Теория атомно молекулярного учения. Химический эквивалент

Введение количественного метода исследования и установле­ние закона сохранения массы имели огромное значение для дальнейшего развития химии. Но прочный научный фунда­мент химия получила лишь после утверждения в ней атомно-молекулярного учения.

Возникновение атомно-молекулярного учения

Основы атомно-молекулярного учения впервые были изложены М. В. Ло­моносовым в 1741 году в одной из его первых работ - «Эле­менты математической химии», в которой он сформулировал важнейшие положения корпускулярной теории строения .

Согласно представлениям Ломоносова, все состоят из мельчайших «нечувствительных» частичек, физически недели­мых и обладающих способностью взаимного сцепления. Свойства веществ и прежде всего их агрегатное состояние обусловлены свойствами этих частичек; различие в свойствах веществ зависит только от различия самих частичек или способа их взаимной связи.

Различал два вида таких частиц: более мелкие - «элементы», соответствующие атомам в современном понимании этого термина и более крупные «корпускулы», которые мы называем теперь молекулами. По его определению, «Элемент есть часть тела, не состоящая из каких-либо других меньших и отличающихся от него тел. Корпускула есть собрание элементов, об­разующее одну малую массу».

Каждая корпускула имеет тот же состав, что и все вещество. Химически различные вещества имеют и различные по составу корпускулы. «Корпускулы однородны, если состоят из одинако­вого числа одних и тех же элементов, соединенных одинаковым образом», и «корпускулы разнородны, когда элементы их раз­личны и соединены различным образом или в различном числе».

Из приведенных определений видно, что причиной различия веществ считал не только различие в составе корпу­скул, но и различное расположение элементов в корпускуле.

Излагая свои взгляды на из «нечувстви­тельных» частиц, особенно подчеркивал, что каждая корпускула имеет некоторые конечные, хотя и очень малые раз­меры, вследствие чего ее нельзя видеть, и обладает определенной массой. Подобно всем физическим телам, корпускулы могут дви­гаться по законам механики; без движения корпускулы не мо­гут сталкиваться друг с другом, отталкиваться или как-либо иначе действовать друг на друга и изменяться. Движением кор­пускул, в частности, объясняются такие явления, как нагревание и охлаждение тел.

Так как все изменения веществ обусловли­ваются движением корпускул, химические превращения должны изучаться не только методами химии, но и методами фи­зики и математики.

Предположения Ломоносова в те времена не могли быть про­верены опытным путем из-за отсутствия точных данных о количе­ственном составе различных сложных веществ. Поэтому основ­ные положения корпускулярной теории смогли найти подтвержде­ние лишь после того, как химия прошла длительный путь разви­тия, накопила большой опытный материал и овладела новыми методами исследования.

Закон сохранения массы веществ

Масса всех веществ, вступивших в химическую реакцию, равна массе всех продуктов

*Атомно-молекулярное учение этот закон объясняет следующим образом: в результатехимических реакций атомы не исчезают и не возникают, а происходит их перегруппировка (т.е.химическое превращение- это процесс разрыва одних связей между атомами и образование

других, в результате чего из молекул исходных веществ получаются молекулы продуктовреакции). Поскольку число атомов до и после реакции остается неизменным, то их общая массатакже изменяться не должна. Под массой понимали величину, характеризующую количество

Исходя из закона сохранения массы, можно составлять уравнения химических реакций ипо ним производить расчеты. Он является основой количественного химического анализа.

Закон постоянства состава

Все индивидуальные химические вещества имеют постоянный качественный и

количественный состав и определенное химическое строение, независимо от способаполучения.

Из закона постоянства состава следует, что при образовании сложного вещества элементы

соединяются друг с другом в определенных массовых соотношениях.

Закон Авогадро ди Кваренья (1811 г.)

В равных объемах различных газов при одинаковых условиях (температура, давление ит.д.) содержится одинаковое число молекул. (Закон справедлив только для газообразныхвеществ.)

Следствия.

1. Одно и то же число молекул различных газов при одинаковых условиях занимает

одинаковые объемы.

2. При нормальных условиях (0°C = 273°К, 1 атм = 101,3 кПа) 1 моль любого газа занимает

объем 22,4 л.__

Закон действующих масс

aA + bB + . . . = . . .

V = k [A]a [B]b . . .

Закон сохранения энергии : энергия изолированной системы (не обменивающейся с окружающей средой ни веществом, ни энергией) остается постоянной, возможны лишь переходы ее из одного вида в другой.

Закон сохранения электрического заряда : алгебраическая сумма электрических зарядов в изолированной системе сохраняется.

2. Основной закон химии как частный случай общего закона материального мира. Понятия: материя, вещество, поле, движение - и их количественные характеристики и взаимосвязь. Математические выражения законов сохранения массы и энергии.

Закон действующих масс

Скорость химической реакции прямо пропорциональна произведению концентраций реагирующих веществ.

aA + bB + . . . = . . .

V = k [A]a [B]b . . .

Материя существует в форме вещества и поля. Химия изучает окружающий нас мир объединяемым понятием материи существующей вне и независимо от сознания человека.


вещество - это любая совокупность атомов и молекул

Закон сохранения массы: масса веществ, вступивших в реакцию равна массе веществ, образовавшихся в результате реакции.

* Полностью эквивалентна этой и другая формулировка: в химической реакции число атомов химического элемента сохраняется.Последняя формулировка является основой для написания стехиометрических уравнений реакций.

Закон сохранения энергии: энергия изолированной системы (не обменивающейся с окружающей средой ни веществом, ни энергией) остается постоянной, возможны лишь переходы ее из одного вида в другой.

3. Атомно-молекулярное учение: современные положения, краткая история (основоположники).

АТОМНО-МОЛЕКУЛЯРНАЯ ТЕОРИЯ

Атомно-молекулярное учение - учение о строении веществ из атомов и молекул, создано трудами Ломоносова и Дальтона.

*В развитие атомно-молекулярного учения большой вклад внесли М. В. Ломоносов, Дж. Дальтон, А. Лавуазье, Ж. Пруст, А. Авогадро, Й. Берцелиус, Д. И. Менделеев, А. М. Бутлеров.

Состав и свойства химического соединения не зависит от способа и условий его получения.

Все молекулы состоят из атомов. Совокупность или набор атомов одного вида называют химическим элементом.

Атомно-молекулярная теория основные положения:

Все вещества состоят из атомов

Атомы одного химического вещества (химический элемент) обладают одинаковыми свойствами, но отличаются от атомов другого вещества

При взаимодействии атомов образуются молекулы (гомоядерные - простые вещества, гетероядерные - сложные вещества)

При физических явлениях молекулы не изменяются, при химических происходит изменение их состава

Химические реакции заключаются в образовании новых веществ из тех же самых атомов, из которых состояли исходные вещества

4. Основные понятияхимии : атом, молекула, химический элемент, вещество (простое и сложное). Количественные характеристики атома и молекулы: размеры, абсолютная и относительная атомная и молекулярная массы, атомная единица массы (а.е.м.).

Атом - электронейтральная частица, состоящая из положительно заряженного ядра и одного или нескольких электронов.

Молекула - наименьшая частица вещества, обладающая всеми химическими свойствами данного вещества. Для некоторых веществ понятия атома и молекулы совпадают.

Простым веществом называется вещество, молекулы которого состоят из атомов одного элемента,

Соединениями или сложными веществами называются вещества, молекулы которых состоят из атомов разных элементов

Молекулы различных веществ отличаются друг от друга массой, размерами и химическими свойствами. Все молекулы одного вещества одинаковы.

Молекулы состоят из более мелких частиц - атомов. Молекулы простых веществ состоят из одинаковых атомов, молекулы сложных веществ состоят из разных атомов.

Атомы одного элемента отличаются от атомов других элементов зарядом атомного ядра, размером и химическими свойствами. При химических реакциях изменяется состав молекулы. Атомы при химических реакциях не разрушаются.

Международная единица атомных масс равна 1/12 массы изотопа 12C - основного изотопаприродного углерода.

Относительная молекулярная масса (Mr) - безразмерная величина, показывающая, во сколькораз масса молекулы данного вещества больше 1/12 массы атома углерода 12C.

Абсолютная масса молекулы равна относительной молекулярной массе, умноженной на а.е.м.

5. Расчет количества, молярной массы и молярного объема вещества. Число Авогадро.

Молярная масса вещества М равна отношению массы вещества к его количеству

и имеет принятую в химии размерность г/моль. Молярная масса вещества, выраженная в г/моль численно равна его относительной молекулярной массе. Численное равенство означает совпадение числовых значений величин, но не их размерностей.

Аналогично определяется и молярный объем как отношение объема вещества к его количеству:

Молярный объем может иметь размерность м3/моль, л/моль, см3/моль. Молярный объем определен для любого агрегатного состояния вещества и связан с его молярной массой через плотность:

Закон Авогардо: в равных объемах различных газов при одинаковых условиях (температура и давление) содержится одинаковое число молекул.

NA = 6,022 141 29(27)·10 23 моль−1

6. Химический элемент, символы элементов. Химическая формула вещества, вид формулы: эмпирическая, молекулярная, графическая. Понятия: валентность (стехиометрическая, связевая, координационная) и степень окисления химического элемента. Примеры.

Химический элемент - вид атомов, характеризующихся определенным зарядом ядра.

Молекулярная (брутто-) формула, показывающая число атомов в молекуле - C6H14,

Графическая

Эмпирическая формуладающая только соотношение элементов C:H = 3:7 - C3H7

Валентность - свойство атомов данного элемента присоединить или замещать в молекуле определенное число атомов других элементов. За единицу валентности принята валентность водорода.

Степенью окисления атома называется величина электростатического заряда атома в простом веществе, в молекуле химического соединения, в ионе

7. Понятия и количественное определение массовой, мольной и объемной долей элемента в молекуле вещества и вещества в смеси. Алгоритм установления эмпирической и молекулярной формул.

Массовая доля - отношение массы растворённого вещества к массе раствора. Массовая доля измеряется в долях единицы или в процентах:

m - общая масса раствора, г.

Объёмная доля - отношение объёма растворённого вещества к объёму раствора. Объёмная доля измеряется в долях единицы или в процентах.

V1 - объём растворённого вещества, л;

V - общий объём раствора, л.

Мольная доля - отношение количества молей данного компонента к общему количеству молей всех компонентов. Мольную долю выражают в долях единицы.

νi - количество i-го компонента, моль;

n - число компонентов;

Титр раствора - масса растворённого вещества в 1 мл раствора.

m1 - масса растворённого вещества, г;

V - общий объём раствора, мл;

Эмпирическая формула химического соединения - запись простейшего выражения относительного числа каждого типа атомов в нём; представляет собой линейную запись из символов химических элементов, сопровождающуюся подстрочными индексами, указывающими отношение элементов в соединении

Молярная масса эквивалентов обычно обозначается как или. Отношение эквивалентной молярной массы вещества к его собственно молярной массе называется фактором эквивалентности (обозначается обычно как).

Молярная масса эквивалентов вещества - масса одного моля эквивалентов, равная произведению фактора эквивалентности на молярную массу этого вещества.

Mэкв = fэкв×M

Фактор эквивалентности [править]

Отношение эквивалентной молярной массы к его собственной молярной массе называется фактором эквивалентности (обозначается обычно как).

Число эквивалентности [править]

Число эквивалентности z представляет собой небольшое положительное целое число, равное числу эквивалентов некоторого вещества, содержащихся в 1 моль этого вещества. Фактор эквивалентности связан с числом эквивалентности z следующим соотношением: =1/z.

Например, в реакции:

Zn(OH)2 + 2HCl = ZnCl2 + 2H2O

Эквивалентом является частица ½Zn(OH)2. Число ½ есть фактор эквивалентности, z в данном случае равно 2

9. Химическая реакция: определение, признаки, отличие от физических явлений, классификации.

Хими́ческая реа́кция - превращение одного или нескольких исходных веществ (реагентов) в отличающиеся от них по химическому составу или строению вещества (продукты реакции). В отличие от ядерных реакций, при химических реакциях ядра атомов не меняются, в частности не изменяется их общее число, изотопный состав химических элементов, при этом происходит перераспределение электронов и ядер и образуются новые химические вещества.

Классификация

По изменению степеней окисления реагентов[править]

В данном случае различают

Окислительно-восстановительные реакции, в которых атомы одного элемента (окислителя) восстанавливаются, то есть понижают свою степень окисления, а атомы другого элемента (восстановителя) окисляются, то есть повышают свою степень окисления. Частным случаем окислительно-восстановительных реакций являются реакции диспропорционирования, в которых окислителем и восстановителем являются атомы одного и того же элемента, находящиеся в разных степенях окисления.

Пример окислительно-восстановительной реакции - горение водорода (восстановитель) в кислороде (окислитель) с образованием воды:

Пример реакции диспропорционирования - реакция разложения нитрата аммония при нагревании. Окислителем в данном случае выступает азот (+5) нитрогруппы, а восстановителем - азот (-3) катиона аммония:

NH4NO3 = N2O + 2H2O (до 250 °C)

Не окислительно-восстановительные реакции - соответственно, реакции, в которых не происходит изменения степеней окисления атомов, например, указанная выше реакция нейтрализации.

По тепловому эффекту реакции[править]

Все реакции сопровождаются тепловыми эффектами. При разрыве химических связей в реагентах выделяется энергия, которая, в основном, идет на образование новых химических связей. В некоторых реакциях энергии этих процессов близки, и в таком случае общий тепловой эффект реакции приближается к нулю. В остальных случаях можно выделить:

экзотермические реакции, которые идут с выделением тепла, (положительный тепловой эффект) например, указанное выше горение водорода

эндотермические реакции в ходе которых тепло поглощается (отрицательный тепловой эффект) из окружающей среды.

Тепловой эффект реакции (энтальпию реакции, ΔrH), часто имеющий очень важное значение, можно вычислить по закону Гесса, если известны энтальпии образования реагентов и продуктов. Когда сумма энтальпий продуктов меньше суммы энтальпий реагентов (ΔrH < 0) наблюдается выделение тепла, в противном случае (ΔrH > 0) - поглощение.

По типу превращений реагирующих частиц[править]

соединения:

разложения:

замещения:

обмена (тип реакции-нейтрализация):

обмена (тип реакции-обмена):

Химические реакции всегда сопровождаются физическими эффектами: поглощением и выделением энергии, например в виде теплопередачи, изменением агрегатного состояния реагентов, изменением окраски реакционной смеси и др. Именно по этим физическим эффектам часто судят о протекании химических реакций.

Химические процессы, протекающие в веществе, отличаются и от физических процессов, и от ядерных превращений. В физических процессах каждое из участвующих веществ сохраняет неизменным свой состав (хотя вещества могут образовывать смеси), но могут изменять внешнюю форму или агрегатное состояние.

В химических процессах (химических реакциях) получаются новые вещества с отличными от реагентов свойствами, но никогда не образуются атомы новых элементов. В атомах же участвующих в реакции элементов обязательно происходят видоизменения электронной оболочки.

10.Схема и уравнение химической реакции (алгоритм записи уравнения). Физический смысл стехиометрических коэффициентов. Типы уравнения: полное, неполное, молекулярное, ионное, термохимическое. Привести примеры.

При химических реакциях одни вещества превращаются в другие. Вспомним известную нам реакцию серы с кислородом. И в ней из одних веществ (исходных веществ или реагентов) образуются другие (конечные вещества или продукты реакции).

Для записи и передачи информации о химических реакциях используются схемы и уравнения реакций.

Схема химической реакции – условная запись,дающая качественнуюинформацию о химической реакции.

Схема реакции показывает, какие вещества вступают в реакцию и какие образуются в результате реакции. И в схемах, и в уравнениях реакций вещества обозначаются их формулами.

Схема горения серы записывается так: S8 + O2 SO2.

Это означает, что при взаимодействии серы с кислородом протекает химическая реакция, в результате которой образуется диоксид серы (сернистый газ). Все вещества здесь молекулярные, поэтому при записи схемы использованы молекулярные формулы этих веществ. То же относится и к схеме другой реакции – реакции горения белого фосфора:

При нагревании до 900 oС карбоната кальция (мела, известняка) протекает химическая реакция: карбонат кальция превращается в оксид кальция (негашеную известь) и диоксид углерода (углекислый газ) по схеме:

CaCO3 CaO + CO2.

Для указания на то, что процесс происходит при нагревании, схему (и уравнение) обычно дополняют знаком " t" , а то, что углекислый газ при этом улетучивается, обозначают стрелкой, направленной вверх:

CaCO3 CaO + CO2.

Карбонат кальция и оксид кальция – вещества немолекулярные, поэтому в схеме использованы их простейшие формулы, отражающие состав их формульных единиц. Для молекулярного вещества – углекислого газа – использована молекулярная формула.

Рассмотрим схему реакции, протекающей при взаимодействия пентахлорида фосфора с водой: PCl5 +H2O H3PO4 + HCl.

Из схемы видно, что при этом образуется фосфорная кислота и хлороводород.

Иногда для передачи информации о химической реакции бывает достаточно и краткой схемы этой реакции, например:

S8 SO2; P4 P4O10; CaCO3 CaO.

Естественно, что краткой схеме может соответствовать и несколько разных реакций.

Уравнение химической реакции – условная запись, дающая качественную и количественную информацию о химической реакции.

Для любой химической реакции справедлив один из важнейших законов химии:

При протекании химических реакций атомы не появляются, не исчезают и не превращаются друг в друга.

При записи уравнений химических реакций, кроме формул веществ, используются коэффициенты. Как и в алгебре, коэффициент "1" в уравнении химической реакции не ставится, но подразумевается. Рассмотренные нами реакции описываются следующими уравнениями:

1S8 + 8O2 = 8SO2, или S8 + 8O2 = 8SO2;

1P4 + 5O2 = 1P4O10, или P4 + 5O2 = P4O10;

1CaCO3 = 1CaO + 1CO2, или CaCO3 = CaO + CO2;

1PCl5 + 4H2O = 1H3PO4 + 5HCl, или PCI5 + 4H2O = H3PO4 + 5HCI.

  • Вопрос 31. Современное дошкольное образование детей с ограниченными возможностями
  • Вопрос 8. Неионизирующие электромагнитные поля и излучения. Лазерное излучение. Ионизирующие излучения.
  • Вредные и опасные факторы производственной среды в помещениях, где используется современное компьютерное оборудование, телекоммуникационные сети и различные электронные приборы.
  • Основные понятия химии, законы стехиометрии

    Химическая атомистика (атомно-молекулярная теория) является исторически первой фундаментальной теоретической концепцией, положенной в основу современной химической науки. Формирование этой теории потребовало более сотни лет и связано с деятельностью таких выдающихся химиков, как М.В. Ломоносов, А.Л. Лавуазье, Дж. Дальтон, А. Авогадро, С. Канниццаро.

    Современную атомно-молекулярную теорию можно изложить в виде ряда положений:

    1. Химические вещества имеют дискретное (прерывистое) строение. Частицы вещества находятся в постоянном хаотическом тепловом движении.

    2. Основной структурной единицей химического вещества является атом.

    3. Атомы в химическом веществе связаны друг с другом, образуя молекулярные частицы или атомные агрегаты (надмолекулярные структуры).

    4. Сложные вещества (или химические соединения) состоят из атомов разных элементов. Вещества простые состоят из атомов одного элемента и должны рассматриваться как гомоядерные химические соединения.

    При формулировании основных положений атомно-молекулярной теории нам пришлось ввести несколько понятий, на которых необходимо остановиться более подробно, поскольку они являются основными в современной химии. Это понятия "атом" и "молекула", точнее атомные и молекулярные частицы.

    Атомные частицы включают в себя собственно атом, атомные ионы, атомные радикалы и атомные ион-радикалы.

    Атом - это наименьшая электронейтральная частица химического элемента, являющаяся носителем его химических свойств, и состоящая из положительно заряженного ядра и электронной оболочки.

    Атомный ион - это атомная частица, обладающая электростатическим зарядом, но не имеющая неспаренных электронов, например, Cl - - хлорид-анион, Na + - катион натрия.

    Атомный радикал - электронейтральная атомная частица, содержащая неспаренные электроны. Например, атом водорода фактически представляет собой атомный радикал - Н× .

    Атомная частица, имеющая электростатический заряд и неспаренные электроны, называется атомным ион-радикалом. Примером такой частицы может служить катион Mn 2+ , содержащий пять неспаренных электронов на d-подуровне (3d 5).

    Одной из важнейших физических характеристик атома является его масса. Поскольку абсолютное значение массы атома ничтожно мало (масса атома водорода равна 1,67×10 -27 кг), в химии используется относительная шкала масс, в которой за единицу выбрана 1/12 часть массы атома углерода изотопа-12. Относительная атомная масса - это отношение массы атома к 1/12 массы атома углерода изотопа 12 С.

    Следует отметить, что в периодической системе Д.И. Менделеева приведены среднеизотопические атомные массы элементов, которые в большинстве своем представлены несколькими изотопами, вносящими свой вклад в атомную массу элемента пропорционально своему содержанию в природе. Так, элемент хлор представлен двумя изотопами - 35 Cl (75 мол.%) и 37 Cl (25 мол.%). Среднеизотопическая масса элемента хлор составляет 35,453 а.е.м. (атомных единиц массы) (35×0,75 + 37×0,25).

    Аналогично атомным частицам, молекулярные частицы включают в себя собственно молекулы, молекулярные ионы, молекулярные радикалы и ион-радикалы.

    Молекулярная частица - это наименьшая устойчивая совокупность взаимосвязанных атомных частиц, являющаяся носителем химических свойств вещества. Молекула лишена электростатического заряда и не имеет неспаренных электронов.

    Молекулярный ион - это молекулярная частица, обладающая электростатическим зарядом, но не имеющая неспаренных электронов, например, NO 3 - - нитрат-анион, NH 4 + - катион аммония.

    Молекулярный радикал – это электронейтральная молекулярная частица, содержащая неспаренные электроны. Большинство радикалов являются реакционными частицами с небольшим временем жизни (порядка 10 -3 –10 -5 с), хотя в настоящее время известны и довольно устойчивые радикалы. Так метильный радикал × СН 3 является типичной малоустойчивой частицей. Однако, если атомы водорода в ней заменить на фенильные радикалы, то образуется стабильный молекулярный радикал трифенилметил

    Молекулы с нечетным числом электронов, например NO или NO 2 , также могут рассматриваться как свободные радикалы с высокой устойчивостью.

    Молекулярная частица, имеющая электростатический заряд и неспаренные электроны, называется молекулярным ион-радикалом . Примером такой частицы может служить катион радикал кислорода – ×О 2 + .

    Важной характеристикой молекулы является ее относительная молекулярная масса. Относительная молекулярная масса (М r) - это отношение среднеизотопической массы молекулы, вычисленной с учетом естественного природного содержания изотопов, к 1/12 массы атома углерода изотопа 12 C .

    Таким образом, мы выяснили, что мельчайшей структурной единицей любого химического вещества является атом, точнее атомная частица. В свою очередь в любом веществе, исключая инертные газы, атомы связаны друг с другом химическими связями. При этом возможно образование двух типов веществ:

    · молекулярные соединения, у которых можно выделить мельчайшие носители химических свойств, обладающие устойчивой структурой;

    · соединения надмолекулярной структуры, которые представляют собой атомные агрегаты, в которых атомные частицы связаны ковалентной, ионной или металлической связью.

    Соответственно, вещества, имеющие надмолекулярную структуру, представляют собой атомные, ионные или металлические кристаллы. В свою очередь, молекулярные вещества образуют молекулярные или молекулярно-ионные кристаллы. Молекулярное строение имеют также вещества, находящиеся в обычных условиях в газообразном или жидком агрегатном состоянии.

    Фактически, работая с конкретным химическим веществом, мы имеем дело не с отдельными атомами или молекулами, а с совокупностью очень большого числа частиц, уровни организации которых можно отобразить следующей схемой:

    Для количественного описания больших массивов частиц, которыми являются макротела, было введено специальное понятие "количество вещества", как строго определенное число его структурных элементов. Единицей количества вещества является моль. Моль - это количество вещества (n), содержащее столько структурных или формульных единиц, сколько атомов содержится в 12 г углерода изотопа 12 С. В настоящее время это число довольно точно измерено и составляет 6,022×10 23 (число Авогадро, N A). В качестве структурных единиц могут выступать атомы, молекулы, ионы, химические связи и другие объекты микромира. Понятие "формульная единица" используется для веществ с надмолекулярной структурой и определяется как простейшее соотношение между составляющими его элементами (брутто-формула). В данном случае формульная единица берет на себя роль молекулы. Например, 1 моль хлорида кальция содержит 6,022×10 23 формульных единиц - CaCl 2 .

    Одной из важных характеристик вещества является его молярная масса (М, кг/моль, г/моль). Молярная масса - это масса одного моля вещества . Относительная молекулярная масса и молярная масса вещества численно совпадают, но имеют разную размерность, например, для воды М r = 18 (относительная атомная и молекулярная массы величины безразмерные), М = 18 г/моль. Количество вещества и молярная масса связаны простым соотношением:

    Большую роль в формировании химической атомистики сыграли основные стехиометрические законы, которые были сформулированы на рубеже XVII и XVIII столетий.

    1. Закон сохранения массы (М.В. Ломоносов, 1748 г.).

    Сумма масс продуктов реакции равна сумме масс веществ, вступивших во взаимодействие . В математическом виде этот закон выражается следующим уравнением:

    Дополнением к данному закону является закон сохранения массы элемента (А. Лавуазье, 1789 г.). Согласно этому закону в процессе химической реакции масса каждого элемента остается постоянной .

    Законы М.В. Ломоносова и А. Лавуазье нашли простое объяснение в рамках атомистической теории. Действительно, при любой реакции атомы химических элементов остаются неизменными и в неизменном количестве, что влечет за собой как постоянство массы каждого элемента в отдельности, так и системы веществ в целом.

    Рассматриваемые законы имеют определяющее значение для химии, поскольку позволяют моделировать химические реакции уравнениями и выполнять на их основе количественные вычисления. Следует, однако, отметить, что закон сохранения массы не является абсолютно точным. Как следует из теории относительности (А. Эйнштейн, 1905 г.), любой процесс, протекающий с выделением энергии, сопровождается уменьшением массы системы в соответствии с уравнением:

    где DЕ – выделившаяся энергия, Dm – изменение массы системы, с - скорость света в вакууме (3,0×10 8 м/с). В результате уравнение закона сохранения массы следует записывать в следующем виде:

    Таким образом, экзотермические реакции сопровождаются уменьшением массы, а эндотермические – увеличением массы. В этом случае закон сохранение массы может быть сформулирован следующим образом: в изолированной системе сумма масс и приведенных энергий есть величина постоянная . Однако для химических реакций, тепловые эффекты которых измеряются сотнями кДж/моль, дефект массы составляет 10 -8 -10 -9 г и не может быть зарегистрирован экспериментально.

    2. Закон постоянства состава (Ж. Пруст, 1799-1804 гг.).

    Индивидуальное химическое вещество молекулярного строения имеет постоянный качественный и количественный состав, не зависящий от способа его получения . Соединения, подчиняющиеся закону постоянства состава, называют дальтонидами . Дальтонидами являются все известные к настоящему времени органические соединения (около 30 миллионов) и часть (около 100 тыс.) неорганических веществ. Вещества, имеющие немолекулярное строение (бертолиды ), не подчиняются данному закону и могут иметь переменный состав, зависящий от способа получения образца. К ним относятся большинство (около 500 тыс.) неорганических веществ. В основном это бинарные соединения d-элементов (оксиды, сульфиды, нитриды, карбиды и т.д.). Примером соединения переменного состава может служить оксид титана(III), состав которого варьирует в пределах от TiO 1,46 до TiO 1,56 . Причиной переменного состава и иррациональности формул бертолидов являются изменения состава части элементарных ячеек кристалла (дефекты кристаллической структуры), не влекущие за собой резкого изменения свойств вещества. Для дальтонидов подобное явление невозможно, поскольку изменение состава молекулы ведет к образованию нового химического соединения.

    3. Закон эквивалентов (И. Рихтер, Дж. Дальтон, 1792-1804 гг.).

    Массы реагирующих веществ прямо пропорциональны их эквивалентным массам .

    где Э А и Э В - эквивалентные массы реагирующих веществ.

    Эквивалентной массой вещества называется молярная масса его эквивалента.

    Эквивалент - это реальная или условная частица, отдающая или присоединяющая один катион водорода в реакциях кислотно-основного взаимодействия, один электрон в окислительно-восстановительных реакциях или взаимодействующая с одним эквивалентом любого другого вещества в реакциях обмена . Например, при взаимодействии металлического цинка с кислотой один атом цинка вытесняет два атома водорода, отдавая при этом два электрона:

    Zn + 2H + = Zn 2+ + H 2 ­

    Zn 0 - 2e - = Zn 2+

    Следовательно, эквивалентом цинка является 1/2 его атома, т.е. 1/2 Zn (условная частица).

    Число, показывающее, какая часть молекулы или формульной единицы вещества является его эквивалентом, называется фактором эквивалентности - f э . Эквивалентная масса, или молярная масса эквивалента, определяется как произведение фактора эквивалентности на молярную массу:

    Например, в реакции нейтрализации серная кислота отдает два катиона водорода:

    H 2 SO 4 + 2KOH = K 2 SO 4 + 2H 2 O

    Соответственно, эквивалентом серной кислоты является 1/2 H 2 SO 4 , фактор эквивалентности равен 1/2, а эквивалентная масса составляет (1/2)×98 = 49 г/моль. Гидроксид калия связывает один катион водорода, поэтому его эквивалентом является формульная единица, фактор эквивалентности равен единице, а эквивалентная масса равна молярной массе, т.е. 56 г/моль.

    Из рассмотренных примеров видно, что при расчете эквивалентной массы необходимо определить фактор эквивалентности. Для этого существует ряд правил:

    1. Фактор эквивалентности кислоты или основания равен 1/n, где n - число задействованных в реакции катионов водорода или гидроксид-анионов.

    2. Фактор эквивалентности соли равен частному от деления единицы на произведение валентности (v) катиона металла или кислотного остатка и их числа (n) в составе соли (стехиометрический индекс в формуле):

    Например, для Al 2 (SO 4) 3 - f э = 1/6

    3. Фактор эквивалентности окислителя (восстановителя) равен частному от деления единицы на число присоединенных (отданных) им электронов.

    Следует обратить внимание на то обстоятельство, что одно и то же соединение может иметь разный фактор эквивалентности в разных реакциях. Например, в реакциях кислотно-основного взаимодействия:

    H 3 PO 4 + KOH = KH 2 PO 4 + H 2 O f э (H 3 PO 4) = 1

    H 3 PO 4 + 2KOH = K 2 HPO 4 + 2H 2 O f э (H 3 PO 4) = 1/2

    H 3 PO 4 + 3KOH = K 3 PO 4 + 3H 2 O f э (H 3 PO 4) = 1/3

    или в окислительно-восстановительных реакциях:

    KMn 7+ O 4 + NaNO 2 + H 2 SO 4 ® Mn 2+ SO 4 + NaNO 3 + K 2 SO 4 + H 2 O

    MnO 4 - + 8H + + 5e - ® Mn 2+ + 4H 2 O f э (KMnO 4) = 1/5

    Основы атомно-молекулярной теории создали русский ученый М.В.Ломоносов (1741 г.) и английский ученый Дж. Дальтон (1808 г.).

    Атомно-молекулярная теория – это учение о строении вещества, основными положениями которого являются:

    1. Все вещества состоят из молекул и атомов. Молекула – это наименьшая частица вещества, которая способна существовать самостоятельно и не может дробится дальше без потери основных химических свойств данного вещества. Химические свойства молекулы определяются её составом и химическим строением.

    2. Молекулы находятся в непрерывном движении. Молекулы двигаются беспорядочно и непрерывно. Скорость движения молекул зависит от агрегатного состояния веществ. С повышением температуры скорость движения молекул увеличивается.

    3. Молекулы одного и того же вещества одинаковы, а молекулы различных веществ отличаются массой, размерами, строением и химическими свойствами. Каждое вещество существует до тех пор, пока сохраняются его молекулы. Как только молекулы разрушаются, перестает существовать и данное вещество: возникают новые молекулы, новые вещества. При химических реакциях молекулы одних веществ разрушаются, образуются молекулы других веществ.

    4. Молекулы состоят из более мелких частиц – атомов. Атом – это наименьшая частица химического элемента, которую нельзя разложить химическим путем.

    Следовательно, атом обуславливает свойства элемента.

    Атом – электронейтральная частица, состоящая из положительно заряженного ядра и отрицательно заряженных электронов.

    Химическим элементом называется вид атомов, характеризующихся определенной совокупностью свойств.

    В настоящее время элемент определяется как вид атомов, обладающих одинаковым зарядом ядра.

    Вещества, молекулы которых состоят из атомов одного элемента, называются простыми веществами (С, Н 2 , N 2 , О 3 , S 8 и т.д.).

    Вещества, молекулы которых состоят из атомов двух или более элементов, называются сложными веществами ( H 2 O, H 2 SO 4 , KHCO 3 и т.д.). Существенное значение имеет число и взаимное расположение атомов в молекуле.

    Способность атомов одного и того же элемента к образованию нескольких простых веществ, различных по строению и свойствам называется аллотропией, а образовавшиеся вещества – аллотропными видоизменениями или модификациями, так например, элемент кислород образует две аллотропные модификации: О 2 – кислород и О 3 – озон; элемент углерод – три: алмаз, графит и карбин и т.д.

    Явление аллотропии вызывается двумя причинами: различным числом атомов в молекуле (кислород О 2 и озон О 3), или образованием различных кристаллических форм (алмаз, графит и карбин).

    Элементы принято обозначать химическими знаками. Следует всегда помнить, что каждый знак химического элемента обозначает:



    1. название элемента;

    2. один атом его;

    3. один моль его атомов;

    4. относительную атомную массу элемента;

    5. его положение в периодической системе химических элементов

    Д.И. Менделеева.

    Так, например, знак S показывает, что перед нами:

    1. химический элемент сера;

    2. один атом его;

    3. один моль атомов серы;

    4. атомная масса серы равна 32 а. е. м. (атомная единица массы);

    5. порядковый номер в периодической системе химических элементов Д.И. Менделеева 16.

    Абсолютные массы атомов и молекул ничтожно малы, поэтому для удобства массу атомов и молекул выражают в относительных единицах. В настоящее время за единицу атомных масс принята атомная единица массы (сокращенно а. е. м. ), представляющая собой 1/12 часть массы изотопа углерода 12 С, 1 а. е. м. составляет 1,66 × 10 -27 кг.

    Атомной массой элемента называется масса его атома, выраженная в а. е. м.

    Относительной атомной массой элемента называют отношение массы атома данного элемента к 1/12 массы изотопа углерода 12 С.

    Относительная атомная масса величина безразмерная и обозначается Аr ,

    например, для водорода

    для кислорода .

    Молекулярная масса вещества – это масса молекулы, выраженная в а. е. м. Она равна сумме атомных масс элементов, входящих в состав молекулы данного вещества.

    Относительной молекулярной массой вещества называют отношение массы молекулы данного вещества к 1/12 массы изотопа углерода 12 С. Она обозначается символом Мr. Относительная молекулярная масса равна сумме относительных атомных масс элементов, входящих в молекулу с учетом количества атомов. Например, относительная молекулярная масса ортофосфорной кислоты Н 3 РО 4 равна массе атомов всех элементов, входящих в молекулу:

    Мr(Н 3 РО 4) = 1,0079 × 3 + 30,974 × 1 + 15,9994 × 4 = 97, 9953 или ≈ 98

    Относительная молекулярная масса показывает, во сколько раз масса молекулы данного вещества больше 1 а. е.м.

    Наряду с единицами массы, в химии пользуются также единицей количества вещества, называемой молем (сокращенное обозначение «моль» ).

    Моль вещества – количество вещества, содержащее столько молекул, атомов, ионов, электронов или других структурных единиц, сколько содержится в 12 г (0,012 кг) изотопа углерода 12 С.

    Зная массу одного атома углерода 12 С (1,993 × 10 -27 кг), можно вычислить число атомов в 0,012 кг углерода:

    Число частиц в моле любого вещества одно и то же. Оно равно 6,02 × 10 23 и называется постоянной Авогадро или числом Авогадро (N А ).

    Например, в трёх моль атомов углерода будет содержится

    3 × 6,02 × 10 23 = 18,06 × 10 23 атомов

    Применяя понятие «моль», необходимо в каждом конкретном случае точно указать, какие именно структурные единицы имеются в виду. Например, следует различать моль атомов водорода Н, моль молекул водорода Н 2 , моль ионов водорода или Один моль частиц имеет определенную массу.

    Молярная масса – это масса одного моля вещества. Обозначается буквой М.

    Молярная масса численно равна относительной молекулярной массе и имеет единицы измерения г/моль или кг/моль.

    Масса и количество вещества – понятие разные. Масса выражается в кг (г), а количество вещества – в молях. Между массой вещества (m, г), количеством вещества (n, моль) и молярной массой (М, г/моль) существуют соотношения:

    n = , г/моль; М = , г/моль; m = n × M, г.

    По этим формулам легко вычислить массу определенного количества вещества, молярную массу вещества или количества вещества.

    Пример 1 . Чему равна масса 2 моль атомов железа?

    Решение: Атомная масса железа равна 56 а.е.м. (округленно), следовательно, 1 моль атомов железа весит 56 г, а 2 моль атомов железа имеют массу 56×2 =112 г

    Пример 2 . Сколько моль гидроксида калия содержится в 560 г КОН?

    Решение: Молекулярная масса КОН равна 56 а.е.м. Молярная = 56 г/моль. В 560 г гидроксида калия содержится: 10 моль КОН. Для газообразных веществ существует понятие молярный объём V m . Согласно закону Авогадро моль любого газа при нормальных условиях (давление 101,325 кПа и температуре 273К) занимает объем 22,4 л. Эта величина называется молярным объемом (его занимают 2 г водорода (Н 2), 32 г кислорода (О 2) и т.д.

    Пример 3 . Определить массу 1 л оксида углерода (ΙV) при нормальных условиях (н. у.).

    Решение: Молекулярная масса СО 2 равна М = 44 а.е.м., следовательно, молярная масса равна 44 г/моль. По закону Авогадро один моль СО 2 при н.у. занимает объем 22,4 л. Отсюда масса 1 л СО 2 (н. у.) равна г.

    Пример 4. Определить объём, занимаемый 3,4 г сероводорода (Н 2 S) при нормальных условиях (н.у.).

    Решение: Молярная масса сероводорода равна 34 г/моль. Исходя из этого, можно записать: 34 г Н 2 S при н.у. занимает объем 22,4 л.

    3,4 г ________________________ Х л,

    отсюда Х = л.

    Пример 5. Сколько молекул аммиака содержится:

    а) в 1 л б) в 1 г?

    Решение: Число Авогадро 6,02 × 10 23 указывает на количество молекул в 1 моле (17 г/моль) или в 22,4 л при н.у., следовательно, в 1 л содержится

    6,02 × 10 23 × 1 = 2,7 × 10 22 молекул.

    Число молекул аммиака в 1 г находим из пропорции:

    отсюда Х = 6,02 × 10 23 × 1 = 3,5 × 10 22 молекул.

    Пример 6 . Какова масса 1 моль воды?

    Решение : Молекулярная масса воды H 2 O равна 18 а.е.м. (атомная масса водорода – 1, кислорода – 16, итого 1 + 1 + 16 = 18). Значит, один моль воды равен по массе 18 граммов, и эта масса воды содержит 6,02 × 10 23 молекул воды.

    Количественно масса 1 моль вещества – масса вещества в граммах, численно равная его атомной или молекулярной массе.

    Например, масса 1 моля серной кислоты H 2 SO 4 равна 98 г

    (1 +1 + 32 + 16 + 16 + 16 + 16 = 98),

    а масса одной молекулы H 2 SO 4 равна 98 г = 16,28 × 10 -23 г

    Таким образом, любое химическое соединение характеризуется массой одного моля или мольной (молярной) массой М , выражаемой в г/моль (М(H 2 O) = 18 г/моль, а М(H 2 SO 4) = 98 г/моль).

    Атомно-молекулярное учение

    Понятие о материи и движении

    Современная химия является одной из естественных наук, предметом изучения которых является материя и представляет собой систему отдельных химических дисциплин – неорганической, аналитической, физической, органической, коллоидной и др.

    Весь окружающий нас многообразный мир, вся совокупность предметов и явлений объединяются общим понятием – материя, для которой известны две формы существования – вещество и поле.

    Вещество представляет собой материальное образование состоящее из частиц, имеющих собственную массу или массу покоя. Современной науке известны различные типы материальных систем и соответствующие им структурные уровни материи. К ним относятся как элементарные частицы (электроны, протоны, нейтроны и т.д.), так и макроскопические тела различных размеров (геологические системы, планеты, звезды, звездные скопления, Галактика, системы галактик и др.) современные познания структуры материи простираются от 10 -14 см до 10 28 см (примерно 13 млрд. световых лет).

    В отличие от вещества - поле – материальная среда, в которой осуществляется взаимодействие частиц. Например, в электронном поле происходит взаимодействие между заряженными частицами, а в ядерном - между протонами и нейтронами.

    Всеобщими формами бытия материи являются пространство и время, которые не существуют вне материи, как не может быть и материальных объектов, которые не обладали бы пространственно – временными свойствами.

    Коренным и неотъемлемым свойством материи является движение - способ её существования. Формы движения материи очень разнообразны, они взаимно связаны и могут переходить из одной в другую. Например, механическая форма движения материи может переходить в электрическую форму, электрическая - в тепловую и т.д. Мерой движения материи, количественной его характеристикой является энергия.

    Определение химии

    Различные формы движения материи изучаются различными науками – физикой, химией, биологией и др. Химия изучает химическую форму движения материи, под которой понимается качественное изменение веществ, превращение одних веществ в другие. При этом разрываются, вновь возникают или перераспределяются химические связи между атомами, входящими в состав вещества. В результате химических процессов возникают новые вещества с новыми физико-химическими свойствами.

    Таким образом, химия это наука, изучающая процессы превращения веществ, сопровождающиеся изменением состава, структуры и свойств, а также взаимные переходы между этими процессами и другими формами движения материи.

    Объектом изучения в химии являются химические элементы и их соединения. Изучая свойства веществ и их превращения химия раскрывает законы природы, познает материю и её движение. Изучение химии как одной из важнейших фундаментальных естественных наук необходимо для формирования научного мировоззрения.

    Атомно-молекулярное учение

    Атомно-молекулярное учение развил и впервые применил в химии великий русский ученый М.В. Ломоносов. Основные положения его учения изложены в работе "Элементы математической химии". Сущность учения М.В. Ломоносова сводится к следующему.

    1. Все вещества состоят из "корпускул" (так М.В. Ломоносов назвал молекулы). 2. Молекулы состоят из элементов (атомов). 3. Частицы - молекулы и атомы находятся в непрерывном движении. 4. Молекулы простых веществ состоят из одинаковых атомов, молекулы сложных веществ - из различных атомов.

    В дальнейшем это учение получило развитие в работах Д. Дальтона и Я. Берцелиуса. Окончательно атомно-молекулярное учение в химии утвердилось в середине ХIХ века. На Международном съезде химиков в г. Карлсруэ в 1860 г. были приняты определения понятий химического элемента, атома и молекулы.

    Атом - наименьшая частица химического элемента, обладающая его химическими свойствами и неделимая при химических реакциях.

    Молекула - наименьшая частица вещества, обладающая его химическими свойствами. Химические свойства молекулы определяются ее составом и химическим строением.

    Все вещества делятся на простые и сложные.

    Простое вещество – состоит из атомов одного и того же элемента.

    Сложное вещество – состоит из атомов разных элементов. Так, например, оксид меди (II) образован атомами элементов меди и кислорода.

    Всего 100 лет назад атом рассматривался как неделимый объект. Однако в соответствии с современными представлениями атом имеет сложную структуру и состоит из трех субатомных частиц: протонов, нейтронов и электронов. Протоны имеют положительный заряд; нейтроны не имеют заряда, а электроны имеют отрицательный заряд. Заряды на протоне и электроне одинаковы по величине. Протоны и нейтроны занимают вместе очень небольшой объем атома, называемый ядром. Большую часть остального объема атома составляет пространство, в котором движутся электроны. Поскольку атомы не имеют результирующего электрического заряда, в каждом атоме содержится равное число электронов и протонов. Заряд ядра определяется числом протонов.

    Химический элемент - вид атомов, характеризующихся одинаковым зарядом ядра и, соответственно, характеризующихся определенной совокупностью свойств. Атомы одного и того же элемента, отличающиеся числом нейтронов, и, следовательно, массой, называются изотопами. Символ 12 6 С или просто 12 С означает атом углерода с шестью протонами и шестью нейтронами. Число протонов в ядре атома называется атомным номером. Верхний индекс (12) называется массовым числом и указывает суммарное число протонов и нейтронов в ядре атома.

    Понятие "химический элемент" нельзя отождествлять с понятием "простое вещество". Простое вещество характеризуется определенной плотностью, растворимостью, температурами плавления и кипения и др. Эти свойства относятся к совокупности атомов и для разных простых веществ они различны.

    Химический элемент характеризуется определенным зарядом ядра, изотопным составом и др. Свойства элемента относятся к его отдельным атомам.

    Сложные вещества состоят не из простых веществ, а из элементов. Например, вода состоит не из простых веществ водорода и кислорода, а из элементов водорода и кислорода.

    Многие химические элементы образуют несколько простых веществ, различных по строению и свойствам. Это явление называется аллотропией, а образовавшиеся вещества - аллотропными видоизменениями или модификациями. Так, элемент кислород образует две аллотропные модификации: кислород О 2 и озон О 3 ; элемент углерод - три: алмаз, графит и карбин.

    Химическая форма движения материи исследуется и познается измерением физических свойств и физических величин, присущих каждому веществу. Физической величиной является, например, масса вещества, его плотность, температура плавления. В химии широко используются понятия относительной атомной и молекулярной массы вещества.

    Относительная атомная масса. Массы атомов чрезвычайно малы. Так, масса атома водорода составляет 1,674×10 -27 кг , кислорода - 2,667×10 -26 кг . В химии традиционно применяют не абсолютные значения масс, а относительные. За единицу относительных масс принята атомная единица массы (сокращенно а.е.м. ), представляющая собой 1/12 массы атома углерода - 12 , т.е. изотопа углерода 6 С - 1,66×10 -27 кг . Поскольку большинство элементов имеют атомы с различной массой, поэтому относительная атомная масса химического элемента есть безразмерная величина, равная отношению средней массы атома естественного изотопического состава элемента к 1/12 массы атома углерода.


    Относительную атомную массу элемента обозначают А r . Например,

    где 1,993·10 -26 кг – масса атома углерода.

    Относительная молекулярная масса. Относительные молекулярные массы, так же как и атомные, выражаются в атомных единицах массы. Относительная молекулярная масса вещества есть безразмерная величина, равная отношению средней массы молекулы естественного изотопического состава вещества к 1/12 массы атома углерода 12 6 С .

    Относительную молекулярную массу обозначают М r . Она численно равна сумме относительных атомных масс всех атомов, входящих в состав молекулы вещества, и подсчитывается по формуле вещества. Например, M r (H 2 О) будет слагаться из 2 А r (Н)» 2 ; А r (O)= 1 × 16 = 16 ; M r (H 2 О) = 2 + 16 = 18 .

    Моль. В международной системе единиц (СИ) за единицу количества вещества принят моль. Моль - это количество вещества, содержащее столько структурных или формульных (ФЕ) единиц (молекул, атомов, ионов, электронов или других), сколько содержится атомов в 0,012 кг изотопа углерода 12 6 C .


    Зная массу одного атома углерода 12 C (1,993×10 -26 кг) , вычисляют число атомов N A в 0,012 кг углерода.

    Число частиц в 1 моль любого вещества одно и то же. Оно равно 6,02×10 23 и называется постоянной Авогадро (обозначается N A , размерность 1/моль или моль -1 ). Очевидно, в 2 моль углерода будет содержаться 2 × 6,02×10 23 атомов, в 3 моль - 3 × 6,02×10 23 атомов.

    Молярная масса. Обычно ее обозначают M . Молярная масса - величина, равная отношению массы вещества к количеству вещества. Она имеет размерность кг/моль или г/моль . Например, M = m /n или M = m /n , где m - масса в граммах; n (ню) или n - количество вещества в молях, M - молярная масса в г/моль - постоянная величина для каждого данного вещества. Так, если масса молекулы воды равна 2,99×10 -26 кг , то молярная масса M (H 2 O) = 2,99×10 -26 кг × 6,02×10 23 моль -1 = 0,018 кг/моль или 18 г/моль . В общем случае молярная масса вещества, выраженная в г/моль , численно равна относительной атомной или относительной молекулярной массе этого вещества.

    Например, относительные атомные и молекулярные массы C , O 2 , H 2 S соответственно равны 12, 32, 34, а их молярные массы составляют соответственно 12, 32, 34 г/моль.



    Понравилась статья? Поделитесь с друзьями!