Уравнения как их решать. Старт в науке

Уравнение, представляющее собой квадратный трехчлен, обыкновенно называется квадратным уравнением. С точки зрения алгебры оно описывается формулой a*x^2+b*x+c=0. В данной формуле х - это неизвестное, которое требуется найти (его называют свободной переменной); a, b и c - числовые коэффициенты. В отношении компонентов указанной существует ряд ограничений: так, коэффициент а не должен быть равен 0.

Решение уравнения: понятие дискриминанта

Значение неизвестного х, при котором квадратное уравнение превратится в верное равенство, называют корнем такого уравнения. Для того чтобы решить квадратное уравнение, необходимо сначала найти значение специального коэффициента - дискриминанта, который покажет количество корней у рассматриваемого равенства. Дискриминант вычисляется по формуле D=b^2-4ac. При этом результат вычисления может оказаться положительным, отрицательным или равным нулю.

При этом следует иметь в виду, что понятие требует, чтобы лишь коэффициент а был строго отличающимся от 0. Следовательно, коэффициент b может быть равным 0, а само уравнение в этом случае вид a*x^2+c=0. В такой ситуации следует использовать значение коэффициента, равное 0, и в формулах расчета дискриминанта и корней. Так, дискриминант в этом случае будет рассчитываться как D=-4ac.

Решение уравнения при положительном дискриминанте

В случае, если дискриминант квадратного уравнения оказался положительным, из этого можно сделать вывод, что данное равенство имеет два корня. Указанные корни можно вычислить по следующей формуле: x=(-b±√(b^2-4ac))/2a=(-b±√D)/2a. Таким образом, для расчета значения корней квадратного уравнения при положительном значении дискриминанта используются известные значения коэффициентов, имеющихся в . Благодаря использованию суммы и разности в формуле расчета корней результатом вычислений будут два значения, обращающие рассматриваемое равенство в верное.

Решение уравнения при нулевом и отрицательном дискриминанте

В случае, если дискриминант квадратного уравнения оказался равным 0, можно сделать вывод о том, что указанное уравнение имеет один корень. Строго говоря, в этой ситуации корней у уравнения по-прежнему два, однако вследствие нулевого дискриминанта они будут равны между собой. В этом случае x=-b/2a. Если же в процессе вычислений значение дискриминанта оказывается отрицательным, следует сделать вывод о том, что рассматриваемое квадратное уравнение не имеет корней, то есть таких значений x, при которых оно обращается в верное равенство.

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

ВВЕДЕНИЕ

«Уравнение - это золотой ключ, открывающий все математические сезамы»

С. Коваль

Математическое образование, получаемое в школе, очень важная часть жизни современного человека. Практически всё, что окружает нас так или иначе связано с математикой. Решение многих практических задач сводится к решению уравнений различных видов.

Уравнения - это наиболее объёмная тема всего курса алгебры. В прошлом учебном году на уроках алгебры мы познакомилась с квадратными уравнениями. Квадратные уравнения находят широкое применение при решении различных задач, как в области математики, так и в области физики и химии.

В школьном курсе математики изучается основные способы решения квадратных уравнений. Однако, имеются и другие приёмы решения квадратных уравнений, некоторые из которых позволяют быстро, рационально решать их.

Нами было проведено анкетирование среди 84 учащихся 8-9 классов по двум вопросам:

    Какие способы решения квадратных уравнений вы знаете?

    Какие вы используете чаще всего?

По результатам анкетирование были получены следующие результаты:

Проанализировав полученные результаты, мы пришли к выводу, что большинство учащихся используют при решении квадратных уравнений формулы корней с использование дискриминанта и недостаточно осведомлены о способах решения квадратных уравнений.

Таким образом, выбранная нами тема является актуальной.

Мы поставили перед собой цель : изучить нетрадиционные способы решения квадратных уравнений, познакомить учащихся 8 и 9 классов с различными способами решения, выработать умение выбирать рациональный способ решения квадратного уравнения.

Для достижения указанной цели нужно решить следующие задачи:

    собрать информацию о различных способах решения квадратных уравнений,

    освоить найденные способы решения,

    составить программу для решения квадратных уравнений по формулам корней квадратного уравнения в Excel,

    разработать дидактический материал для проведения урока или внеурочного мероприятия по нестандартным методам решения квадратных уравнений,

    провести занятие «Необычные способы решения квадратных уравнений» с учащимися 8 - 9 классов.

Объект исследования: квадратные уравнения.

Предмет исследования: различных способы решения квадратных уравнений.

Считаем, что практическая значимость работы состоит в возможности использования банка приёмов и способов решения квадратных уравнений на уроках математики и внеурочной деятельности, а также в ознакомлении учащихся 8 - 9 классов с данных материалом.

ГЛАВА 1. НЕОБЫЧНЫЕ МЕТОДЫ РЕШЕНИЯ КВАДРАТНЫХ УРАВНЕНИЙ

    1. СВОЙСТВА КОЭФФИЦИЕНТОВ (a,b,c)

Метод основан на свойствах коэффициентов a,b,c:

    Если a+b+c=0, то = 1, =

Пример:

-6х 2 + 2х +4=0, то = 1, = = .

    Если a - b+c=0, то = -1, = -

Пример:

2017х 2 + 2001х +16 =0, то = -1, -.

    1. ЗАВИСИМОСТИ КОЭФФИЦИЕНТОВ (a,b,c)

Справедливы следующие зависимости коэффициентов a,b,c:

Если b=a 2 +1, c=a, то х 1 =-а; x 2 = - .

Если b=-(a 2 +1), a=c, то x 1 =a; x 2 =.

Если b=a 2 -1, c=-a, то x 1 =-a; x 2 = .

Если b=-(a 2 -1), -a=c, то x 1 =a; x 2 = - .

Решим следующие уравнения:

    5x 2 + 26x + 5 = 0

x 1 = -5

x 2 = - 0,2.

    13x 2 - 167x + 13 = 0

x 1 =13 x 2 =

    14x 2 + 195x - 14 = 0

x 1 = - 14 x 2 =

    10x 2 - 99x - 10 = 0

x 1 =10 x 2 =-0,1.

    1. «ПЕРЕБРОС» ГЛАВНОГО КОЭФФИЦИЕНТА

Коэффициент а умножается на свободный член, как бы «перебрасывается» к нему, поэтому его называют способом «переброски». Далее корни находятся по теореме Виета. Найденные корни делятся на ранее переброшенный коэффициент, благодаря этому мы находим корни уравнения.

Пример:

2 - 3х + 1 = 0.

«Перебросим» коэффициент 2 к свободному члену, в результате получим уравнение

у 2 - 3у + 2 = 0.

Согласно теореме Виета

у 1 = 2 , х 1 = 2/2 , x 1 = 1,

у 2 = 1; x 2 = 1/2; x 2 = 0,5.

Ответ: 0,5; 1.

    1. ГРАФИЧЕСКИЙ СПОСОБ РЕШЕНИЯ

Если в уравнении аx 2 + bx + c = 0 перенести второй и третий члены в правую часть, то получим ax 2 = -bx -c .

Построим графики зависимостей у = aх 2 и у = -bx -c в одной системе координат.

График первой зависимости - парабола, проходящая через начало координат. График второй зависимости - прямая.

Возможны следующие случаи:

    прямая и парабола могут пересекаться в двух точках, абсциссы точек пересечения являются корнями квадратного уравнения;

    прямая и парабола могут касаться (только одна общая точка), т.е. уравнение имеет одно решение;

    прямая и парабола не имеют общих точек, т.е. квадратное уравнение не имеет корней.

Решим следующие уравнения:

1) х 2 + 2х - 3 = 0

х 2 = - 2х + 3

В одной системе координат построим график функции у =х 2 и график функции у = - 2х+3. Обозначив абсциссы точек пересечения, получим ответ.

Ответ: х 1 = - 3, х 2 =1.

2) х 2 + 6х +9 = 0

х 2 = - 6х - 9

В одной системе координат построим график функции у = х 2 и график функции у = -6х - 9. Обозначив абсциссу точки касания, получим ответ.

Ответ: х= - 3.

3) 2х 2 + 4х +7=0

2х 2 = - 4х - 7

В одной системе координат построим график функции у =2х 2 и график функции

Парабола у =2х 2 и прямая у = - 4х - 7 не имеют общих точек, следовательно уравнение не имеет корней.

Ответ: нет корней.

    1. РЕШЕНИЕ КВАДРАТНЫХ УРАВНЕНИЙ С ПОМОЩЬЮ ЦИРКУЛЯ И ЛИНЕЙКИ

Решим уравнение aх 2 +bх+c=0:

    Построим точки S(-b:2a,(a+c):2a)- центр окружности и точку А(0,1).

    Провести окружность радиуса SA.

    Абсциссы точек пересечения с осью Ох есть корни исходного уравнения.

При этом возможны три случая:

1) Радиус окружности больше ординаты центра (AS>SK , или R> ), окружность пересекает ось Ох в двух точках..B(х 1 ; 0) и D(х 2 ;0), где х 1 и х 2 - корни квадратного уравнения ах 2 + bх + с = 0.

2) Радиус окружности равен ординате центра (AS = SВ , или R = ), окружность касается оси Ох в точке B(х 1 ; 0), где х 1 - корень квадратного уравнения.

3) Радиус окружности меньше ординаты центра (AS < SВ , или R < ), окружность не имеет общих точек с осью абсцисс, в этом случае уравнение не имеет решения.

а) AS > SВ или R > , б) AS = SВ или R = в) AS < SВ, или R < .

Два решения х 1 и х 2 . Одно решение х 1.. Не имеет решения.

Пример 1: 2х 2 - 8х + 6 = 0.

Решение:

Проведём окружность радиуса SA, где А (0;1).

Ответ: х 1 = 1 , х 2 = 3.

Пример 2: х 2 - 6х + 9 = 0.

Решение : Найдём координаты S: x=3, y=5.

Ответ: x=3.

Пример 3: х 2 + 4 х + 5 = 0.

Решение: Координаты центра окружности: х= - 2 и y = 3.

Ответ: нет корней

    1. РЕШЕНИЕ С ПОМОЩЬЮ НОМОГРАММЫ

Номограмма (от греческого «nomos» - закон и грамма), графическое представление функции от нескольких переменных, позволяющее с помощью простых геометрических операций (например, прикладывание линейки) исследовать функциональные зависимости без вычислений. Например, решать квадратное уравнение без применения формул.

Это старый и в настоящее время забытый способ решения квадратных уравнений, помещённый на стр. 83 сборника: Брадис В.М. «Четырехзначные математические таблицы». - М., “ДРОФА”, 2000. Таблица XXII. Номограмма для решения уравнения z 2 + pz + q = 0 (см. Приложение 1).

Эта номограмма позволяет, не решая квадратного уравнения, по его коэффициентам определить корни уравнения.

Криволинейная шкала номограммы построена по формулам: ОВ = , АВ =

Полагая ОС = р, ЕD = q, ОЕ = а (все в см), из подобия треугольников САН и СDF получим пропорцию откуда после подстановок и упрощений вытекает уравнение z 2 + pz + q = 0, причем буква z означает метку любой точки криволинейной шкалы.

Пример 1 : z 2 - 9z + 8 = 0 .

На шкале p находим отметку -9, а на шкале q отметку 8. Проводим через эти метки прямую, которая пересекает кривую шкалу номограммы в отметках 1 и 8. Следовательно, корни уравнения 1 и 8.

Ответ: 1; 8.

Именно данное уравнение решено в таблице Брадиса стр. 83 (см. Приложение 1).

Пример 2: 2z 2 - 9z + 2 = 0.

Разделим коэффициенты этого уравнения на 2, получим уравнение:

z 2 - 4,5z + 1 = 0. Номограмма даёт корни z 1 = 4 иz 2 = 0,5.

Ответ: 4; 0,5.

Пример 3: x 2 - 25x + 66 = 0

Коэффициенты p и q выходят за пределы шкалы. Выполним подстановку x = 5z , получим уравнение:

z 2 - 5z + 2,64 = 0,

которое решаем посредством номограммы.

Получим z 1 = 0,6 и z 2 = 4,4,

откудаx 1 = 5 z 1 = 3,0 иx 2 = 5 z 2 = 22,0.

Ответ: 3; 22.

Пример 4: z 2 + 5z - 6 = 0, 1 =1 , а отрицательный корень находим, вычитая положительный корень из - p, т.е. z 2 = - p -1= - 5 - 1= -6.

Ответ: 1; -6.

Пример 5: z 2 - 2z - 8 = 0, номограмма даёт положительный корень z 1 =4, а отрицательный равен z 2 = - p -4 =

= 2 - 4= -2.

Ответ: 4; -2.

ГЛАВА 2. РЕШЕНИЕ КВАДРАТНОГО УРАВНЕНИЯ ПО ФОРМУЛАМ КОРНЕЙ С ПОМОЩЬЮ EXCEL

Мы решили составить программу для решения квадратного уравнения с помощью Excel - это широко распространенная компьютерная программа. Нужна она для проведения расчётов, составления таблиц и диаграмм, вычисления простых и сложных функций. Она входит в состав пакета Microsoft Office.

Лист программы Excel, где отображены формулы:

Лист программы Excel, где показан конкретный пример решения квадратного уравнения x 2 - 14x - 15 = 0 :

ГЛАВА 3. СРАВНЕНИЕ РАЗНЫХ СПОСОБОВ РЕШЕНИЯ КВАДРАТНЫХ УРАВНЕНИЙ

Формула корней квадратного уравнения с использованием дискриминанта D и D1

Универсальность, т.к. можно использовать для решения абсолютно всех квадратных уравнений

Громоздкий дискриминант, не входящий в таблицу квадратов

Теорема Виета

Быстрота решения в определённых случаях и экономия времени

Если дискриминант не является полным квадратом целого числа.

Не целые коэффициенты b и с.

Выделение полного квадрата

При правильном преобразовании в квадрат двучлена получаем квадратное уравнение неполного вида и следовательно быстрее находятся корни

Сложность выделения полного квадрата при дробных коэффициентах уравнения

Способ группировки

Можно решить, не зная формул

Не всегда среднее слагаемое удаётся разложить на подходящие слагаемые для группировки

Графический способ

Не требуется формул.

Можно быстро узнать количество корней уравнения

Приближённость решения

Свойства коэффициентов a,b,c

Быстрота решения.

Для уравнений с большими коэффициентами

Подходит только для некоторых уравнений

«Переброс» главного коэффициента

Быстрота решения, если корни целые

Такие же как с помощью теоремы Виета

Номограмма

Наглядность

Все, что требуется для решения-это номограмма

Не всегда имеется с собой номограмма.

Неточность решения

Нахождение корней с помощью циркуля и линейки

Наглядность

Если координаты центра нецелые числа.

Нахождении корней уравнений с большими коэффициентами

ЗАКЛЮЧЕНИЕ

«Человеку, изучающему алгебру, часто полезнее решить одну и ту же задачу тремя различными способами, чем решить три-четыре различные задачи. Решая одну задачу различными методами, можно путём сравнений выяснить, какой из них короче и эффективнее. Так вырабатывается опыт»

Уолтер Варвик Сойер

В ходе работы мы собрали материал и изучили способы решения (нахождения корней) квадратных уравнений. Решение уравнений разными способами представлено в Приложении 2.

Изучая разные способы решения квадратных уравнений, мы сделали вывод, что для каждого уравнения можно подобрать свой наиболее эффективный и рациональный вариант нахождения корней. Каждый из способов решения уникален и удобен в определённых случаях. Некоторые способы решения позволяют сэкономить время, что немаловажно при решении заданий на ОГЭ, другие - помогают решить уравнение с очень большими коэффициентами. Мы постарались сравнить разные способы решения, составив таблицу, в которой отразили плюсы и минусы каждого из способов.

Нами разработан раздаточный материал. Познакомиться с банком заданий по теме можно в Приложении 3.

Используя Microsoft Excel, мы составили электронную таблицу, которая позволяет автоматически рассчитывать корни квадратного уравнения по формулам корней.

Мы провели урок, посвященный необычным способам решения квадратных уравнений, для учащихся 9 классов. Ученикам очень понравились способы, они отметили, что полученные знания пригодятся им в дальнейшем обучении. Результатом проведённого урока стали работы учащихся, в которых они представили различные варианты решения квадратных уравнений (см. Приложение 4).

Материалом работы могут воспользоваться и те, кто любит математику и те, кто хочет знать о математике больше.

ЛИТЕРАТУРА

    Брадис В. М. «Четырехзначные математические таблицы для средней школы», М.: Дрофа, 2000.

    Виленкин Н.Я. «Алгебра для 8 класса», М.: Просвещение, 2000.

    Галицкий М.Л. «Сборник задач по алгебре», М.: Просвещение 2002.

    Глейзер Г. И. «История математики в школе», М.: Просвещение, 1982.

    Звавич Л.И. «Алгебра 8 класс», М.: Мнемозина, 2002.

    Макарычев Ю.Н. “Алгебра 8 класс”, М.: Просвещение, 2015.

    Плужников И. «10 способов решения квадратных уравнений» // Математика в школе. - 2000.- № 40.

    Пресман А.А. «Решение квадратного уравнения с помощью циркуля и линейки»//М., Квант, №4/72, c.34.

    Савин А.П. «Энциклопедический словарь юного математика»,

М.: Педагогика, 1989.

Интернет ресурсы:

http://revolution.allbest.ru/

ПРИЛОЖЕНИЕ 1

«СБОРНИК БРАДИСА В.М.»

ПРИЛОЖЕНИЕ 2

«РЕШЕНИЕ УРАВНЕНИЯ ВСЕМИ СПОСОБАМИ»

Исходноеуравнение: 2 +3х -1 = 0.

1.Формула корней квадратного уравнения с использованием дискриминанта D

2 +3х -1 = 0

D = b 2 - 4ac = 9+16 = 25 > 0, => уравнение имеет два корня

x 1,2 =

x 1 ==

x 2 ==-1

2.Теорема Виета

2 +3х -1 = 0, поделим уравнение на 4, чтобы оно стало приведённым

х 2 +х -=0

х 1 = -1

х 2 =

3. Метод выделения полного квадрата

2 +3х -1 = 0

(4х 2 +2*2х *+)-1=0

(2х +) 2 -=0

(2х + -)(2х + +)=0,

(2х -)=0 (2х +2)=0

х 1 = х 2 = -1

4. Способ группировки

2 +3х -1 = 0

2 +4х-1х-1=0

4х(х+1)-1(х+1)=0

(4х-1)(х+1)=0, произведение =0, когда один из множителей=0

(4х-1)=0 (х+1)=0

х 1 = х 2 = -1

5. Свойства коэффициентов

2 +3х -1 = 0

Если a - b+c=0, то = -1, = -

4-3-1=0, => = -1, =

6. Метод «переброски» главного коэффициента

2 +3х -1 = 0

y 2 +3y - 4 = 0

Теорема Виета:

y 1 = -4

y 2 = 1

Разделим найденные корни на главный коэффициент и получим корни нашего уравнения:

х 1 = -1

х 2 =

7. Способ решения квадратных уравнений с помощью циркуля и линейки

2 +3х -1 = 0

Определим координаты точки центра окружности по формулам:

х 1 = -1

х 2 =

8. Графический способ решения

2 +3х -1 = 0

2 = - 3x + 1

В одной системе координат построим график функции у = 4х 2 и график функции

у = - 3х+1. Обозначив абсциссы точек пересечения, получим ответ:

х 1 = -1

9. С помощью номограммы

2 +3х -1 = 0, разделим коэффициенты уравнения 1/на 4, получим уравнение

х 2 +х -= 0.

Номограмма даёт положительный корень = ,

а отрицательный корень находим, вычитая положительный корень из - p, т.е.

x 2 = - p -=- -= -1.

10. Решение данного уравнения в EXCEL

ПРИЛОЖЕНИЕ 3

«ДИДАКТИЧЕСКИЙ МАТЕРИАЛ ДЛЯ ТЕМЫ

РЕШЕНИЕ КВАДРАТНЫХ УРАВНЕНИЙ” »

10х 2 + 2017х + 2007 = 0 -1 -200,7

-10х 2 + 7х + 3 = 0 -1 0,3

354х 2 -52х -302 = 0 1 -

100х 2 -99х-1 = 0 1 -0,01

2 + 9х + 4 = 0 -1 -0,8

2017х 2 + х -2016 = 0 -1

22х 2 +10х-12 = 0 -1

5432х 2 -3087х-2345 = 0 1 -

2 + 2х -6с = 0 1 -1,5

55х 2 -44х -11= 0 1 -0,2

2 - 7х - 3 = 0 - , 1,5

2 -17х-15 = 0 -0,75, 5

4271х 2 -4272х + 1 = 0 1,

2 +10х + 7 = 0 -1, - 2

2 - 11х + 2 = 0 2, 0,2

2 - 11х + 15 = 0 2,5, 3

2 + 4х -3= 0 -1,5, 0,5

2 -12х + 7 = 0 1,4, 1

2 + 13х + 15 = 0 -1,5 -5

2 -7х + 2 = 0 1/3 2

ПРИЛОЖЕНИЕ 4

«РАБОТЫ УЧАЩИХСЯ»

И т.п., логично познакомиться с уравнениями и других видов. Следующими по очереди идут линейные уравнения , целенаправленное изучение которых начинается на уроках алгебры в 7 классе.

Понятно, что сначала надо объяснить, что такое линейное уравнение, дать определение линейного уравнения, его коэффициентов, показать его общий вид. Дальше можно разбираться, сколько решений имеет линейное уравнение в зависимости от значений коэффициентов, и как находятся корни. Это позволит перейти к решению примеров, и тем самым закрепить изученную теорию. В этой статье мы это сделаем: детально остановимся на всех теоретических и практических моментах, касающихся линейных уравнений и их решения.

Сразу скажем, что здесь мы будем рассматривать только линейные уравнения с одной переменной, а уже в отдельной статье будем изучать принципы решения линейных уравнений с двумя переменными .

Навигация по странице.

Что такое линейное уравнение?

Определение линейного уравнения дается по виду его записи. Причем в разных учебниках математики и алгебры формулировки определений линейных уравнений имеют некоторые различия, не влияющие на суть вопроса.

Например, в учебнике алгебры для 7 класса Ю. Н. Макарычева и др. линейное уравнение определяется следующим образом:

Определение.

Уравнение вида a·x=b , где x – переменная, a и b – некоторые числа, называется линейным уравнением с одной переменной .

Приведем примеры линейных уравнений, отвечающие озвученному определению. Например, 5·x=10 – это линейное уравнение с одной переменной x , здесь коэффициент a равен 5 , а число b есть 10 . Другой пример: −2,3·y=0 – это тоже линейное уравнение, но с переменной y , в котором a=−2,3 и b=0 . А в линейных уравнениях x=−2 и −x=3,33 a не присутствуют в явном виде и равны 1 и −1 соответственно, при этом в первом уравнении b=−2 , а во втором - b=3,33 .

А годом ранее в учебнике математики Виленкина Н. Я. линейными уравнениями с одним неизвестным помимо уравнений вида a·x=b считали и уравнения, которые можно привести к такому виду с помощью переноса слагаемых из одной части уравнения в другую с противоположным знаком, а также с помощью приведения подобных слагаемых. Согласно этому определению, уравнения вида 5·x=2·x+6 , и т.п. тоже линейные.

В свою очередь в учебнике алгебры для 7 классов А. Г. Мордковича дается такое определение:

Определение.

Линейное уравнение с одной переменной x – это уравнение вида a·x+b=0 , где a и b – некоторые числа, называемые коэффициентами линейного уравнения.

К примеру, линейными уравнениями такого вида являются 2·x−12=0 , здесь коэффициент a равен 2 , а b – равен −12 , и 0,2·y+4,6=0 с коэффициентами a=0,2 и b=4,6 . Но в тоже время там приводятся примеры линейных уравнений, имеющие вид не a·x+b=0 , а a·x=b , например, 3·x=12 .

Давайте, чтобы у нас в дальнейшем не было разночтений, под линейным уравнениями с одной переменной x и коэффициентами a и b будем понимать уравнение вида a·x+b=0 . Такой вид линейного уравнения представляется наиболее оправданным, так как линейные уравнения – это алгебраические уравнения первой степени. А все остальные указанные выше уравнения, а также уравнения, которые с помощью равносильных преобразований приводятся к виду a·x+b=0 , будем называть уравнениями, сводящимися к линейным уравнениям . При таком подходе уравнение 2·x+6=0 – это линейное уравнение, а 2·x=−6 , 4+25·y=6+24·y , 4·(x+5)=12 и т.п. – это уравнения, сводящиеся к линейным.

Как решать линейные уравнения?

Теперь пришло время разобраться, как решаются линейные уравнения a·x+b=0 . Другими словами, пора узнать, имеет ли линейное уравнение корни, и если имеет, то сколько их и как их найти.

Наличие корней линейного уравнения зависит от значений коэффициентов a и b . При этом линейное уравнение a·x+b=0 имеет

  • единственный корень при a≠0 ,
  • не имеет корней при a=0 и b≠0 ,
  • имеет бесконечно много корней при a=0 и b=0 , в этом случае любое число является корнем линейного уравнения.

Поясним, как были получены эти результаты.

Мы знаем, что для решения уравнений можно переходить от исходного уравнения к равносильным уравнениям , то есть, к уравнениям с теми же корнями или также как и исходное, не имеющим корней. Для этого можно использовать следующие равносильные преобразования:

  • перенос слагаемого из одной части уравнения в другую с противоположным знаком,
  • а также умножение или деление обе частей уравнения на одно и то же отличное от нуля число.

Итак, в линейном уравнении с одной переменной вида a·x+b=0 мы можем перенести слагаемое b из левой части в правую часть с противоположным знаком. При этом уравнение примет вид a·x=−b .

А дальше напрашивается деление обеих частей уравнения на число a. Но есть одно но: число a может быть равно нулю, в этом случае такое деление невозможно. Чтобы справиться с этой проблемой, сначала будем считать, что число a отлично от нуля, а случай равного нулю a рассмотрим отдельно чуть позже.

Итак, когда a не равно нулю, то мы можем обе части уравнения a·x=−b разделить на a , после этого оно преобразуется к виду x=(−b):a , этот результат можно записать с использованием дробной черты как .

Таким образом, при a≠0 линейное уравнение a·x+b=0 равносильно уравнению , откуда виден его корень .

Несложно показать, что этот корень единственный, то есть, линейное уравнение не имеет других корней. Это позволяет сделать метод от противного.

Обозначим корень как x 1 . Предположим, что существует еще один корень линейного уравнения, который обозначим x 2 , причем x 2 ≠x 1 , что в силу определения равных чисел через разность эквивалентно условию x 1 −x 2 ≠0 . Так как x 1 и x 2 корни линейного уравнения a·x+b=0 , то имеют место числовые равенства a·x 1 +b=0 и a·x 2 +b=0 . Мы можем выполнить вычитание соответствующих частей этих равенств, что нам позволяют сделать свойства числовых равенств , имеем a·x 1 +b−(a·x 2 +b)=0−0 , откуда a·(x 1 −x 2)+(b−b)=0 и дальше a·(x 1 −x 2)=0 . А это равенство невозможно, так как и a≠0 и x 1 −x 2 ≠0 . Так мы пришли к противоречию, что доказывает единственность корня линейного уравнения a·x+b=0 при a≠0 .

Так мы решили линейное уравнение a·x+b=0 при a≠0 . Первый результат, приведенный в начале этого пункта, обоснован. Остались еще два, отвечающие условию a=0 .

При a=0 линейное уравнение a·x+b=0 принимает вид 0·x+b=0 . Из этого уравнения и свойства умножения чисел на нуль следует, что какое бы число мы не взяли в качестве x , при его подстановке в уравнение 0·x+b=0 получится числовое равенство b=0 . Это равенство верное, когда b=0 , а в остальных случаях при b≠0 это равенство неверное.

Следовательно, при a=0 и b=0 любое число является корнем линейного уравнения a·x+b=0 , так как при этих условиях подстановка вместо x любого числа дает верное числовое равенство 0=0 . А при a=0 и b≠0 линейное уравнение a·x+b=0 не имеет корней, так как при этих условиях подстановка вместо x любого числа приводит к неверному числовому равенству b=0 .

Приведенные обоснования позволяют сформировать последовательность действий, позволяющую решить любое линейное уравнение. Итак, алгоритм решения линейного уравнения таков:

  • Сначала по записи линейного уравнения находим значения коэффициентов a и b .
  • Если a=0 и b=0 , то это уравнение имеет бесконечно много корней, а именно, любое число является корнем этого линейного уравнения.
  • Если же a отлично от нуля, то
    • коэффициент b переносится в правую часть с противоположным знаком, при этом линейное уравнение преобразуется к виду a·x=−b ,
    • после чего обе части полученного уравнения делятся на отличное от нуля число a , что и дает искомый корень исходного линейного уравнения .

Записанный алгоритм является исчерпывающим ответом на вопрос, как решать линейные уравнения.

В заключение этого пункта стоит сказать, что похожий алгоритм применяется для решения уравнений вида a·x=b . Его отличие состоит в том, что при a≠0 сразу выполняется деление обеих частей уравнения на это число, здесь b уже находится в нужной части уравнения и не нужно осуществлять его перенос.

Для решения уравнений вида a·x=b применяется такой алгоритм:

  • Если a=0 и b=0 , то уравнение имеет бесконечно много корней, которыми являются любые числа.
  • Если a=0 и b≠0 , то исходное уравнение не имеет корней.
  • Если же a отлично от нуля, то обе части уравнения делятся на отличное от нуля число a , откуда находится единственный корень уравнения, равный b/a .

Примеры решения линейных уравнений

Переходим к практике. Разберем, как применяется алгоритм решения линейных уравнений. Приведем решения характерных примеров, соответствующих различным значениям коэффициентов линейных уравнений.

Пример.

Решите линейное уравнение 0·x−0=0 .

Решение.

В этом линейном уравнении a=0 и b=−0 , что то же самое, b=0 . Следовательно, это уравнение имеет бесконечно много корней, любое число является корнем этого уравнения.

Ответ:

x – любое число.

Пример.

Имеет ли решения линейное уравнение 0·x+2,7=0 ?

Решение.

В данном случае коэффициент a равен нулю, а коэффициент b этого линейного уравнения равен 2,7 , то есть, отличен от нуля. Поэтому, линейное уравнение не имеет корней.

Министерство общего и профессионального образования РФ

Муниципальное образовательное учреждение

Гимназия № 12

сочинение

на тему: Уравнения и способы их решения

Выполнил: ученик 10 "А" класса

Крутько Евгений

Проверила: учитель математики Исхакова Гульсум Акрамовна

Тюмень 2001

План................................................................................................................................... 1

Введение........................................................................................................................... 2

Основная часть................................................................................................................. 3

Заключение..................................................................................................................... 25

Приложение................................................................................................................... 26

Список использованной литературы.......................................................................... 29

План.

Введение.

Историческая справка.

Уравнения. Алгебраически уравнения.

а) Основные определения.

б) Линейное уравненение и способ его решения.

в) Квадратные уравнения и способы его решения.

г) Двучленные уравнения способ их решения.

д) Кубические уравнения и способы его решения.

е) Биквадратное уравнение и способ его решения.

ё) Уравнения четвертой степени и способы его решения.

ж) Уравнения высоких степеней и способы из решения.

з) Рациональноное алгебраическое уравнение и способ его

и) Иррациональные уравнения и способы его решения.

к) Уравнения, содержащие неизвестное под знаком.

абсолютной величины и способ его решения.

Трансцендентные уравнения.

а) Показательные уравнения и способ их решения.

б) Логарифмические уравнения и способ их решения.

Введение

Математическое образование, получаемое в общеобразовательной школе, является важнейшим компонентом общего образования и общей культуры современного человека. Практически все, что окружает современного человека – это все так или иначе связано с математикой. А последние достижения в физике, технике и информационных технологиях не оставляют никакого сомнения, что и в будущем положение вещей останется прежним. Поэтому решение многих практических задач сводится к решению различных видов уравнений, которые необходимо научиться решать.

Данная работа является попыткой обобщить и систематизировать изученный материал по выше указанной теме. Я расположил материал по степени его сложности, начиная с самого простого. В него вошли как известные нам виды уравнений из школьного курс алгебры, так и дополнительный материал. При этом я попытался показать виды уравнений, которые не изучаются в школьном курсе, но знание которых может понадобиться при поступлении в высшее учебное заведение. В своей работе при решении уравнений я не стал ограничиваться только действительным решением, но и указал комплексное, так как считаю, что иначе уравнение просто недорешено. Ведь если в уравнении нет действительных корней, то это еще не значит, что оно не имеет решений. К сожалению, из-за нехватки времени я не смог изложить весь имеющийся у меня материал, но даже по тому материалу, который здесь изложен, может возникнуть множество вопросов. Я надеюсь, что моих знаний хватит для того, чтобы дать ответ на большинство вопросов. Итак, я приступаю к изложению материала.

Математика... выявляет порядок,

симметрию и определенность,

а это – важнейшие виды прекрасного.

Аристотель.

Историческая справка

В те далекие времена, когда мудрецы впервые стали задумываться о равенствах содержащих неизвестные величины, наверное, еще не было ни монет, ни кошельков. Но зато были кучи, а также горшки, корзины, которые прекрасно подходили на роль тайников-хранилищ, вмещающих неизвестное количество предметов. "Ищется куча, которая вместе с двумя третями ее, половиной и одной седьмой составляет 37...", - поучал во II тысячелетии до новой эры египетский писец Ахмес. В древних математических задачах Междуречья, Индии, Китая, Греции неизвестные величины выражали число павлинов в саду, количество быков в стаде, совокупность вещей, учитываемых при разделе имущества. Хорошо обученные науке счета писцы, чиновники и посвященные в тайные знания жрецы довольно успешно справлялись с такими задачами.

Дошедшие до нас источники свидетельствуют, что древние ученые владели какими-то общими приемами решения задач с неизвестными величинами. Однако ни в одном папирусе, ни в одной глиняной табличке не дано описания этих приемов. Авторы лишь изредка снабжали свои числовые выкладки скупыми комментариями типа: "Смотри!", "Делай так!", "Ты правильно нашел". В этом смысле исключением является "Арифметика" греческого математика Диофанта Александрийского (III в.) – собрание задач на составление уравнений с систематическим изложением их решений.

Однако первым руководством по решению задач, получившим широкую известность, стал труд багдадского ученого IX в. Мухаммеда бен Мусы аль-Хорезми. Слово "аль-джебр" из арабского названия этого трактата – "Китаб аль-джебер валь-мукабала" ("Книга о восстановлении и противопоставлении") – со временем превратилось в хорошо знакомое всем слово "алгебра", а само сочинение аль-Хорезми послужило отправной точкой в становлении науки о решении уравнений.

уравнения. Алгебраические уравнения

Основные определения

В алгебре рассматриваются два вида равенств – тождества и уравнения.

Тождество – это равенство, которое выполняется при всех (допустимых) значениях входящих в него букв ). Для записи тождества наряду со знаком

также используется знак .

Уравнение – это равенство, которое выполняется лишь при некоторых значениях входящих в него букв. Буквы, входящие в уравнение, по условию задачи могут быть неравноправны: одни могут принимать все свои допустимые значения (их называют параметрами или коэффициентами уравнения и обычно обозначают первыми буквами латинского алфавита:

, , ... – или теми же буквами, снабженными индексами: , , ... или , , ...); другие, значения которых требуется отыскать, называют неизвестными (их обычно обозначают последними буквами латинского алфавита: , , , ... – или теми же буквами, снабженными индексами: , , ... или , , ...).

В общем виде уравнение может быть записано так:

(, , ..., ).

В зависимости от числа неизвестных уравнение называют уравнением с одним, двумя и т. д. неизвестными.

В курсе школьной математики, ребенок впервые слышит термин "уравнение". Что такое это, попробуем разобраться вместе. В данной статье рассмотрим виды и способы решения.

Математика. Уравнения

Для начала предлагаем разобраться с самим понятием, что это такое? Как гласят многие учебники математики, уравнение - это некоторые выражения, между которыми стоит обязательно знак равенства. В этих выражениях присутствуют буквы, так называемые переменные, значение которых и необходимо найти.

Это атрибут системы, который меняет свое значение. Наглядным примером переменных являются:

  • температура воздуха;
  • рост ребенка;
  • вес и так далее.

В математике они обозначаются буквами, например, х, а, b, с... Обычно задание по математике звучит следующим образом: найдите значение уравнения. Это значит, что необходимо найти значение данных переменных.

Разновидности

Уравнение (что такое, мы разобрали в предыдущем пункте) может быть следующего вида:

  • линейные;
  • квадратные;
  • кубические;
  • алгебраические;
  • трансцендентные.

Для более подробного знакомства со всеми видами, рассмотрим каждый в отдельности.

Линейное уравнение

Это первый вид, с которым знакомятся школьники. Они решаются довольно-таки быстро и просто. Итак, линейное уравнение, что такое? Это выражение вида: ах=с. Так не особо понятно, поэтому приведем несколько примеров: 2х=26; 5х=40; 1,2х=6.

Разберем примеры уравнений. Для этого нам необходимо все известные данные собрать с одной стороны, а неизвестные в другой: х=26/2; х=40/5; х=6/1,2. Здесь использовались элементарные правила математики: а*с=е, из этого с=е/а; а=е/с. Для того чтобы завершить решение уравнения, выполним одно действие (в нашем случае деление) х=13; х=8; х=5. Это были примеры на умножение, теперь просмотрим на вычитание и сложение: х+3=9; 10х-5=15. Известные данные переносим в одну сторону: х=9-3; х=20/10. Выполняем последнее действие: х=6; х=2.

Также возможны варианты линейных уравнений, где используется более одной переменной: 2х-2у=4. Для того чтобы решить, необходимо к каждой части прибавить 2у, у нас получается 2х-2у+2у=4-2у, как мы заметили, по левую часть знака равенства -2у и +2у сокращаются, при этом у нас остается: 2х=4-2у. Последним шагом делим каждую часть на два, получаем ответ: икс равен два минус игрек.

Задачи с уравнениями встречаются даже на папирусах Ахмеса. Вот одна из задач: число и четвертая его часть дают в сумме 15. Для ее решения мы записываем следующее уравнение: икс плюс одна четвертая икс равняется пятнадцати. Мы видим еще один пример по итогу решения, получаем ответ: х=12. Но эту задачу можно решить и другим способом, а именно египетским или, как его называют по-другому, способом предположения. В папирусе используется следующее решение: возьмите четыре и четвертую ее часть, то есть единицу. В сумме они дают пять, теперь пятнадцать необходимо разделить на сумму, мы получаем три, последним действием три умножаем на четыре. Мы получаем ответ: 12. Почему мы в решении пятнадцать делим на пять? Так узнаем, во сколько раз пятнадцать, то есть результат, который нам необходимо получить, меньше пяти. Таким способом решали задачи в средние века, он стал зваться методом ложного положения.

Квадратные уравнения

Кроме рассмотренных ранее примеров, существуют и другие. Какие именно? Квадратное уравнение, что такое? Они имеют вид ax 2 +bx+c=0. Для их решения необходимо ознакомиться с некоторыми понятиями и правилами.

Во-первых, нужно найти дискриминант по формуле: b 2 -4ac. Есть три варианта исхода решения:

В первом варианте мы можем получить ответ из двух корней, которые находятся по формуле: -b+-корень из дискриминанта разделенные на удвоенный первый коэфициент, то есть 2а.

Во втором случае корней у уравнения нет. В третьем случае корень находится по формуле: -b/2а.

Рассмотрим пример квадратного уравнения для более подробного знакомства: три икс в квадрате минус четырнадцать икс минус пять равняется нулю. Для начала, как и писалось ранее, ищем дискриминант, в нашем случае он равен 256. Отметим, что полученное число больше нуля, следовательно, мы должны получить ответ состоящих из двух корней. Подставляем полученный дискриминант в формулу нахождения корней. В результате мы имеем: икс равняется пяти и минус одной третьей.

Особые случаи в квадратных уравнениях

Это примеры, в которых некоторые значения равны нулю (а, b или с), а возможно и несколько.

Для примера возьмем следующее уравнение, которое является квадратным: два икс в квадрате равняется нулю, здесь мы видим, что b и с равны нулю. Попробуем его решить, для этого обе части уравнения делим на два, мы имеем: х 2 =0. В итоге получаем х=0.

Другой случай 16х 2 -9=0. Здесь только b=0. Решим уравнение, свободный коэфициент переносим в правую часть: 16х 2 =9, теперь каждую часть делим на шестнадцать: х 2 = девять шестнадцатых. Так как у нас х в квадрате, то корень из 9/16 может быть как отрицательным, так и положительным. Ответ записываем следующим образом: икс равняется плюс/минус три четвертых.

Возможен и такой вариант ответа, как у уравнения корней вовсе нет. Посмотрим на такой пример: 5х 2 +80=0, здесь b=0. Для решения свободный член перекидываете в правую сторону, после этих действий получаем: 5х 2 =-80, теперь каждую часть делим на пять: х 2 = минус шестнадцать. Если любое число возвести в квадрат, то отрицательное значение мы не получим. По этому наш ответ звучит так: у уравнения корней нет.

Разложение трехчлена

Задание по квадратным уравнениям может звучать и другим образом: разложить квадратный трехчлен на множители. Это возможно осуществить, воспользовавшись следующей формулой: а(х-х 1)(х-х 2). Для этого, как и в другом варианте задания, необходимо найти дискриминант.

Рассмотрим следующий пример: 3х 2 -14х-5, разложите трехчлен на множетели. Находим дискриминант, пользуясь уже известной нам формулой, он получается равным 256. Сразу отмечаем, что 256 больше нуля, следовательно, уравнение будет иметь два корня. Находим их, как в предыдущем пункте, мы имеем: х= пять и минус одна третья. Воспользуемся формулой для разложения трехчлена на множетели: 3(х-5)(х+1/3). Во второй скобке мы получили знак равно, потому что в формуле стоит знак минуса, а корень тоже отрицательный, пользуясь элементарными знаниями математики, в сумме мы имеем знак плюса. Для упрощения, перемножим первый и третий член уравнения, чтобы избавиться от дроби: (х-5)(х+1).

Уравнения сводящиеся к квадратному

В данном пункте научимся решать более сложные уравнения. Начнем сразу с примера:

(x 2 - 2x) 2 - 2(x 2 - 2x) - 3 = 0. Можем заметить повторяющиеся элементы: (x 2 - 2x), нам для решения удобно заменить его на другую переменную, а далее решать обычное квадратное уравнение, сразу отмечаем, что в таком задании мы получим четыре корня, это не должно вас пугать. Обозначаем повторение переменной а. Мы получаем: а 2 -2а-3=0. Наш следующий шаг - это нахождение дискриминанта нового уравнения. Мы получаем 16, находим два корня: минус один и три. Вспоминаем, что мы делали замену, подставляем эти значения, в итоге мы имеем уравнения: x 2 - 2x=-1; x 2 - 2x=3. Решаем их в первом ответ: х равен единице, во втором: х равен минусу одному и трем. Записываем ответ следующим образом: плюс/минус один и три. Как правило, ответ записывают в порядке возрастания.

Кубические уравнения

Рассмотрим еще один возможный вариант. Речь пойдет о кубических уравнениях. Они имеют вид: ax 3 + b x 2 + cx + d =0. Примеры уравнений мы рассмотрим далее, а для начала немного теории. Они могут иметь три корня, так же существует формула для нахождения дискриминанта для кубического уравнения.

Рассмотрим пример: 3х 3 +4х 2 +2х=0. Как его решить? Для этого мы просто выносим х за скобки: х(3х 2 +4х+2)=0. Все что нам остается сделать - это вычислить корни уравнения в скобках. Дискриминант квадратного уравнения в скобках меньше нуля, исходя из этого, выражение имеет корень: х=0.

Алгебра. Уравнения

Переходим к следующему виду. Сейчас мы кратко рассмотрим алгебраические уравнения. Одно из заданий звучит следующим образом: разложить на множетели 3х 4 +2х 3 +8х 2 +2х+5. Самым удобным способом будет следующая группировка: (3х 4 +3х 2)+(2х 3 +2х)+(5х 2 +5). Заметим, что 8х 2 из первого выражения мы представили в виде суммы 3х 2 и 5х 2 . Теперь выносим из каждой скобки общий множитель 3х 2 (х2+1)+2х(х 2 +1)+5(х 2 +1). Мы видим, что у нас есть общий множитель: икс в квадрате плюс один, выносим его за скобки: (х 2 +1)(3х 2 +2х+5). Дальнейшее разложение невозможно, так как оба уравнения имеют отрицательный дискриминант.

Трансцендентные уравнения

Предлагаем разобраться со следующим типом. Это уравнения, которые содержат трансцендентные функции, а именно логарифмические, тригонометрические или показательные. Примеры: 6sin 2 x+tgx-1=0, х+5lgx=3 и так далее. Как они решаются вы узнаете из курса тригонометрии.

Функция

Завершающим этапом рассмотрим понятие уравнение функции. В отличии от предыдущих вариантов, данный тип не решается, а по нему строится график. Для этого уравнение стоит хорошо проанализировать, найти все необходимые точки для построения, вычислить точку минимума и максимума.



Понравилась статья? Поделитесь с друзьями!