У прямоугольного параллелепипеда все грани являются прямоугольниками. Прямоугольный параллелепипед — Гипермаркет знаний

Параллелепипедом называется призма, основаниями которой служат параллелограммы. При этом все грани будут параллелограммами .
Каждый параллелепипед можно рассматривать как призму тремя различными способами, так как за основания можно принять каждые две противоположные грани (на черт. 5 грани ABCD и A"B"C"D", или АВА"В" и CDC"D", или ВСВ"С" и ADA"D").
Рассматриваемое тело имеет двенадцать рёбер, по четыре равных и параллельных между собой.
Теорема 3 . Диагонали параллелепипеда пересекаются в одной точке, совпадающей с серединой каждой из них.
Параллелепипед ABCDA"B"C"D" (черт. 5) имеет четыре диагонали AC", BD", CA", DB". Мы должны доказать, что середины двух каких-либо из них, например АС и BD", совпадают. Это следует из того, что фигура ABC"D", имеющая равные и параллельные стороны АВ и C"D", есть параллелограмм.
Определение 7 . Прямым параллелепипедом называется параллелепипед, являющийся одновременно и прямой призмой, т. е. параллелепипед, боковые рёбра которого перпендикулярны к плоскости основания.
Определение 8 . Прямоугольным параллелепипедом называется прямой параллелепипед, основанием которого служит прямоугольник. При этом все его грани будут прямоугольниками.
Прямоугольный параллелепипед представляет собой прямую призму, какую бы из его граней мы ни приняли за основание, так как каждое его ребро перпендикулярно к рёбрам, выходящим с ним из одной вершины, и будет, следовательно, перпендикулярно и к плоскостям граней, определяемых этими рёбрами. В противоположность этому прямой, но не прямоугольный, параллелепипед можно рассматривать как прямую призму только одним способом.
Определение 9 . Длины трёх рёбер прямоугольного параллелепипеда, из которых никакие два не параллельны между собой (например трёх рёбер, выходящих из одной вершины), называются его измерениями. Два |прямоугольных параллелепипеда, имеющих соответственно равные изме- рения, очевидно, равны между собой.
Определение 10 .Кубом называется прямоугольный параллелепипед, все три измерения которого равны между собой, так что все его грани - квадраты. Два куба, рёбра которых равны между собой, равны.
Определение 11 . Наклонный параллелепипед, у которого все рёбра равны между собой и углы всех граней равны или пополнительны, называется ромбоэдром.
Все грани ромбоэдра - равные ромбы. (Форму ромбоэдра имеют некоторые кристаллы, имеющие большое значение, например кристаллы исландского шпата.) В ромбоэдре можно найти такую вершину (и даже две противололожные вершины), что все прилежащие к ней углы равны между собой.
Теорема 4 . Диагонали прямоугольного параллелепипеда равны между собой. Квадрат диагонали равен сумме квадратов трёх измерений.
В прямоугольном параллелепипеде ABCDA"B"C"D" (черт. 6) диагонали АС" и BD" равны, так как четырёхугольник ABC"D" - прямоугольник (прямая АВ перпендикулярна к плоскости ВСВ"С", в которой лежит ВС").
Кроме того, AC" 2 =BD" 2 = AB2+AD" 2 на основании теоремы о квадрате гипотенузы. Но на основании той же теоремы AD" 2 = AA" 2 + +A"D" 2 ; отсюда имеем:
АС" 2 = АВ 2 + АА" 2 +A"D" 2 =АВ 2 + AA" 2 + AD 2 .

В геометрии ключевыми понятиями являются плоскость, точка, прямая и угол. Используя эти термины, можно описать любую геометрическую фигуру. Многогранники обычно описывают через более простые фигуры, которые лежат в одной плоскости, такие как круг, треугольник, квадрат, прямоугольник и т.д. В данной статье мы рассмотрим, что такое параллелепипед, опишем типы параллелепипедов, его свойства, из каких элементов он состоит, а также дадим основные формулы для вычисления площади и объема для каждой разновидности параллелепипеда.

Определение

Параллелепипед в трехмерном пространстве - это призма, все стороны которой являются параллелограммами. Соответственно, она может иметь только три пары параллельных параллелограммов или шесть граней.

Чтобы визуализировать параллелепипед, представьте себе обычный стандартный кирпич. Кирпич - хороший пример прямоугольного параллелепипеда, который может представить себе даже ребенок. Другими примерами могут послужить многоэтажные панельные дома, шкафы, контейнеры для хранения пищевых продуктов соответствующей формы и т.д.

Разновидности фигуры

Существует всего две разновидности параллелепипедов:

  1. Прямоугольные, все боковые грани которых находятся под углом 90 о к основанию и являются прямоугольниками.
  2. Наклонные, боковые грани которых расположены под определенным углом к основанию.

На какие элементы можно разделить эту фигуру?

  • Как и в любой другой геометрической фигуре, в параллелепипеде любые 2 грани с общим ребром зовутся смежными, а те, что его не имеют, являются параллельными (исходя из свойства параллелограмма, имеющего попарно параллельные противоположные стороны).
  • Вершины параллелепипеда, не лежащие на одной грани, зовутся противоположными.
  • Отрезок, соединяющий такие вершины, является диагональю.
  • Длины трех ребер прямоугольного параллелепипеда, соединяющихся в одной вершине, являются его измерениями (а именно, его длиной, шириной и высотой).

Свойства фигуры

  1. Он всегда построен симметрично по отношению к середине диагонали.
  2. Точка пересечения всех диагоналей делит каждую диагональ на два равных отрезка.
  3. Противолежащие грани равные по длине и лежат на параллельных прямых.
  4. Если сложить квадраты всех измерений параллелепипеда, полученное значение будет равно квадрату длины диагонали.

Расчетные формулы

Формулы для каждого частного случая параллелепипеда будут свои.

Для произвольного параллелепипеда верно утверждение, что его объем равен абсолютной величине тройного скалярного произведения векторов трех сторон, исходящих из одной вершины. Однако формулы для вычисления объема произвольного параллелепипеда не существует.

Для прямоугольного параллелепипеда действуют следующие формулы:

  • V=a*b*c;
  • Sб=2*c*(a+b);
  • Sп=2*(a*b+b*c+a*c).
  • V - объем фигуры;
  • Sб - площадь боковой поверхности;
  • Sп - площадь полной поверхности;
  • a - длина;
  • b - ширина;
  • c - высота.

Еще одним частным случаем параллелепипеда, в котором все стороны - квадраты, является куб. Если любую из сторон квадрата обозначить буквой a, то для площади поверхности и объема данной фигуры можно будет использовать следующие формулы:

  • S=6*a*2;
  • V=3*а.
  • S - площадь фигуры,
  • V - объем фигуры,
  • a - длина грани фигуры.

Последняя рассматриваемая нами разновидность параллелепипеда - прямой параллелепипед. В чем разница между прямым параллелепипедом и прямоугольным параллелепипедом, спросите вы. Дело в том, что основанием прямоугольного параллелепипеда может быть любой параллелограмм, а основанием прямого - только прямоугольник. Если обозначить периметр основания, равный сумме длин всех сторон, как Po, а высоту обозначить буквой h, мы имеем право воспользоваться следующими формулами для вычисления объема и площадей полной и боковой поверхностей.

Параллелепипед – это геометрическая фигура, все 6 граней которой представляют собой параллелограммы.

В зависимости от вида этих параллелограммов различают следующие виды параллелепипеда:

  • прямой;
  • наклонный;
  • прямоугольный.

Прямым параллелепипедом называют четырехугольную призму, ребра которой составляют с плоскостью основания угол 90 °.

Прямоугольным параллелепипедом называют четырехугольную призму, все грани которой являются прямоугольниками. Куб есть разновидность четырехугольной призмы, у которой все грани и ребра равны между собой.

Особенности фигуры предопределяют ее свойства. К ним относят 4 следующих утверждений:


Запомнить все приведенные свойства просто, они легки для понимания и выводятся логически исходя из вида и особенностей геометрического тела. Однако, незамысловатые утверждения могут быть невероятно полезны при решении типовых заданий ЕГЭ и позволят сэкономить время необходимое для прохождения теста.

Формулы параллелепипеда

Для поиска ответов на поставленную задачу недостаточно знать только свойства фигуры. Также могут понадобиться и некоторые формулы для нахождения площади и объема геометрического тела.

Площадь оснований находится также как и соответствующий показатель параллелограмма или прямоугольника. Выбирать основание параллелограмма можно самостоятельно. Как правило, при решении задач проще работать с призмой, в основании которой лежит прямоугольник.

Формула нахождения боковой поверхности параллелепипеда, также может понадобиться в тестовых заданиях.

Примеры решения типовых заданий ЕГЭ

Задание 1.

Дано : прямоугольный параллелепипед с измерениями 3, 4 и 12 см.
Необходимо найти длину одной из главных диагоналей фигуры.
Решение : Любое решение геометрической задачи должно начинаться с построения правильного и четкого чертежа, на котором будет обозначено «дано» и искомая величина. На рисунке ниже приведен пример правильного оформления условий задания.

Рассмотрев сделанный рисунок и вспомнив все свойства геометрического тела, приходим к единственно верному способу решения. Применив 4 свойство параллелепипеда, получим следующее выражение:

После несложных вычислений получим выражение b2=169, следовательно, b=13. Ответ задания найден, на его поиск и чертеж необходимо потратить не более 5 минут.

Определение

Многогранником будем называть замкнутую поверхность, составленную из многоугольников и ограничивающую некоторую часть пространства.

Отрезки, являющиеся сторонами этих многоугольников, называются ребрами многогранника, а сами многоугольники – гранями . Вершины многоугольников называются вершинами многогранника.

Будем рассматривать только выпуклые многогранники (это такой многогранник, который находится по одну сторону от каждой плоскости, содержащей его грань).

Многоугольники, из которых составлен многогранник, образуют его поверхность. Часть пространства, которую ограничивает данный многогранник, называется его внутренностью.

Определение: призма

Рассмотрим два равных многоугольника \(A_1A_2A_3...A_n\) и \(B_1B_2B_3...B_n\) , находящихся в параллельных плоскостях так, что отрезки \(A_1B_1, \ A_2B_2, ..., A_nB_n\) параллельны. Многогранник, образованный многоугольниками \(A_1A_2A_3...A_n\) и \(B_1B_2B_3...B_n\) , а также параллелограммами \(A_1B_1B_2A_2, \ A_2B_2B_3A_3, ...\) , называется (\(n\) -угольной) призмой .

Многоугольники \(A_1A_2A_3...A_n\) и \(B_1B_2B_3...B_n\) называются основаниями призмы, параллелограммы \(A_1B_1B_2A_2, \ A_2B_2B_3A_3, ...\) – боковыми гранями, отрезки \(A_1B_1, \ A_2B_2, \ ..., A_nB_n\) – боковыми ребрами.
Таким образом, боковые ребра призмы параллельны и равны между собой.

Рассмотрим пример - призма \(A_1A_2A_3A_4A_5B_1B_2B_3B_4B_5\) , в основании которой лежит выпуклый пятиугольник.

Высота призмы – это перпендикуляр, опущенный из любой точки одного основания к плоскости другого основания.

Если боковые ребра не перпендикулярны основанию, то такая призма называется наклонной (рис. 1), в противном случае – прямой . У прямой призмы боковые ребра являются высотами, а боковые грани – равными прямоугольниками.

Если в основании прямой призмы лежит правильный многоугольник, то призма называется правильной .

Определение: понятие объема

Единица измерения объема – единичный куб (куб размерами \(1\times1\times1\) ед\(^3\) , где ед - некоторая единица измерения).

Можно сказать, что объем многогранника – это величина пространства, которую ограничивает этот многогранник. Иначе: это величина, числовое значение которой показывает, сколько раз единичный куб и его части вмещаются в данный многогранник.

Объем имеет те же свойства, что и площадь:

1. Объемы равных фигур равны.

2. Если многогранник составлен из нескольких непересекающихся многогранников, то его объем равен сумме объемов этих многогранников.

3. Объем – величина неотрицательная.

4. Объем измеряется в см\(^3\) (кубические сантиметры), м\(^3\) (кубические метры) и т.д.

Теорема

1. Площадь боковой поверхности призмы равна произведению периметра основания на высоту призмы.
Площадь боковой поверхности - сумма площадей боковых граней призмы.

2. Объем призмы равен произведению площади основания на высоту призмы: \

Определение: параллелепипед

Параллелепипед – это призма, в основании которой лежит параллелограмм.

Все грани параллелепипеда (их \(6\) : \(4\) боковые грани и \(2\) основания) представляют собой параллелограммы, причем противоположные грани (параллельные друг другу) представляют собой равные параллелограммы (рис. 2).


Диагональ параллелепипеда – это отрезок, соединяющий две вершины параллелепипеда, не лежащие в одной грани (их \(8\) : \(AC_1, \ A_1C, \ BD_1, \ B_1D\) и т.д.).

Прямоугольный параллелепипед - это прямой параллелепипед, в основании которого лежит прямоугольник.
Т.к. это прямой параллелепипед, то боковые грани представляют собой прямоугольники. Значит, вообще все грани прямоугольного параллелепипеда – прямоугольники.

Все диагонали прямоугольного параллелепипеда равны (это следует из равенства треугольников \(\triangle ACC_1=\triangle AA_1C=\triangle BDD_1=\triangle BB_1D\) и т.д.).

Замечание

Таким образом, параллелепипед обладает всеми свойствами призмы.

Теорема

Площадь боковой поверхности прямоугольного параллелепипеда равна \

Площадь полной поверхности прямоугольного параллелепипеда равна \

Теорема

Объем прямоугольного параллелепипеда равен произведению трех его ребер, выходящих из одной вершины (три измерения прямоугольного параллелепипеда): \


Доказательство

Т.к. у прямоугольного параллелепипеда боковые ребра перпендикулярны основанию, то они являются и его высотами, то есть \(h=AA_1=c\) Т.к. в основании лежит прямоугольник, то \(S_{\text{осн}}=AB\cdot AD=ab\) . Отсюда и следует данная формула.

Теорема

Диагональ \(d\) прямоугольного параллелепипеда ищется по формуле (где \(a,b,c\) - измерения параллелепипеда) \

Доказательство

Рассмотрим рис. 3. Т.к. в основании лежит прямоугольник, то \(\triangle ABD\) – прямоугольный, следовательно, по теореме Пифагора \(BD^2=AB^2+AD^2=a^2+b^2\) .

Т.к. все боковые ребра перпендикулярны основаниям, то \(BB_1\perp (ABC) \Rightarrow BB_1\) перпендикулярно любой прямой в этой плоскости, т.е. \(BB_1\perp BD\) . Значит, \(\triangle BB_1D\) – прямоугольный. Тогда по теореме Пифагора \(B_1D=BB_1^2+BD^2=a^2+b^2+c^2\) , чтд.

Определение: куб

Куб - это прямоугольный параллелепипед, все грани которого – равные квадраты.


Таким образом, три измерения равны между собой: \(a=b=c\) . Значит, верны следующие

Теоремы

1. Объем куба с ребром \(a\) равен \(V_{\text{куба}}=a^3\) .

2. Диагональ куба ищется по формуле \(d=a\sqrt3\) .

3. Площадь полной поверхности куба \(S_{\text{полн.пов-ти куба}}=6a^2\) .



Понравилась статья? Поделитесь с друзьями!