Умножение многочлена на многочлен. Калькулятор онлайн.Упрощение многочлена.Умножение многочленов











Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цели урока: (Презентация. Слайд 2)

Образовательные:

  • вывести правило умножения многочлена на многочлен;
  • формировать умение применять это правило.

Развивающие:

  • развитие внимания;
  • формирование умения анализировать и обобщать знания по теме;
  • развитие навыков устного счёта.

Воспитательные:

  • воспитание аккуратности;
  • воспитание устойчивого интереса к предмету.

Тип урока: Урок изучения и первичного закрепления новых знаний.

Ход урока

I. Устная работа (Презентация. Слайд 3)

Выполните умножение.

а) а (х – у);

б) 2p (3 – q);

в) –2х (х – 4);

г) 4y(у 3 + 0,25);

д) – 0,5 c 2 (c 3 + 2);

е) –5х (3х 2 – 4);

ж) 2a 4 (а 3 – 0,5);

з) –q 7 (q 3 – q 5).

II. Объяснение нового материала (Презентация. Слайд 4)

Объяснение проводится в несколько этапов согласно материалу учебника.

1. Вывести правило умножения многочлена на многочлен и наглядно представить его на слайде (или доске):

2. Сформулировать полученное правило, попросить нескольких учащихся повторить его.

3. Разобрать примеры применения правила.

Поскольку данная тема является новой для учащихся, целесообразно привести несколько несложных примеров непосредственного применения правила умножения двух многочленов. Примеры использования этого правила при решении ряда задач лучше рассмотреть на следующих уроках.

Пример 1. (Презентация. Слайд 5) Умножить многочлен (3a – 2b) на многочлен (2a + 3b).

Решение: (3a – 2b)(2a + 3b) = 3a * 2a + 3a * 3b + (– 2b) * 2a + (– 2b) * 3b = 6a 2 + 9ab – 4 ab – 6b 2 = 6a 2 + 5ab – 6b 2 .

Пример 2. (Презентация. Слайд 6) Упростите выражение: (2х – 3)(5 – х) – 3х(4 – х).

Решение: (2х – 3)(5 – х) – 3х(4 – х) = 10х – 2х 2 – 15 + 3х – 12х + 3х 2 = х 2 + х – 15.

Пример 3. (Презентация. Слайд 7) Докажем, что при любом натуральном значении п значение выражения (п + 1)(п + 2) – (3п – 1)(п + 3) + 5п(п + 2) + п +7 кратно 3.

Решение: (п + 1)(п + 2) – (3п – 1)(п + 3) + 5п(п + 2) + п +7 = п 2 + 2п + п + 2 – 3п 2 – 9п + п + 3 + 5п 2 + 10п + п +7 = 3п 2 + 6п + 12 = 3 (п 2 + 2п + 4).

III. Формирование умений и навыков (Презентация. Слайд 8)

За урок следует опросить как можно больше учащихся, чтобы убедиться, что они усвоили правило умножения многочлена на многочлен. Поэтому для выполнения каждого задания к доске можно вызывать сразу трёх учащихся.

1. № 677, № 678.

В этих заданиях на умножение многочленов каждый из множителей является линейным. Важно, чтобы учащиеся следили за точностью применения соответствующего правила и не ошибались в знаках.

2. № 680.

Эти задания несколько сложнее, поскольку помимо применения правила умножения многочленов учащиеся должны помнить свойства степеней.

в) 12a 4 – a 2 b 2 – b 4 ;

е) 56p 3 – 51p 2 + 10p.

3. № 682 (а, в).

а) (х + 10) 2 = (х + 10) (х + 10) = х 2 + 10х + 10х + 100 = х 2 + 20х + 100;

в) (3а – 1) 2 = (3а – 1) (3а – 1) = 9а 2 – 3а – 3а – 1 = 9а 2 – 6а + 1.

IV. Итоги урока (Презентация. Слайд 9)

– Как умножить одночлен на многочлен?

– Сформулируйте правило умножения многочлена на многочлен.

– Какие знаки будут иметь слагаемые, полученные при умножении многочленов:

а) (х + у) (а – b);

б) (n – m) (p – q)?

V. Домашнее задание: (Презентация. Слайд 10)

№ 679; № 681; № 682 (б, г).

Используемые учебники и учебные пособия: (Презентация. Слайд 11)

  1. Учебник “Алгебра 7”. Ю.Н.Макарычев, Н.Г.Миндюк, К.И.Нешков, С.Б.Суворова под редакцией С.А.Теляковского. Москва “Просвещение”.2010г.
  2. Рурукин А.Н., Лупенко Г.В., Масленникова И.А. Поурочные разработки по алгебре: 7 класс.

Использованное оформление.

Для умножения многочлена на многочлен существует очень легкое правило. Чтобы умножить два многочлена между собой, надо каждый член первого многочлена умножить на каждый член второго многочлена. После это полученные произведения сложить и привести подобные.

На рисунке представлена общая схема перемножения.

Решим пример представленный на рисунке.
(4*x + 8*x*y) * (2*x + 3*y - 4) =
4*x*2*x + 4*x*3*y + 4*x*(-4) + 8*x*y*2*x + 8*x*y*3*y + 8*x*y*(-4) =
8*x^2 + 12*x*y - 16*x + 16*x^2*y + 24*x*y^2 - 32*x*y

Теперь приводим подобные слагаемые и получаем многочлен в стандартном виде.
8*x^2-20* x*y - 16*x + 16*x^2*y + 24*x*y^2
Если необходимо перемножить многочлены, у которых только одна переменная то можно умножение производить с помощью таблицы.

Рассмотрим пример:
Требуется перемножить два полинома x^5 +x^3 - 2*x^2 +3 и 2*x^4 - 3*x^3 + 4*x^2 - 1.
Для начала выпишем их коэффициенты. При чем в порядке убывания степеней неизвестных переменных, то есть от большей степени к меньшей. Если переменной в какой-то степени нет, то коэффициент взять равным нулю.

Таким образом, для полинома x^5 +x^3 - 2*x^2 +3 коэффициенты следующие 1; 0; 1; -2; 0; 3
Для полинома 2*x^4 - 3*x^3 + 4*x^2 - 1 коэффициенты 2; -3; 4; 0; -1.

Теперь записываем одни коэффициенты горизонтально, а другие вертикально. Теперь каждый из элемент из вертикального столбца умножаем на каждый элемент из горизонтального. И при каждом новом элементе сдвигаем на одну позицию вправо. Далее полученные ряды суммируем по столбцам. Как при умножении чисел в столбик, но только результат полученный после сложения не переносятся в следующий разряд.
Посмотрите на рисунке какая таблица должна получится.

Теперь остается записать ответ.
2*x^9 - 3*x^8 + 6*x^7 - 7*x^6 + 9*x^5 - 2*x^4 - 10*x^3 + 14*x^2 -3.

Нужна помощь в учебе?



Предыдущая тема:

Среди различных выражений, которые рассматриваются в алгебре, важное место занимают суммы одночленов. Приведем примеры таких выражений:
\(5a^4 - 2a^3 + 0,3a^2 - 4,6a + 8 \)
\(xy^3 - 5x^2y + 9x^3 - 7y^2 + 6x + 5y - 2 \)

Сумму одночленов называют многочленом. Слагаемые в многочлене называют членами многочлена. Одночлены также относят к многочленам, считая одночлен многочленом, состоящим из одного члена.

Например, многочлен
\(8b^5 - 2b \cdot 7b^4 + 3b^2 - 8b + 0,25b \cdot (-12)b + 16 \)
можно упростить.

Представим все слагаемые в виде одночленов стандартного вида:
\(8b^5 - 2b \cdot 7b^4 + 3b^2 - 8b + 0,25b \cdot (-12)b + 16 = \)
\(= 8b^5 - 14b^5 + 3b^2 -8b -3b^2 + 16 \)

Приведем в полученном многочлене подобные члены:
\(8b^5 -14b^5 +3b^2 -8b -3b^2 + 16 = -6b^5 -8b + 16 \)
Получился многочлен, все члены которого являются одночленами стандартного вида, причем среди них нет подобных. Такие многочлены называют многочленами стандартного вида .

За степень многочлена стандартного вида принимают наибольшую из степеней его членов. Так, двучлен \(12a^2b - 7b \) имеет третью степень, а трехчлен \(2b^2 -7b + 6 \) - вторую.

Обычно члены многочленов стандартного вида, содержащих одну переменную, располагают в порядке убывания показателей ее степени. Например:
\(5x - 18x^3 + 1 + x^5 = x^5 - 18x^3 + 5x + 1 \)

Сумму нескольких многочленов можно преобразовать (упростить) в многочлен стандартного вида.

Иногда члены многочлена нужно разбить на группы, заключая каждую группу в скобки. Поскольку заключение в скобки - это преобразование, обратное раскрытию скобок, то легко сформулировать правила раскрытия скобок:

Если перед скобками ставится знак «+», то члены, заключаемые в скобки, записываются с теми же знаками.

Если перед скобками ставится знак «-», то члены, заключаемые в скобки, записываются с противоположными знаками.

Преобразование (упрощение) произведения одночлена и многочлена

С помощью распределительного свойства умножения можно преобразовать (упростить) в многочлен произведение одночлена и многочлена. Например:
\(9a^2b(7a^2 - 5ab - 4b^2) = \)
\(= 9a^2b \cdot 7a^2 + 9a^2b \cdot (-5ab) + 9a^2b \cdot (-4b^2) = \)
\(= 63a^4b - 45a^3b^2 - 36a^2b^3 \)

Произведение одночлена и многочлена тождественно равно сумме произведений этого одночлена и каждого из членов многочлена.

Этот результат обычно формулируют в виде правила.

Чтобы умножить одночлен на многочлен, надо умножить этот одночлен на каждый из членов многочлена.

Мы уже неоднократно использовали это правило для умножения на сумму.

Произведение многочленов. Преобразование (упрощение) произведения двух многочленов

Вообще, произведение двух многочленов тождественно равно сумме произведении каждого члена одного многочлена и каждого члена другого.

Обычно пользуются следующим правилом.

Чтобы умножить многочлен на многочлен, надо каждый член одного многочлена умножить на каждый член другого и сложить полученные произведения.

Формулы сокращенного умножения. Квадраты суммы, разности и разность квадратов

С некоторыми выражениями в алгебраических преобразованиях приходится иметь дело чаще, чем с другими. Пожалуй, наиболее часто встречаются выражения \((a + b)^2, \; (a - b)^2 \) и \(a^2 - b^2 \), т. е. квадрат суммы, квадрат разности и разность квадратов. Вы заметили, что названия указанных выражений как бы не закончены, так, например, \((a + b)^2 \) - это, конечно, не просто квадрат суммы, а квадрат суммы а и b. Однако квадрат суммы а и b встречается не так уж часто, как правило, вместо букв а и b в нем оказываются различные, иногда довольно сложные выражения.

Выражения \((a + b)^2, \; (a - b)^2 \) нетрудно преобразовать (упростить) в многочлены стандартного вида, собственно, вы уже встречались с таким заданием при умножении многочленов:
\((a + b)^2 = (a + b)(a + b) = a^2 + ab + ba + b^2 = \)
\(= a^2 + 2ab + b^2 \)

Полученные тождества полезно запомнить и применять без промежуточных выкладок. Помогают этому краткие словесные формулировки.

\((a + b)^2 = a^2 + b^2 + 2ab \) - квадрат суммы равен сумме квадратов и удвоенного произведения.

\((a - b)^2 = a^2 + b^2 - 2ab \) - квадрат разности равен сумме квадратов без удвоенного произведения.

\(a^2 - b^2 = (a - b)(a + b) \) - разность квадратов равна произведению разности на сумму.

Эти три тождества позволяют в преобразованиях заменять свои левые части правыми и обратно - правые части левыми. Самое трудное при этом - увидеть соответствующие выражения и понять, чем в них заменены переменные а и b. Рассмотрим несколько примеров использования формул сокращенного умножения.

Коломина Наталья Николаевна

Учитель математики

МКОУ «Хотьковская СОШ»

Думиничского района

Калужской области.

Урока алгебры в 7 классе

"Умножение многочленов"

Цели урока:

Образовательные:

систематизировать понятия одночлена и многочлена, определять их вид; расширить представления и формировать навык применения формулы умножения многочлена на многочлен для преобразования выражений, решения уравнений и задач; создание условий для самоконтроля и взаимоконтроля усвоения знаний и умений.

Воспитательные:

воспитывать интерес к изучению математики, способствовать активизации познавательной деятельности учащихся; воспитание чувства взаимопомощи, ответственности, воспитывать культуру общения и культуру ведения диалога; воспитание качеств личности, необходимые для жизни в современном мире (честность, сила воли, ясность, точность мысли, интуиция); воспитание установки на самообразование; воспитывать культуру умственного труда.

Развивающие:

создавать условия для проявления познавательной деятельности учащихся; развивать математическую речь учащихся; развивать коммуникативные качества личности через работу в группах; формировать умение самостоятельно работать с учебным материалом; развивать умения анализировать, сравнивать и обобщать; обеспечение возможности каждому учащемуся достичь определенного уровня; приобретение навыков использования ИТ.

Оборудование:

компьютер, видеопроектор, компьютерная презентация.

Ход урока:

Учитель: мне хотелось бы, чтобы тему сегодняшнего урока вы назвали сами, после выполнения некоторых заданий.

    Проведём блиц- опрос:

1.) Дайте определение одночлена.

2.) Сформулируйте определение степени одночлена.

3.) Дайте определение многочлена.

4.) Сформулируйте правило умножения одночлена на многочлен.

5.) Какое преобразование называют разложением многочлена на множители.

    Устная работа:

    Приведите одночлен к стандартному виду:

8х2 х; 9уу2у; 1,2авс* 5а; 2а10в2 (-1,5а3)

2) Приведите подобные слагаемые.

а) 15а + 3в – 4а – в; б) 7,5х + у – 8,5х – 31,5у;

в) 10 х – 8ху – 3ху; г) 2ав – 7ав +7а2.

Итак, провели подготовительную работу: (подвести итоги)

2. Перед нами уравнение: (х – 3)(х + 5) = x 2 - 5

Как бы вы начали его решать? (раскрываем скобки). Какое действие надо сделать, чтобы раскрыть скобки? (Умножить многочлены). Значит, какова тема нашего урока? (Умножение многочленов. Записываем тему на доске и в тетрадях).Чему мы должны научиться сегодня? (Мы должны научиться умножать многочлены).

3. Создание проблемной ситуации : Давайте рассмотрим левую часть названного выше уравнения: (х – 3)(х + 5).

Можно попробовать выполнить умножение, используя предыдущие умения умножать одночлены. Необходимо рассмотреть первый многочлен, как сумму двух одночленов, и выполнить умножение по алгоритму умножения одночлена на многочлен.

Выполним умножение на доске, используя цветные мелки:

(х – 3)(х + 5) = х(х + 5) – 3(х + 5) = х 2 + 5х – 3х – 15 = х 2 + 2х – 15

Таким образом, для нахождения произведения данных многочленов пришлось перемножить каждый член многочлена х – 3 на каждый член многочлена х + 5 и результаты сложить.

Запишем формулу: (а + в)(с + d) = ас + аd + вс + вd .

Попробуйте дать словесное определение произведению многочленов (Ученики пытаются самостоятельно дать определение и вместе выбираем самое грамотное).

Давайте вернемся к нашему произведению:

Что за выражение получилось в результате? (многочлен).

Назовите его имена (трехчлен, трином).

Попробуем дать полный алгоритм умножения многочленов:

1 шаг: каждый член первого многочлена умножаем на каждый член второго многочлена;

2 шаг: найти произведения полученных одночленов;

3 шаг: привести подобные слагаемые;

4 шаг: полученный многочлен записать в стандартном виде.

4. Вернемся к нашему нерешенному уравнению: (х – 3)(х + 5) = x 2 - 5

Теперь мы сможем его решить? (ученик у доски решает уравнение с комментариями):

(х – 3)(х + 5) = x 2 - 5

х 2 + – 15 = x 2 - 5

х 2 + 2х – 15 = x 2 - 5

х 2 + 2х – 15 - x 2 + 5 = 0

2х – 10 = 0

2х = 10

х = 5

Ответ: 5.

5. Теперь попробуйте выполнить самостоятельно умножение: ( m – 3n)(9 + 2m)и т.д.

Сравним полученные результаты.

Какое получилось выражение? Его имя? Его степень?

Работаем по учебнику: №679.

Выполняем задания самостоятельно. На доске заранее записаны решения для проверки.

Испытаем свои силы на более сложном задании: № 680(а-в).

6. Задания по карточкам разного уровня сложности:

Карточка № 1:

    Найдите значение выражения:

2,5 x(-2x + 3), если x = 2.

А) – 10,5;

Б) 11,5;

В) 5;

Г) – 5.

2. Известно, что (3 x + a)(x – 4) = 3x 2 – 2x – 4a. Найдите значение a и вычислите значение выражения 3x 2 – 2x – 4a при a = -2.

А) - 18;

Б) - 24;

В) - 20;

Г) 18.

Карточка № 2:

1. Упростите выражение -3 x(2x + y) – 4y(3x – 2y) и вычислите значение выражения при

x = -0,1 y = 0,2.

А) – 0,26;

Б) 0,46;

В) 0,56;

Г) 0,36.

2. Упростите выражение (2 x – 5y)(4x + 3y) – (x + 2y)(5x – 6y).

А) 3 x 2 +18xy – 27y 2 ;

Б) 3 x 2 – 18xy – 3y 2 ;

В) 3 x 2 – 16xy – 3y 2 ;

Г) 3 x 2 – 18xy – 27y 2 .

Карточка № 3:

1. Решите уравнение x(x + 1) – (x – 2)(x – 3) = 4.

А) – 1/2;

Б) 1 1/2;

В) 1 2/3;

Г) – 1 2/3.

2. Найдите многочлен М, если известно, что x 3 – 3x 2 -2x + 6 = (x 2 – 2)·М, и вычислите значение многочлена М при x = 1.

А) 4;

Б) - 4;

В) - 1;

Г) - 2.

Ответы:

Карточка № 1

7. Итог урока:

1. Какова тема урока?

2. Цель урока? Выполнена ли она?

3. Назовите алгоритм умножения многочленов.

4. Какое выражение получается при умножении многочленов?

8. Домашнее задание: п. 29 №678, 681, 705(на повторение)


Продолжаем изучать действия с многочленами . В этой статье мы разберем умножение многочлена на многочлен . Здесь мы получим правило умножения, после чего рассмотрим его применение при решении примеров на умножение многочленов различного вида.

Навигация по странице.

Правило

Чтобы подойти к правилу умножения многочлена на многочлен, рассмотрим пример. Возьмем два многочлена a+b и c+d и выполним их умножение.

Сначала составим их произведение, для этого заключим каждый из многочленов в скобки, и поставим между ними знак умножения, имеем (a+b)·(c+d) . Теперь обозначим (c+d) как x , после этой замены записанное произведение примет вид (a+b)·x . Выполним умножение так, как проводится умножение многочлена на одночлен : (a+b)·x=a·x+b·x . На этом этапе проведем обратную замену x на c+d , что нас приведет к выражению a·(c+d)+b·(c+d) , которое с помощью правила умножения одночлена на многочлен преобразуется к виду a·c+a·d+b·c+b·d . Таким образом, умножению исходных многочленов a+b и c+d соответствует равенство (a+b)·(c+d)=a·c+a·d+b·c+b·d .

Из проведенных рассуждений можно сделать два важных вывода. Во-первых, результатом умножения многочлена на многочлен является многочлен. Это утверждение справедливо для любых умножаемых многочленов, а не только для тех, которые мы взяли в примере. Во-вторых, произведение многочленов равно сумме произведений каждого члена одного многочлена на каждый член другого. Отсюда следует, что при умножении многочленов, содержащих m и n членов соответственно, указанная сумма произведений членов будет состоять из m·n слагаемых.

Теперь сделанные выводы нам позволяют сформулировать правило умножения многочленов:
чтобы провести умножение многочлена на многочлен, нужно каждый член одного многочлена умножить на каждый член другого многочлена и сложить полученные произведения.

Примеры умножения многочлена на многочлен

На практике при решении примеров правило умножения многочлена на многочлен, полученное в предыдущем пункте, разбивается на последовательные шаги:

  • Так сначала записывается произведение умножаемых многочленов. При этом умножаемые многочлены заключаются в скобки и между ними ставится знак «· ».
  • Дальше строится сумма произведений каждого члена первого многочлена на каждый член второго. Для этого берется первый член первого многочлена и умножается на каждый член второго многочлена. После этого берется второй член первого многочлена и тоже умножается на каждый член второго многочлена. И так далее.
  • Наконец, при возможности остается полученную сумму преобразовать в многочлен стандартного вида .

Разберемся с этим на конкретном примере.

Пример.

Выполните умножение многочленов 2−3·x и x 2 −7·x+1 .

Решение.

Записываем произведение: (2−3·x)·(x 2 −7·x+1) .

Теперь составляем сумму произведений каждого члена многочлена 2−3·x на каждый член многочлена x 2 −7·x+1 . Для этого берем первый член первого многочлена, то есть, 2 , и умножаем его на каждый член второго многочлена, имеем 2·x 2 , 2·(−7·x) и 2·1 . Теперь берем второй член первого многочлена −3·x и умножаем его на каждый член второго многочлена, имеем −3·x·x 2 , −3·x·(−7·x) и −3·x·1 . Из всех полученных выражений составляем сумму: 2·x 2 +2·(−7·x)+2·1− 3·x·x 2 −3·x·(−7·x)−3·x·1 .

Чтобы убедиться, что мы все сделали правильно и не забыли про произведение каких-нибудь членов, посчитаем количество членов в полученной сумме. Там их 6 . Так и должно быть, так как исходные многочлены состоят из 2 и 3 членов, а 2·3=6 .

Осталось полученную сумму преобразовать в многочлен стандартного вида:
2·x 2 +2·(−7·x)+2·1− 3·x·x 2 −3·x·(−7·x)−3·x·1= 23·x 2 −17·x+2−3·x 3 .

Таким образом, умножение исходных многочленов дает многочлен 23·x 2 −17·x+2−3·x 3 .

Удобно решение записывать в виде цепочки равенств, которая отражает все выполняемые действия. Для нашего примера краткое решение выглядит так:
(2−3·x)·(x 2 −7·x+1)= 2·x 2 +2·(−7·x)+2·1− 3·x·x 2 −3·x·(−7·x)−3·x·1= 2·x 2 −14·x+2−3·x 3 +21·x 2 −3·x= (2·x 2 +21·x 2)+(−14·x−3·x)+2−3·x 3 = 23·x 2 −17·x+2−3·x 3 .

Ответ:

(2−3·x)·(x 2 −7·x+1)=23·x 2 −17·x+2−3·x 3 .

Стоит заметить, что если умножаемые многочлены заданы в виде, отличном от стандартного, то перед умножением их целесообразно привести к стандартному виду. В результате получится тот же результат, что и при умножении многочленов в исходном не стандартном виде, но решение получится намного короче.

Пример.

Выполните умножение многочленов и x·y−1 .

Решение.

Многочлен дан не в стандартном виде. Прежде чем выполнять умножение, приведем многочлен его к стандартному виду:

Теперь можно выполнять умножение многочленов:

Ответ:

В заключение скажем, что иногда приходится выполнять умножение трех, четырех и большего количества многочленов. Оно сводится к последовательному умножению двух многочленов. То есть, сначала умножаются первые два многочлена, полученный результат умножается на третий многочлен, этот результат умножается на четвертый многочлен и так далее.

Пример.

Найдите произведение трех многочленов x 2 +x·y−1 , x+y и 2·y−3 .

Список литературы.

  • Алгебра: учеб. для 7 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 17-е изд. - М. : Просвещение, 2008. - 240 с. : ил. - ISBN 978-5-09-019315-3.
  • Мордкович А. Г. Алгебра. 7 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович. - 17-е изд., доп. - М.: Мнемозина, 2013. - 175 с.: ил. ISBN 978-5-346-02432-3.
  • Алгебра и начала математического анализа. 10 класс: учеб. для общеобразоват. учреждений: базовый и профил. уровни / [Ю. М. Колягин, М. В. Ткачева, Н. Е. Федорова, М. И. Шабунин]; под ред. А. Б. Жижченко. - 3-е изд. - М.: Просвещение, 2010.- 368 с. : ил. - ISBN 978-5-09-022771-1.
  • Гусев В. А., Мордкович А. Г. Математика (пособие для поступающих в техникумы): Учеб. пособие.- М.; Высш. шк., 1984.-351 с., ил.


Понравилась статья? Поделитесь с друзьями!