесей, электрический ток не проводит.

    Лед - это особое состояние воды. В структуре этого ее состояния молекулы связаны друг с другом водородными связями и формируют красивую кристаллическую решетку. Но она достаточно неустойчива и легко может расколоться, растаять, то есть деформироваться. Между молекулами сохраняется множество пустот, размеры которых превышают размеры самих частиц. Благодаря этому плотность льда меньше, чем жидкого оксида водорода.

    Это имеет большое значение для рек, озер и прочих пресных водоемов. Ведь в зимний период вода в них не замерзает полностью, а лишь покрывается плотной коркой более легкого льда, всплывающего наверх. Если бы данное свойство не было характерно для твердого состояния оксида водорода, то водоемы промерзали бы насквозь. Жизнь под водой была бы невозможна.

    Кроме того, твердое состояние воды имеет большое значение как источник огромного количества питьевых пресных запасов. Это ледники.

    Особенным свойством воды можно назвать явление тройной точки. Это такое состояние, при котором лед, пар и жидкость могут существовать одновременно. Для этого требуются такие условия, как:

    • высокое давление - 610 Па;
    • температура 0,01 0 С.

    Показатель прозрачности воды варьируется в зависимости от посторонних примесей. Жидкость может быть полностью прозрачной, опалесцентной, мутной. Поглощаются волны желтого и красного цветов, глубоко проникают лучи фиолетовые.

    Химические свойства

    Вода и ее свойства - важный инструмент в понимании многих процессов жизнедеятельности. Поэтому они изучены очень хорошо. Так, гидрохимию интересуют вода и ее химические свойства. Среди них можно назвать следующие:

    1. Жесткость. Это такое свойство, которое объясняется наличием солей кальция и магния, их ионов в растворе. Подразделяется на постоянную (соли названных металлов: хлоридов, сульфатов, сульфитов, нитратов), временную (гидрокарбонаты), которая устраняется кипячением. В России воду перед использованием смягчают химическим путем для лучшего качества.
    2. Минерализация. Свойство, основанное на дипольном моменте оксида водорода. Благодаря его наличию молекулы способны присоединять к себе множество других веществ, ионов и удерживать их. Так формируются ассоциаты, клатраты и прочие объединения.
    3. Окислительно-восстановительные свойства. Как универсальный растворитель, катализатор, ассоциат, вода способна взаимодействовать с множеством простых и сложных соединений. С одними она выступает в роли окислителя, с другими - наоборот. Как восстановитель реагирует с галогенами, солями, некоторыми менее активными металлами, с многими органическими веществами. Последние превращения изучает органическая химия. Вода и ее свойства, в частности, химические, показывают, насколько она универсальна и уникальна. Как окислитель она вступает в реакции с активными металлами, некоторыми бинарными солями, многими органическими соединениями, углеродом, метаном. Вообще химические реакции с участием данного вещества нуждаются в подборе определенных условий. Именно от них и будет зависеть исход реакции.
    4. Биохимические свойства. Вода является неотъемлемой частью всех биохимических процессов организма, являясь растворителем, катализатором и средой.
    5. Взаимодействие с газами с образованием клатратов. Обычная жидкая вода может поглощать даже неактивные химически газы и располагать их внутри полостей между молекулами внутренней структуры. Такие соединения принято называть клатратами.
    6. Со многими металлами оксид водорода формирует кристаллогидраты, в которые он включен в неизменном виде. Например, медный купорос (CuSO 4 *5H 2 O), а также обычные гидраты (NaOH*H 2 O и другие).
    7. Для воды характерны реакции соединения, при которых происходит образование новых классов веществ (кислот, щелочей, оснований). Они не являются окислительно-восстановительными.
    8. Электролиз. Под действием электрического тока молекула разлагается на составные газы - водород и кислород. Один из способов получения их в лаборатории и промышленности.

    С точки зрения теории Льюиса вода - это слабая кислота и слабое основание одновременно (амфолит). То есть можно сказать о некоей амфотерности в химических свойствах.

    Вода и ее полезные свойства для живых существ

    Сложно переоценить то значение, которое имеет оксид водорода для всего живого. Ведь вода и есть сам источник жизни. Известно, что без нее человек не смог бы прожить и недели. Вода, ее свойства и значение просто колоссальны.

    1. Это универсальный, то есть способный растворять и органические, и неорганические соединения, растворитель, действующий в живых системах. Именно поэтому вода - источник и среда для протекания всех каталитических биохимических преобразований, с формированием сложных жизненно важных комплексных соединений.
    2. Способность образовывать водородные связи делает данное вещество универсальным в выдерживании температур без изменения агрегатного состояния. Если бы это было не так, то при малейшем снижении градусов она превращалась бы в лед внутри живых существ, вызывая гибель клеток.
    3. Для человека вода - источник всех основных бытовых благ и нужд: приготовление пищи, стирка, уборка, принятие ванны, купание и плавание и прочее.
    4. Промышленные заводы (химические, текстильные, машиностроительные, пищевые, нефтеперерабатывающие и другие) не сумели бы осуществлять свою работу без участия оксида водорода.
    5. Издревле считалось, что вода - это источник здоровья. Она применялась и применяется сегодня как лечебное вещество.
    6. Растения используют ее как основной источник питания, за счет чего они продуцируют кислород - газ, благодаря которому существует жизнь на нашей планете.

    Можно назвать еще десятки причин того, почему вода - это самое широко распространенное, важное и необходимое вещество для всех живых и искусственно созданных человеком объектов. Мы привели только самые очевидные, главные.

    Гидрологический цикл воды

    Иными словами, это ее круговорот в природе. Очень важный процесс, позволяющий постоянно пополнять исчезающие запасы воды. Как он происходит?

    Основных участников трое: подземные (или грунтовые) воды, поверхностные воды и Мировой океан. Важна также и атмосфера, конденсирующая и выдающая осадки. Также активными участниками процесса являются растения (в основном деревья), способные поглощать огромное количество воды в сутки.

    Итак, процесс происходит следующим образом. Грунтовые воды заполняют подземные капилляры и стекаются к поверхности и Мировому океану. Затем поверхностные воды поглощаются растениями и транспирируются в окружающую среду. Также происходит испарение с огромных площадей океанов, морей, рек, озер и прочих водоемов. Попав в атмосферу, вода что делает? Конденсируется и проливается обратно в виде осадков (дождь, снег, град).

    Если бы не происходили эти процессы, то запасы воды, особенно пресной, давно бы уже закончились. Именно поэтому охране и нормальному гидрологическому циклу уделяется людьми большое внимание.

    Понятие о тяжелой воде

    В природе оксид водорода существует в виде смеси изотопологов. Это связано с тем, что водород формирует три вида изотопа: протий 1 Н, дейтерий 2 Н, тритий 3 Н. Кислород, в свою очередь, также не отстает и образует три устойчивые формы: 16 О, 17 О, 18 О. Именно благодаря этому существует не просто обычная протиевая вода состава Н 2 О (1 Н и 16 О), но еще и дейтериевая, и тритиевая.

    При этом устойчива по структуре и форме именно дейтериевая (2 Н), которая включается в состав практически всех природных вод, но в малом количестве. Именно ее называют тяжелой. Она несколько отличается от обычной или легкой по всем показателям.

    Тяжелая вода и ее свойства характеризуются несколькими пунктами.

    1. Кристаллизуется при температуре 3,82 0 С.
    2. Кипение наблюдается при 101,42 0 С.
    3. Плотность составляет 1,1059 г/см 3 .
    4. Как растворитель в несколько раз хуже легкой воды.
    5. Имеет химическую формулу D 2 O.

    При проведении опытов, показывающих влияние подобной воды на живые системы, было установлено, что жить в ней способны лишь некоторые виды бактерий. Для приспособления и акклиматизации колониям потребовалось время. Но, приспособившись, они полностью восстановили все жизненно важные функции (размножение, питание). Кроме того, стали очень устойчивы к воздействию радиоактивного излучения. Опыты на лягушках и рыбах положительного результата не дали.

    Современные области применения дейтерия и образованной им тяжелой воды - атомная и ядерная энергетика. Получить в лабораторных условиях такую воду можно при помощи электролиза обычной - она образуется как побочный продукт. Сам дейтерий формируется при многократных перегонках водорода в специальных устройствах. Применение его основано на способности замедлять нейтронные синтезы и протонные реакции. Именно тяжелая вода и изотопы водорода - основа для создания ядерной и водородной бомбы.

    Опыты на применении дейтериевой воды людьми в небольших количествах показали, что задерживается она недолго - полный вывод наблюдается через две недели. Употреблять ее в качестве источника влаги для жизни нельзя, однако техническое значение просто огромно.

    Талая вода и ее применение

    Свойства такой воды издревле были определены людьми как целебные. Давно было замечено, что при таянии снега животные стараются напиться водой из образовавшихся лужиц. Позже были тщательно исследованы ее структура и биологическое воздействие на организм человека.

    Талая вода, ее признаки и свойства находятся посередине между обычной легкой и льдом. Изнутри она образована не просто молекулами, а набором кластеров, сформированных кристаллами и газом. То есть внутри пустот между структурными частями кристалла находятся водород и кислород. По общему виду строение талой воды сходно со строением льда - сохраняется структурность. Физические свойства такого оксида водорода незначительно меняются в сравнении с обычным. Однако биологическое воздействие на организм отличное.

    При замораживании воды первой фракцией превращается в лед более тяжелая часть - это дейтериевые изотопы, соли и примеси. Поэтому эту сердцевину следует удалять. А вот остальная часть - чистая, структурированная и полезная вода. Каково воздействие на организм? Учеными Донецкого НИИ были названы следующие виды улучшений:

    1. Ускорение восстановительных процессов.
    2. Укрепление иммунитета.
    3. У детей после ингаляций такой водой происходит восстановление и излечение простудных заболеваний, проходит кашель, насморк и прочее.
    4. Улучшается дыхание, состояние гортани и слизистых оболочек.
    5. Общее самочувствие человека, активность повышаются.

    Сегодня существует ряд сторонников лечения именно талой водой, которые пишут свои положительные отзывы. Однако есть ученые, в том числе медики, которые эти взгляды не поддерживают. Они считают, что вреда от такой воды не будет, но и пользы мало.

    Энергетика

    Почему свойства воды могут изменяться и восстанавливаться при переходе в разные агрегатные состояния? Ответ на этот вопрос следующий: у данного соединения существует своя информационная память, которая записывает все изменения и приводит к восстановлению структуры и свойств в нужное время. Биоэнергетическое поле, через которое проходит часть воды (та, что поступает из космоса), несет в себе мощный заряд энергии. Эту закономерность часто используют при лечении. Однако с медицинской точки зрения не каждая вода способна оказать благоприятный эффект, в том числе и информационный.

    Структурированная вода - что это?

    Это такая вода, которая имеет несколько иное строение молекул, расположение кристаллических решеток (такое, которое наблюдается у льда), но это все же жидкость (талая также относится к этому типу). В этом случае состав воды и ее свойства с научной точки зрения не отличаются от тех, что характерны для обычного оксида водорода. Поэтому структурированная вода не может иметь такого широкого лечебного эффекта, который ей приписывают эзотерики и сторонники нетрадиционной медицины.



    Понравилась статья? Поделитесь с друзьями!