Свет и гравитация. Триумф гравитации

Инженеры из лондонской компании Therefore сконструировали действующий прототип лампочки, которая работает на силе гравитации. Достаточно подвесить к устройству сумку с балластом или любой другой груз весом около 10 кг - и светодиоды будут светиться около 30 минут. По идее, внутри коробки - устройство вроде гиревого механизма, которое обеспечивает вращение колёсиков с постоянной скоростью, как в обычных настенных механических часах с гирьками. Вероятно, здесь катушка с генератором вращается в магнитном поле и создаёт переменный ток, питающий лампочку.

Лампочка GravityLight уже собрала на краудфандинговом сайте Indiegogo около $317 тыс., почти в шесть раз окупив первоначальный план.

Лампочки GravityLight предлагается поставлять в Африку, Индию и Южную Америку. В этих районах мира более 1,5 миллиардов человек живёт без электричества, используя для освещения керосиновые лампы.

GravityLight позиционируется как более разумная замена керосинке. В некоторых районах жители отдают от 10% до 20% своего дохода на покупку керосина. В одной только Индии в больницы ежегодно поступает 2,5 миллиона человек с ожогами от керосина, а вечер с керосиновой лампой сравним с вдыханием дыма от двух пачек сигарет, так что многие даже некурящие люди страдают от рака лёгких.

Лампочки на гравитации имеют преимущественно перед солнечными батареями, которые требуется устанавливать в хорошо освещённых местах и дополнительно оборудовать аккумуляторами для накапливания заряда - чтобы светить вечером и ночью. Здесь же всё просто. Поднял за три секунды десятикилограммовый мешок - и лампочка светит полчаса. Вместо мешка можно использовать какие-то декоративные элементы, например, камни или вазоны с цветами. Такую лампу можно повесить даже в тёмном подвале, в отличие от фотоэлементов.

Разработчики из Therefore - не какие-то начинающие любители, а опытные профессионалы, которые уже 20 лет занимаются дизайном и проектированием разных приборов. Они отлично понимают, что стоимость 5 долларов получится только при массовом производстве, поэтому и предлагают профинансировать начальный тираж 1000 штук, которые отправят для испытания в индийские и африканские деревни. По результатам испытания будет разработана более удобная версия устройства и дополнительные аксессуары.

Наверное, такая лампа была бы хорошим подарком не только для Африки и Индии, но и для жителей России, Европы и США. Всё-таки довольно оригинальный гаджет, которого нет ни у кого из соседей. К тому же он реально дешевле, эффективнее и экологичнее, чем обычные солнечные панели. А если сделать для грузиков колодец 10-20 метров, то лампочка может светить и целые сутки, а то и больше.

Группа инженеров английской компании Therefore разработала действующую модель лампочки, которая работает под действием гравитации. Если к этому осветительному устройству подвесить сумку с грузом или любой другой груз порядка десяти килограмм, то зажгутся светодиоды, которые продолжат светиться в течение получаса.

Этот инновационный осветительный прибор устроен по принципу механических настенных часов. Устройство, похожее на гиревой механизм, размещенное внутри коробки, с постоянной скоростью вращает шестеренки. Переменный ток, который питает лампочку GravityLigh, создает генерирующая катушка, вращающаяся в магнитном поле. В настоящее время эта чудо-лампочка на краудфандинговом сайте Indiegogo собрала более трехсот тысяч долларов инвестиций. Компания Therefore уже окупила все затраты на ее создание, и теперь получает очень приличную прибыль.
В планах компании наладить поставки лампочек GravityLight в страны Африки, Южной Америки, Индии. В этих регионах более полутора миллионов человек живут без централизованного электроснабжения, используя для освещения допотопные лампы, работающие на керосине. Керосиновые лампы вредны для человека. Провести один вечер с зажженной керосинкой, все равно, что выкурить две пачки сигарет, это грозит всевозможными заболеваниями, в том числе, раком легких. Ни для кого не является секретом, что керосин травмоопасен. Порядка 2,5 миллионов человек поступают в больницы с ожогами от керосина в одной только Индии. При этом на приобретение керосина некоторые семьи тратят от 10 до 20 процентов своего бюджета. Компания Therefore полагает, что именно лампочки GravityLight будут великолепной альтернативой керосиновым лампам.
Для того чтобы лампочка GravityLight начала работать не требуется никаких дополнительных приборов, устройств и приспособлений. Для установки, например, солнечных батарей требуется найти хорошо освещенное место. А для бесперебойного функционирования солнечных установок в течение суток, требуется оборудовать их дорогостоящими аккумуляторными системами.


Лампочку GravityLight можно закрепить в любом месте, даже в темном подвале или подполе. Она начинает светиться, если к ней подвесить груз весом около 10 килограмм. В качестве такого груза можно использовать декоративные цветочные вазоны или камни. Если груз поместить в 10-20 метровый колодец, то лампочка GravityLight не будет гаснуть как минимум в течение целых суток. Лампочка GravityLight разработана серьезными профессионалами компании, которая в течение двух десятилетий занимается проектированием и дизайном осветительного оборудования и прочих приборов.
Лампа GravityLight могла бы стать исключительно полезной не только для жителей африканских и индийских деревень. Она непременно будет востребована в России, в США, в Китае, в Европе. Лампочка экологически безопасна, к тому же красива и оригинальна. Лампа GravityLight может стать полезным и необычным подарком для ваших близких, друзей или соседей.
Сегодня лампа GravityLight дешевле и эргономичнее солнечных панелей. В процессе эксплуатации планируется усовершенствовать осветительный прибор, добавить дополнительные аксессуары, чтобы инновационная лампочка стала еще более удобной и функциональной. Для того чтобы довести цену лампочки для конечного потребителя до пяти долларов, следует наладить ее масштабное массовое производство.
Видео, демонстрирующее работу лампочки GravityLight:

Это четвёртая часть рассказа.

В Ньютоновской механике получается, что гравитация действует мгновенно и на любом расстоянии: если сдвинуть один объект, то сила, действующая на второй изменится мгновенно. Но тогда получается, что один объект действует на другой со скоростью выше скорости света, а это противоречит принципу инвариантности законов природы относительно любой системы отсчёта.

Общая теория относительности

В 1915 году Эйнштейн предложил общую теорию относительности . Он предположил, что гравитация - это не обычная сила, а следствие того, что пространство-время не является плоским, как считалось ранее. Оно искривляется распределёнными в нём массой и энергией. Такие тела, как Земля, не принуждаются двигаться по искривлённым орбитам гравитационной силой; они движутся по линиям, которые в искривлённом пространстве более всего соответствуют прямым в четырёхмерном пространстве-времени. То есть масса Солнца так искривляет пространство-время, что, хотя в четырёхмерном пространстве Земля движется по прямой, в нашем трёхмерном пространстве она движется по круговой орбите.

Теория Эйнштейна предсказывала траектории планет почти как по теории Ньютона, но не совсем. Более точные измерения показали верность теории Эйнштейна.

Масса отклоняет траекторию света

С точки зрения физиков того времени гравитация вообще не должна влиять на свет. Гравитация - это сила, пропорциональная массам объектов, а у света нет массы. Общая теория относительности предсказывала, что тяжёлые объекты, типа Солнца, должны отклонять свет от звёзд, проходящих близко к нему. В обычных условиях Солнце ярко светит и разглядеть за ним звёзды не получается, но во время солнечного затмения этот эффект должен быть виден. В итоге эксперименты это подтвердили.

Масса искажает течение времени

Общая теория относительности предсказывала, что вблизи массивных объектов, типа Земли время должно течь медленнее, чем на орбите. Это следует из того, что должно соблюдаться определённое соотношение между энергией света и его частотой (то есть числом световых волн в секунду): чем больше энергия, тем выше частота. Если свет распространяется вверх по гравитационному полю Земли, то он теряет энергию, а потому его частота уменьшается. (То есть увеличивается интервал между гребнями двух соседних волн). Наблюдателю на большой высоте должно казаться, что внизу всё происходит чуть-чуть медленее.

В 1962 году это было проверено экспериментально. А сейчас это становится важно при работе геопозиционирования по сигналам со спутников GPS и Глонасс. Если не делать поправки на эффекты теории относительности, то координаты будут рассчитаны с ошибкой в несколько километров.

Я даже могу представить себя на месте программиста чипа GPS в смартфоне, который проклинает Эйнштейна с его теорией относительности, из-за которых у него координаты глючат:-)

  1. Взаимодействие света и гравитации

Если посмотреть на Солнце через 150 миллионов километров космоса, который разделяет наш мир от ближайшей звезды, свет, который вы видите, не показывает Солнце на текущий момент, а каким оно было 8 минут и 20 секунд назад. Это потому что свет движется не мгновенно (а со скоростью света, хаха): его скорость составляет 299 792,458 километра в секунду. Именно такое время нужно свету, чтобы преодолеть путь от фотосферы Солнца до нашей планеты. Но силе тяжести не обязательно нужно вести себя так же; возможно, как предсказывала теория Ньютона, гравитационная сила представляет собой мгновенное явление и ощущается всеми объектами с массой во Вселенной, через все эти огромные космические расстояния, одновременно.

Так ли это в действительности? Если Солнце бы мгновенно исчезло, полетела бы Земля сразу же по прямой линии или же продолжила вращаться вокруг местоположения Солнца в течение еще 8 минут и 20 секунд? По общей теории относительности, ответ ближе ко второму варианту, поскольку не масса определяет гравитацию, а искривление пространства, которое определяется суммой всей материи и энергии в нем. Если бы Солнце исчезло, пространство стало бы не искривленным, а плоским, но эта трансформация была бы не мгновенной. Поскольку пространство-время - это ткань, переход стал бы неким «переливанием», которое отправило бы гигантскую рябь - гравитационные волны - через Вселенную, подобную ряби от брошенного в пруд камня.

Скорость этой ряби определяется так же, как и скорость всего остального в ОТО: ее энергией и массой. Поскольку гравитационные волны не обладают массой, но имеют конечную энергию, они должны двигаться со скоростью света. А это значит, что Земля притягивается не к тому месту, где находится в пространстве Солнце, а к тому, где оно было чуть больше восьми минут назад.

Если бы это была единственная разница между теориями гравитации Эйнштейна и Ньютона, мы немедленно заключили бы, что Эйнштейн ошибался. Орбиты планет так хорошо изучены и так точно и долго записывались (с конца 1500-х!), что если бы гравитация просто притягивала планеты к месту Солнца со скоростью света, предсказанные положения планет сильно не соответствовали бы их актуальному положению. Необходима блестящая логика, чтобы понять, что законы Ньютона требуют невероятной скорости гравитации такой точности, что если бы это было единственное ограничение, скорость гравитации должна была бы быть больше чем в 20 миллиардов раз быстрее скорости света.

Но в ОТО есть еще один кусок головоломки, который имеет большое значение: орбитальная скорость планеты по мере ее движения вокруг Солнца. Земля, например, тоже движется, «покачиваясь» на волнах гравитации и часто опускаясь не там, где поднималась. Налицо два эффекта: скорость каждого объекта влияет на то, как он испытывает силу гравитации, а с ней и изменения в гравитационных полях.

Но что особенно интересно, так это то, что изменения в гравитационном поле при конечной скорости гравитации и эффекты зависимых от скорости взаимодействий почти точно уравновешиваются. Именно неточность этого равновесия позволяет нам определить экспериментально, какая теория соответствует нашей Вселенной: ньютонова модель «бесконечной скорости гравитации» или эйнштейнова модель «скорость гравитации равна скорости света». В теории, мы знаем, что скорость гравитации должна соответствовать скорости света. Но гравитационная сила Солнца слишком слабая, чтобы измерить этот эффект. На самом деле, изменить его очень сложно, поскольку когда нечто движется с постоянной скоростью в постоянном гравитационном поле, никакого наблюдаемого эффекта нет вовсе. В идеале, нам нужна была бы система, в которой массивный объект движется с изменяющейся скорость через меняющееся гравитационное поле. Другими словами, нам нужна система, состоящая из тесной пары вращающихся наблюдаемых останков звезд, хотя бы одна из которых будет нейтронной.

По мере вращения нейтронных звезд, они пульсируют, и эти импульсы видны нам на Земле всякий раз, когда полюс нейтронной звезды проходит через нашу линию визирования. Предсказания теории гравитации Эйнштейна невероятно чувствительны к скорости света, так что с самого первого обнаружения бинарной системы пульсаров в 1980-х годах, PSR1913+16 (Халса-Тейлора), мы свели скорость гравитации до равной скорости света с погрешностью измерения всего в 0,2%.

Конечно, это непрямое измерение. Мы смогли осуществить косвенное измерение другого типа в 2002 году, когда в результате случайного совпадения Земля, Юпитер и очень мощный радиоквазар (QSO J0842+1835) выстроились на одну линию визирования. По мере движения Юпитера между Землей и квазаром, гравитационное искривление Юпитера позволило нам измерить скорость гравитации, исключить бесконечную скорость и определить, что она где-то между 2,55 х 10 8 и 3,81 х 10 8 метров в секунду, что полностью соответствует предсказаниям Эйнштейна.

В идеале, мы могли бы измерить скорость этой ряби напрямую за счет прямого обнаружения гравитационных волн. LIGO нашла первую такую, в конце концов. К сожалению, из-за нашей неспособности правильно триангулировать место рождения этих волн, мы не знаем, с какой стороны они пришли. Рассчитав дистанцию между двумя независимыми детекторами (в Вашингтоне и Луизиане) и измерив разницу во времени прибытия сигнала, мы можем определить, что скорость гравитации соответствует скорости света и определить самые жесткие ограничения по скорости.

Тем не менее, самые жесткие ограничения дают нам косвенные измерения от очень редких систем пульсаров. Лучшие результаты на настоящий момент говорят нам, что скорость гравитации между 2,993 х 10 8 и 3,003 х 10 8 метров в секунду, что прекрасно подтверждает ОТО и ужасно сказывается на альтернативных теориях гравитации (прости, Ньютон).

Окт 6, 2017 Геннадий

Отыскивая пределы возможностей телескопа Хаббл, международная команда астрономов побила рекорд космической дистанции наблюдений, измерив свойства самой далекой галактики из ранее наблюдавшихся во Вселенной. Эта неожиданно яркая зарождающаяся галактика, названная GN-z11, видна такой, какой она была 13,4 миллиарда лет назад, всего лишь через 400 миллионов лет после Большого взрыва. Галактика GN-z11 расположена в созвездии Большой медведицы.

«Мы сделали наибольший шаг назад во времени, за пределы того, что мы считали возможным сделать с помощью телескопа Хаббл. Мы видим галактику GN-z11 в то время, когда возраст Вселенной составлял всего три процента от нынешнего». — пояснил главный исследователь Паскаль Оеш из Йельского университета.

Астрономы приблизились к первым галактикам, сформировавшимся во Вселенной. Новые наблюдения Хаббла приводят исследователей в ту область, которая, как считалось ранее, может быть достигнута только с помощью космического телескопа Джеймса Уэбба (его запуск запланирован на 2018 год).

Измерения дают убедительные доказательства, что некоторые необычные и неожиданно яркие галактики, ранее обнаруженные на изображениях Хаббла, на самом деле находятся на запредельных расстояниях. Ранее команда ученых оценила расстояние до GN-z11, определив ее цвет с помощью Хаббла и космического телескопа Спитцера. Теперь, впервые для галактики на такой экстремальной дистанции, команда использовала хаббловскую Широкоугольную камеру-3. Для точного измерения расстояния до GN-z11 свет был спектроскопически разделен на составляющие цвета.

Астрономы измеряют большие дистанции, определяя «красное смещение» галактики. Это явление — результат расширения Вселенной. Каждый далекий объект во Вселенной кажется удаляющимся от нас, потому что его свет растягивается в более длинные и более красные световые волны, проходя через расширяющееся пространство, чтобы достигнуть наших телескопов. Чем больше красное смещение, тем дальше галактика.

«Наши спектроскопические наблюдения показывают, что галактика дальше, чем мы первоначально думали, прямо на пределе расстояния, на котором Хаббл может наблюдать», — говорит Габриэль Браммер, соавтор исследования из Института космического телескопа.

До того, как астрономы измерили расстояние до галактики GN-z11, наибольшим расстоянием, измеренным спектроскопически, было красное смещение 8,68 (13,2 миллирада лет в прошлое). Теперь команда подтвердила для GN-z11 красное смещение 11,1, примерно на 200 миллионов лет ближе к Большому взрыву. «Это выдающееся достижение для Хаббла. Ему удалось побить все предыдущие рекорды расстояния, годами удерживавшиеся более крупными наземными телескопами», — говорит исследователь Питер ван Доккум из Йельского университета. — «Этот новый рекорд, скорее всего, устоит до запуска космического телескопа Джейма Уэбба».

Галактика GN-z11 в 25 раз меньше Млечного Пути, и в своих звездах содержит только один процент массы нашей галактики. Тем не менее, новорожденная GN-z11 быстро растет, формируя новые звезды примерно в 20 раз быстрее, чем наша галактика сегодня. Это делает экстремально далекую галактику достаточно яркой для астрономов, чтобы можно было провести детальные исследования с помощью телескопов Хаббла и Спитцера.

Результаты исследований дают удивительные ключи к разгадке природы ранней Вселенной. «Потрясающе, что такая массивная галактика существует всего лишь через 200 или 300 миллионов лет с момента начала формирования самых первых звёзд. Это требует очень быстрого роста, производства звезд с чудовищной скоростью, чтобы так быстро сформировалась галактика в миллиард солнечных масс», — поясняет Гарт Иллинворт, исследователь из Калифорнийского университета.

Эти открытия — увлекательный анонс к исследованиям, которыми займется космический телескоп Джеймс Уэбб после своего запуска в космос в 2018 году. «Это новое открытие показывает, что телескоп Уэбб наверняка обнаружит много таких молодых галактик, заглянув туда, где формируются первые галактики», — говорит Иллингворт.

В команду исследователей входят ученые из Йельского университета, Научного института космического телескопа и Калифорнийского университета.

На этом видео показано расположение галактики GN-z11 на видимом небосводе.

Своеобразный голубой пузырь, окружающий звезду WR 31a — это туманность Вольфа-Райе, межзвездное облако пыли, водорода, гелия и других газов. Такие туманности обычно имеют сферическую или кольцевую форму. Они возникают при взаимодействии быстрого звёздного ветра с внешними слоями водорода, выброшенного звездами Вольфа-Райе. Этот пузырь, сформировавшийся примерно 20 000 лет назад, расширяется со скоростью около 220 000 километров в час!

К сожалению, жизненный цикл звезды Вольфа-Райе продолжается всего лишь несколько сотен тысяч лет — мгновение в космических масштабах. Начиная свою жизнь с массой минимум в 20 раз больше солнечной, звезда Вольфа-Райе теряет половину своей массы менее чем за 100 000 лет.

И звезда WR 31a в этом случае — не исключение. В конце концов она закончит свою жизнь впечатляющей вспышкой , а выброшенное взрывом звёздное вещество станет основой для следующего поколения звёзд и планет.



Понравилась статья? Поделитесь с друзьями!