Теория пределов примеры. Как решать пределы для чайников

Теория пределов – это один из разделов математического анализа. Вопрос решения пределов является достаточно обширным, поскольку существуют десятки приемов решений пределов различных видов. Существуют десятки нюансов и хитростей, позволяющих решить тот или иной предел. Тем не менее, мы все-таки попробуем разобраться в основных типах пределов, которые наиболее часто встречаются на практике.

Начнем с самого понятия предела. Но сначала краткая историческая справка. Жил-был в 19 веке француз Огюстен Луи Коши, который заложил основы математического анализа и дал строгие определения, определение предела, в частности. Надо сказать, этот самый Коши снился, снится и будет сниться в кошмарных снах всем студентам физико-математических факультетов, так как доказал огромное количество теорем математического анализа, причем одна теорема отвратительнее другой. В этой связи мы не будем рассматривать строгое определение предела, а попытаемся сделать две вещи:

1. Понять, что такое предел.
2. Научиться решать основные типы пределов.

Прошу прощения за некоторую ненаучность объяснений, важно чтобы материал был понятен даже чайнику, что, собственно, и является задачей проекта.

Итак, что же такое предел?

А сразу пример, чего бабушку лохматить….

Любой предел состоит из трех частей :

1) Всем известного значка предела .
2) Записи под значком предела, в данном случае . Запись читается «икс стремится к единице». Чаще всего – именно , хотя вместо «икса» на практике встречаются и другие переменные. В практических заданиях на месте единицы может находиться совершенно любое число, а также бесконечность ().
3) Функции под знаком предела, в данном случае .

Сама запись читается так: «предел функции при икс стремящемся к единице».

Разберем следующий важный вопрос – а что значит выражение «икс стремится к единице»? И что вообще такое «стремится»?
Понятие предела – это понятие, если так можно сказать, динамическое . Построим последовательность: сначала , затем , , …, , ….
То есть выражение «икс стремится к единице» следует понимать так – «икс» последовательно принимает значения, которые бесконечно близко приближаются к единице и практически с ней совпадают .

Как решить вышерассмотренный пример? Исходя из вышесказанного, нужно просто подставить единицу в функцию, стоящую под знаком предела:

Итак, первое правило: Когда дан любой предел, сначала просто пытаемся подставить число в функцию .

Мы рассмотрели простейший предел, но и такие встречаются на практике, причем, не так уж редко!

Пример с бесконечностью:

Разбираемся, что такое ? Это тот случай, когда неограниченно возрастает, то есть: сначала , потом , потом , затем и так далее до бесконечности.

А что в это время происходит с функцией ?
, , , …

Итак: если , то функция стремится к минус бесконечности :

Грубо говоря, согласно нашему первому правилу, мы вместо «икса» подставляем в функцию бесконечность и получаем ответ .

Еще один пример с бесконечностью:

Опять начинаем увеличивать до бесконечности, и смотрим на поведение функции:

Вывод: при функция неограниченно возрастает :

И еще серия примеров:

Пожалуйста, попытайтесь самостоятельно мысленно проанализировать нижеследующее и запомните простейшие виды пределов:

, , , , , , , , ,
Если где-нибудь есть сомнения, то можете взять в руки калькулятор и немного потренироваться.
В том случае, если , попробуйте построить последовательность , , . Если , то , , .

Примечание: строго говоря, такой подход с построением последовательностей из нескольких чисел некорректен, но для понимания простейших примеров вполне подойдет.

Также обратите внимание на следующую вещь. Даже если дан предел с большим числом вверху, да хоть с миллионом: , то все равно , так как рано или поздно «икс» примет такие гигантские значения, что миллион по сравнению с ними будет самым настоящим микробом .

Что нужно запомнить и понять из вышесказанного?

1) Когда дан любой предел, сначала просто пытаемся подставить число в функцию.

2) Вы должны понимать и сразу решать простейшие пределы, такие как , , и т.д.

Сейчас мы рассмотрим группу пределов, когда , а функция представляет собой дробь, в числителе и знаменателе которой находятся многочлены

Пример:

Вычислить предел

Согласно нашему правилу попытаемся подставить бесконечность в функцию. Что у нас получается вверху? Бесконечность. А что получается внизу? Тоже бесконечность. Таким образом, у нас есть так называемая неопределенность вида . Можно было бы подумать, что , и ответ готов, но в общем случае это вовсе не так, и нужно применить некоторый прием решения, который мы сейчас и рассмотрим.

Как решать пределы данного типа?

Сначала мы смотрим на числитель и находим в старшей степени:

Старшая степень в числителе равна двум.

Теперь смотрим на знаменатель и тоже находим в старшей степени:

Старшая степень знаменателя равна двум.

Затем мы выбираем самую старшую степень числителя и знаменателя: в данном примере они совпадают и равны двойке.

Итак, метод решения следующий: для того, чтобы раскрыть неопределенность необходимо разделить числитель и знаменатель на в старшей степени .



Вот оно как, ответ , а вовсе не бесконечность.

Что принципиально важно в оформлении решения?

Во-первых, указываем неопределенность, если она есть.

Во-вторых, желательно прервать решение для промежуточных объяснений. Я обычно использую знак , он не несет никакого математического смысла, а обозначает, что решение прервано для промежуточного объяснения.

В-третьих, в пределе желательно помечать, что и куда стремится. Когда работа оформляется от руки, удобнее это сделать так:

Для пометок лучше использовать простой карандаш.

Конечно, можно ничего этого не делать, но тогда, возможно, преподаватель отметит недочеты в решении либо начнет задавать дополнительные вопросы по заданию. А оно Вам надо?

Пример 2

Найти предел
Снова в числителе и знаменателе находим в старшей степени:

Максимальная степень в числителе: 3
Максимальная степень в знаменателе: 4
Выбираем наибольшее значение, в данном случае четверку.
Согласно нашему алгоритму, для раскрытия неопределенности делим числитель и знаменатель на .
Полное оформление задания может выглядеть так:

Разделим числитель и знаменатель на

Пример 3

Найти предел
Максимальная степень «икса» в числителе: 2
Максимальная степень «икса» в знаменателе: 1 ( можно записать как )
Для раскрытия неопределенности необходимо разделить числитель и знаменатель на . Чистовой вариант решения может выглядеть так:

Разделим числитель и знаменатель на

Под записью подразумевается не деление на ноль (делить на ноль нельзя), а деление на бесконечно малое число.

Таким образом, при раскрытии неопределенности вида у нас может получиться конечное число , ноль или бесконечность.


Пределы с неопределенностью вида и метод их решения

Следующая группа пределов чем-то похожа на только что рассмотренные пределы: в числителе и знаменателе находятся многочлены, но «икс» стремится уже не к бесконечности, а к конечному числу .

Пример 4

Решить предел
Сначала попробуем подставить -1 в дробь:

В данном случае получена так называемая неопределенность .

Общее правило : если в числителе и знаменателе находятся многочлены, и имеется неопределенности вида , то для ее раскрытия нужно разложить числитель и знаменатель на множители .

Для этого чаще всего нужно решить квадратное уравнение и (или) использовать формулы сокращенного умножения. Если данные вещи позабылись, тогда посетите страницу Математические формулы и таблицы и ознакомьтесь с методическим материалом Горячие формулы школьного курса математики . Кстати его лучше всего распечатать, требуется очень часто, да и информация с бумаги усваивается лучше.

Итак, решаем наш предел

Разложим числитель и знаменатель на множители

Для того чтобы разложить числитель на множители, нужно решить квадратное уравнение:

Сначала находим дискриминант:

И квадратный корень из него: .

В случае если дискриминант большой, например 361, используем калькулятор, функция извлечения квадратного корня есть на самом простом калькуляторе.

! Если корень не извлекается нацело (получается дробное число с запятой), очень вероятно, что дискриминант вычислен неверно либо в задании опечатка.

Далее находим корни:

Таким образом:

Всё. Числитель на множители разложен.

Знаменатель. Знаменатель уже является простейшим множителем, и упростить его никак нельзя.

Очевидно, что можно сократить на :

Теперь и подставляем -1 в выражение, которое осталось под знаком предела:

Естественно, в контрольной работе, на зачете, экзамене так подробно решение никогда не расписывают. В чистовом варианте оформление должно выглядеть примерно так:

Разложим числитель на множители.





Пример 5

Вычислить предел

Сначала «чистовой» вариант решения

Разложим числитель и знаменатель на множители.

Числитель:
Знаменатель:



,

Что важного в данном примере?
Во-первых, Вы должны хорошо понимать, как раскрыт числитель, сначала мы вынесли за скобку 2, а затем использовали формулу разности квадратов. Уж эту-то формулу нужно знать и видеть.

Методы решения пределов. Неопределённости.
Порядок роста функции. Метод замены

Пример 4

Найти предел

Это более простой пример для самостоятельного решения. В предложенном примере снова неопределённость ( более высокого порядка роста, чем корень ).

Если «икс» стремится к «минус бесконечности»

Призрак «минус бесконечности» уже давно витал в этой статье. Рассмотрим пределы с многочленами, в которых . Принципы и методы решения будут точно такими же, что и в первой части урока, за исключением ряда нюансов.

Рассмотрим 4 фишки, которые потребуются для решения практических заданий:

1) Вычислим предел

Значение предела зависит только от слагаемого , поскольку оно обладает самым высоким порядком роста. Если , то бесконечно большое по модулю отрицательное число в ЧЁТНОЙ степени , в данном случае – в четвёртой, равно «плюс бесконечности»: . Константа («двойка») положительна , поэтому:

2) Вычислим предел

Здесь старшая степень опять чётная , поэтому: . Но перед расположился «минус» (отрицательная константа –1), следовательно:

3) Вычислим предел

Значение предела зависит только от . Как вы помните из школы, «минус» «выскакивает» из-под нечётной степени, поэтому бесконечно большое по модулю отрицательное число в НЕЧЁТНОЙ степени равно «минус бесконечности», в данном случае: .
Константа («четвёрка») положительна , значит:

4) Вычислим предел

Первый парень на деревне снова обладает нечётной степенью, кроме того, за пазухой отрицательная константа, а значит: Таким образом:
.

Пример 5

Найти предел

Используя вышеизложенные пункты, приходим к выводу, что здесь неопределённость . Числитель и знаменатель одного порядка роста, значит, в пределе получится конечное число. Узнаем ответ, отбросив всех мальков:

Решение тривиально:

Пример 6

Найти предел

Это пример для самостоятельного решения. Полное решение и ответ в конце урока.

А сейчас, пожалуй, самый тонкий из случаев:

Пример 7

Найти предел

Рассматривая старшие слагаемые, приходим к выводу, что здесь неопределённость . Числитель более высокого порядка роста, чем знаменатель, поэтому сразу можно сказать, что предел равен бесконечности. Но какой бесконечности, «плюс» или «минус»? Приём тот же – в числителе и знаменателе избавимся от мелочи:

Решаем:

Разделим числитель и знаменатель на

Пример 15

Найти предел

Это пример для самостоятельного решения. Примерный образец чистового оформления в конце урока.

Ещё пара занятных примеров на тему замены переменной:

Пример 16

Найти предел

При подстановке единицы в предел получается неопределённость . Замена переменной уже напрашивается, но сначала преобразуем тангенс по формуле . Действительно, зачем нам тангенс?

Заметьте, что , поэтому . Если не совсем понятно, посмотрите значения синуса в тригонометрической таблице . Таким образом, мы сразу избавляемся от множителя , кроме того, получаем более привычную неопределённость 0:0. Хорошо бы ещё и предел у нас стремился к нулю.

Проведем замену:

Если , то

Под косинусом у нас находится «икс», который тоже необходимо выразить через «тэ».
Из замены выражаем: .

Завершаем решение:

(1) Проводим подстановку

(2) Раскрываем скобки под косинусом.

(4) Чтобы организовать первый замечательный предел , искусственно домножаем числитель на и обратное число .

Задание для самостоятельного решения:

Пример 17

Найти предел

Полное решение и ответ в конце урока.

Это были несложные задачи в своём классе, на практике всё бывает хуже, и, помимо формул приведения , приходится использовать самые разные тригонометрические формулы , а также прочие ухищрения. В статье Сложные пределы я разобрал пару настоящих примеров =)

В канун праздника окончательно проясним ситуацию ещё с одной распространённой неопределённостью:

Устранение неопределённости «единица в степени бесконечность»

Данную неопределённость «обслуживает» второй замечательный предел , и во второй части того урока мы очень подробно рассмотрели стандартные примеры решений, которые в большинстве случаев встречаются на практике. Сейчас картина с экспонентами будет завершена, кроме того, заключительные задания урока будут посвящены пределам-«обманкам», в которых КАЖЕТСЯ, что необходимо применить 2-й замечательный предел, хотя это вовсе не так.

Недостаток двух рабочих формул 2-го замечательного предела состоит в том, что аргумент должен стремиться к «плюс бесконечности» либо к нулю. Но что делать, если аргумент стремится к другому числу?

На помощь приходит универсальная формула (которая на самом деле является следствием второго замечательного предела):

Неопределённость можно устранить по формуле:

Где-то вроде уже пояснял, что обозначают квадратные скобки. Ничего особенного, скобки как скобки. Обычно их используют, чтобы чётче выделить математическую запись.

Выделим существенные моменты формулы:

1) Речь идёт только о неопределённости и никакой другой .

2) Аргумент «икс» может стремиться к произвольному значению (а не только к нулю или ), в частности, к «минус бесконечности» либо к любому конечному числу.

С помощью данной формулы можно решить все примеры урока Замечательные пределы , которые относятся ко 2-му замечательному пределу. Например, вычислим предел :

В данном случае , и по формуле :

Правда, делать так не советую, в традициях всё-таки применять «обычное» оформление решения, если его можно применить. Однако с помощью формулы очень удобно выполнять проверку «классических» примеров на 2-й замечательный предел.

При вычислении пределов следует учитывать следующие основные правила :

1. Предел суммы (разности) функций равен сумме (разности) пределов слагаемых:

2. Предел произведения функций равен произведению пределов сомножителей:

3. Предел отношения двух функций равен отношению пределов этих функций:

.

4. Постоянный множитель можно выносить за знак предела:

.

5. Предел постоянной равен самой постоянной:

6. Для непрерывных функций символы предела и функции можно поменять местами:

.

Нахождение предела функции следует начинать с подстановки значения в выражение для функции. При этом если получается числовое значение 0 или ¥, то искомый предел найден.

Пример 2.1. Вычислить предел .

Решение.

.

Выражения вида , , , , , называются неопределённостями .

Если получается неопределенность вида , то для нахождения предела нужно преобразовать функцию так, чтобы раскрыть эту неопределенность.

Неопределенность вида обычно получается, когда задан предел отношения двух многочленов. В этом случае, для вычисления предела рекомендуется разложить многочлены на множители и сократить на общий множитель. Этот множитель равен нулю при предельном значении х .

Пример 2.2. Вычислить предел .

Решение.

Подставляя , получим неопределенность:

.

Разложим числитель и знаменатель на множители:

;

Сократим на общий множитель и получим

Неопределенность вида получается, когда задан предел отношения двух многочленов при . В этом случае для вычисления рекомендуется разделить оба многочлена на х в старшей степени.

Пример 2.3. Вычислить предел .

Решение. При подстановке ∞ получается неопределенность вида , поэтому разделим все члены выражения на x 3 .

.

Здесь учитывается, что .

При вычислении пределов функции, содержащей корни, рекомендуется умножить и разделить функцию на сопряженное выражение.

Пример 2.4. Вычислить предел

Решение.

При вычислении пределов для раскрытия неопределенности вида или (1) ∞ часто используются первый и второй замечательные пределы:



Ко второму замечательному пределу приводят многие задачи, связанные с непрерывным ростом какой-либо величины.

Рассмотрим пример Я. И. Перельмана, дающий интерпретацию числа e в задаче о сложных процентах. В сбербанках процентные деньги присоединяются к основному капиталу ежегодно. Если присоединение совершается чаще, то капитал растет быстрее, так как в образовании процентов участвует большая сумма. Возьмем чисто теоретический, весьма упрощенный пример.

Пусть в банк положено 100 ден. ед. из расчета 100 % годовых. Если процентные деньги будут присоединены к основному капиталу лишь по истечении года, то к этому сроку 100 ден. ед. превратятся в 200 ден.ед.

Посмотрим теперь, во что превратятся 100 ден. ед., если процентные деньги присоединять к основному капиталу каждые полгода. По истечении полугодия 100 ден. ед. вырастут в 100 × 1,5 = 150, а еще через полгода - в 150 × 1,5 = 225 (ден. ед.). Если присоединение делать каждые 1/3 года, то по истечении года 100 ден. ед. превратятся в 100 × (1 +1/3) 3 »237 (ден. ед.).

Будем учащать сроки присоединения процентных денег до 0,1 года, до 0,01 года, до 0,001 года и т.д. Тогда из 100 ден. ед. спустя год получится:

100 × (1 +1/10) 10 » 259 (ден. ед.),

100 × (1+1/100) 100 » 270 (ден. ед.),

100 × (1+1/1000) 1000 » 271 (ден. ед.).

При безграничном сокращении сроков присоединения процентов наращенный капитал не растет беспредельно, а приближается к некоторому пределу, равному приблизительно 271. Более чем в 2,71 раз капитал, положенный под 100% годовых, увеличиться не может, даже если бы наросшие проценты присоединялись к капиталу каждую секунду, потому что

Пример 2.5. Вычислить предел функции

Решение.

Пример 2.6. Вычислить предел функции .

Решение. Подставляя получим неопределенность:

.

Используя тригонометрическую формулу, преобразуем числитель в произведение:

В результате получаем

Здесь учитывается второй замечательный предел .

Пример 2.7. Вычислить предел функции

Решение.

.

Для раскрытия неопределенности вида или можно использовать правило Лопиталя, которое основано на следующей теореме.

Теорема. Предел отношения двух бесконечно малых или бесконечно больших функций равен пределу отношения их производных

Заметим, что это правило можно применять несколько раз подряд.

Пример 2.8. Найти

Решение. При подстановке , имеем неопределенность вида . Применяя правило Лопиталя, получим

Непрерывность функции

Важным свойством функции является непрерывность.

Определение. Функция считается непрерывной , если малое изменение значения аргумента влечет за собой малое изменение значения функции.

Математически это записывается так: при

Под и понимается приращение переменных, то есть разность между последующим и предыдущим значениями: , (рисунок 2.3)

Рисунок 2.3 – Приращение переменных

Из определения функции , непрерывной в точке , следует, что . Это равенство означает выполнение трех условий:

Решение. Для функции точка является подозрительной на разрыв, проверим это, найдем односторонние пределы

Следовательно, , значит - точка устранимого разрыва


Производная функции

Рассмотрим на показательных примерах.

Пусть х – числовая переменная величина, Х – область ее изменения. Если каждому числу х, принадлежащему Х, поставлено в соответствие некоторое число у, то говорят, что на множестве Х определена функция, и записывают у = f(x).
Множество Х в данном случае – плоскость, состоящая из двух координатных осей – 0X и 0Y. Для примера изобразим функцию у = х 2 . Оси 0X и 0Y образуют Х – область ее изменения. На рисунке прекрасно видно, как ведет себя функция. В таком случае говорят, что на множестве Х определена функция у = х 2 .

Совокупность Y всех частных значений функции называется множеством значений f(x). Другими словами, множество значений – это промежуток по оси 0Y, где определена функция. Изображенная парабола явно показывает, что f(x) > 0 , т.к. x2 > 0. Поэтому область значений будет . Множество значений смотрим по 0Y.

Совокупность всех х называется областью определения f(x). Множество определений смотрим по 0X и в нашем случае областью допустимых значений является [-; +].

Точка а (а принадлежит или Х) называется предельной точкой множества Х, если в любой окрестности точки а имеются точки множества Х, отличные от а.

Пришла пора понять – что же такое предел функции?

Чисто b, к которому стремится функция при стремлении х к числу а, называется пределом функции . Записывается это следующим образом:

Например, f(x) = х 2 . Нам надо узнать, к чему стремится (не равна) функция при х 2. Сначала запишем предел:

Посмотрим на график.

Проведем параллельно оси 0Y линию через точку 2 на оси 0X. Она пересечет наш график в точке (2;4). Опустим из этой точки на ось 0Y перпендикуляр – и попадем в точку 4. Вот к чему стремится наша функция при х 2. Если теперь подставить в функцию f(x) значение 2, то ответ будет таким же.

Теперь прежде чем перейти к вычислению пределов , введем базовые определения.

Введено французским математиком Огюстеном Луи Коши в XIX веке.

Допустим, функция f(x) определена на некотором интервале, в котором содержится точка x = A, однако совсем не обязательно, чтобы значение f(А) было определено.

Тогда, согласно определению Коши, пределом функции f(x) будет некое число B при x, стремящимся к А, если для каждого C > 0 найдется число D > 0, при котором

Т.е. если функция f(x) при x А ограничена пределом В, это записывается в виде

Пределом последовательности называется некое число А, если для любого сколь угодно малого положительного числа В > 0 найдется такое число N, при котором все значения в случае n > N удовлетворяют неравенству

Такой предел имеет вид .

Последовательность, у которой есть предел, будем называть сходящейся, если нет - расходящейся.

Как Вы уже заметили, пределы обозначаются значком lim, под которым записывается некоторое условие для переменной, и далее уже записывается сама функция. Такой набор будет читаться, как «предел функции при условии…». Например:

- предел функции при х, стремящимся к 1.

Выражение «стремящимся к 1» означает, что х последовательно принимает такие значения, которые бесконечно близко приближаются к 1.

Теперь становится ясно, что для вычисления данного предела достаточно подставить вместо х значение 1:

Кроме конкретного числового значения х может стремиться и к бесконечности. Например:

Выражение х означает, что х постоянно возрастает и неограниченно близко приближается к бесконечности. Поэтому подставив вместо х бесконечность станет очевидно, что функция 1- х будет стремиться к , но с обратным знаком:

Таким образом, вычисление пределов сводится к нахождению его конкретного значения либо определенной области, в которую попадает функция, ограниченная пределом.

Исходя из вышеизложенного следует, что при вычислении пределов важно пользоваться несколькими правилами:

Понимая сущность предела и основные правила вычисления пределов , вы получите ключевое представление о том, как их решать. Если какой предел будет вызывать у вас затруднения, то пишите в комментарии и мы обязательно вам поможем.

Заметка: Юриспруденция - наука о законах, помогающее в конфлитных и других жизненных трудностях.

Теория пределов - один из разделов математического анализа, который одним под силу освоить, другие с трудом вычисляют пределы. Вопрос нахождения пределов является достаточно общим, поскольку существуют десятки приемов решения пределов различных видов. Одни и те же предела можно найти как по правилу Лопиталя, так и без него. Бывает, что расписание в ряд бесконечно малых функций позволяет быстро получить нужный результат. Существуют набор приемов и хитростей, позволяющих найти предел функции любой сложности. В данной статье попробуем разобраться в основных типах пределов, которые наиболее часто встречаются на практике. Теорию и определение предела мы здесь давать не будем, в интернете множество ресурсов где это разжевано. Поэтому займемся практическим вычислениям, именно здесь у Вас и начинается "не знаю! Не умею! Нас не учили!"

Вычисление пределов методом подстановки

Пример 1. Найти предел функции
Lim((x^2-3*x)/(2*x+5),x=3).

Решение: Такого сорта примеры по теории вычисляют обычной подстановкой

Предел равен 18/11.
Ничего сложного и мудрого в таких пределах нет - подставили значение, вычислили, записали предел в ответ. Однако на базе таких пределов всех приучают, что прежде всего нужно подставить значение в функцию. Далее пределы усложняют, вводят понятие бесконечности, неопределенности и тому подобные.

Предел с неопределенностью типа бесконечность разделить на бесконечность. Методы раскрытия неопределенности

Пример 2. Найти предел функции
Lim((x^2+2x)/(4x^2+3x-4),x=infinity).
Решение: Задан предел вида полином разделить на полином, причем переменная стремится к бесконечности

Простая подстановка значения к которому следует переменная найти пределов не поможет, получаем неопределенность вида бесконечность разделить на бесконечность.
Пот теории пределов алгоритм вычисления предела заключается в нахождении наибольшего степени "икс" в числителе или знаменателе. Далее на него упрощают числитель и знаменатель и находят предел функции

Поскольку значение стремятся к нулю при переменной к бесконечности то ими пренебрегают, или записывают в конечный выражение в виде нулей

Сразу из практики можно получить два вывода которые являются подсказкой в вычислениях. Если переменная стремится к бесконечности и степень числителя больше от степени знаменателя то предел равен бесконечности. В противном случае, если полином в знаменателе старшего порядка чем в числителе предел равен нулю.
Формулами предел можно записать так

Если имеем функцию вида обычный поленом без дробей то ее предел равен бесконечности

Следующий тип пределов касается поведения функций возле нуля.

Пример 3. Найти предел функции
Lim((x^2+3x-5)/(x^2+x+2), x=0).
Решение: Здесь уже выносить старший множитель полинома не требуется. С точностью до наоборот, необходимо найти наименьший степень числителя и знаменателя и вычислить предел

Значение x^2; x стремятся к нулю когда переменная стремится к нулю Поэтому ими пренебрегают, таким образом получим

что предел равен 2,5.

Теперь Вы знаете как найти предел функции вида полином разделить на полином если переменная стремится к бесконечности или 0. Но это лишь небольшая и легкая часть примеров. Из следующего материала Вы научитесь как раскрывать неопределенности пределов функции .

Предел с неопределенностью типа 0/0 и методы его вычислений

Сразу все вспоминают правило согласно которому делить на ноль нельзя. Однако теория пределов в этом контексте подразумеваем бесконечно малые функции.
Рассмотрим для наглядности несколько примеров.

Пример 4. Найти предел функции
Lim((3x^2+10x+7)/(x+1), x=-1).

Решение: При подстановке в знаменатель значения переменной x = -1 получим ноль, то же самое получим в числителе. Итак имеем неопределенность вида 0/0.
Бороться с такой неопределенностью просто: нужно разложить полином на множители, а точнее выделить множитель, который превращает функцию в ноль.

После разложения предел функции можно записать в виде

Вот и вся методика вычисления предела функции. Так же поступаем если есть предел вида многочлен разделить на многочлен.

Пример 5. Найти предел функции
Lim((2x^2-7x+6)/(3x^2-x-10), x=2).

Решение: Прямая подстановка показывает
2*4-7*2+6=0;
3*4-2-10=0

что имеем неопределенность типа 0/0 .
Разделим полиномы на множитель которій вносит особенность


Есть преподаватели которые учат, что полиномы 2 порядка то есть вида "квадратные уравнения" следует решать через дискриминант. Но реальная практика показывает что это дольше и запутаннее, поэтому избавляйтесь особенности в пределах по указанному алгоритму. Таким образом записываем функцию в виде простых множителей и вічисляем в предел

Как видите, ничего сложного в исчислении таких пределов нет. Делить многочлены Вы на момент изучения пределов умеете, по крайней мере согласно программе должны уже пройти.
Среди задач на неопределенность типа 0/0 встречаются такие в которых нужно применять формулы сокращенного умножения. Но если Вы их не знаете, то делением многочлена на одночлен можно получить нужную формулу.

Пример 6. Найти предел функции
Lim((x^2-9)/(x-3), x=3).
Решение: Имеем неопределенность типа 0/0 . В числителе применяем формулу сокращенного умножения

и вычисляем нужній предел

Метод раскрытия неопределенности умножением на сопряженное

Метод применяют к пределам в которіхнеопределенность порождают иррациональные функции. Числитель или знаменатель превращается в точке вычисления в ноль и неизвестно как найти границу.

Пример 7. Найти предел функции
Lim((sqrt(x+2)-sqrt(7x-10))/(3x-6), x=2).
Решение:
Представим переменную в формулу предела

При подстановки получим неопределенность типа 0/0.
Согласно теории пределов схема обхода данной особенности заключается в умножении иррационального выражения на сопряженное. Чтобы выражение не изменилось знаменатель нужно разделить на такое же значение

По правилу разности квадратов упрощаем числитель и вычисляем предел функции

Упрощаем слагаемые, создающие особенность в пределе и выполняем подстановку

Пример 8. Найти предел функции
Lim((sqrt(x-2)-sqrt(2x-5))/(3-x), x=3).
Решение: Прямая подстановка показывает что предел имеет особенность вида 0/0.

Для раскрытия умножаем и делим на сопряженное к числителю

Записываем разницу квадратов

Упрощаем слагаемые которые вносят особенность и находим предел функции

Пример 9. Найти предел функции
Lim((x^2+x-6)/(sqrt(3x-2)-2), x=2).
Решение: Подставим двойку в формулу

Получим неопределенность 0/0 .
Знаменатель нужно умножить на сопряженный выражение, а в числителе решить квадратное уравнение или разложить на множители, учитывая особенность. Поскольку известно, что 2 является корнем, то второй корень находим по теореме Виета

Таким образом числитель запишем в виде

и подставим в предел

Сведя разницу квадратов избавляемся особенности в числителе и знаменателе

Приведенным образом можно избавиться особенности во многих примерах, а применение надо замечать везде где заданная разница корней превращается в ноль при подстановке. Другие типы пределов касаются показательных функций, бесконечно малых функций, логарифмов, особых пределов и других методик. Но об этом Вы сможете прочитать в перечисленных ниже статьях о пределах.



Понравилась статья? Поделитесь с друзьями!