Урок "Доли. Обыкновенные дроби"

§ 1 Доли и дроби

В этом уроке мы познакомимся с понятиями «доли» и «дроби».

Давайте рассмотрим ситуацию:

Коле исполнилось 8 лет. В честь этого испекли именинный пирог и разрезали на 8 равных частей. 2 кусочка именинного пирога Коля отдал маме и папе, 2 кусочка - брату с сестренкой, а один взял себе. После того, как все получили по кусочку именинного пирога, на тарелке осталось еще несколько кусков. Сколько долей именинного пирога съели, а сколько осталось?

Чтобы ответить на поставленный вопрос, в первую очередь необходимо выяснить, что означает такое понятие, как «доля».

Если целую единицу счета или измерения разделить на 2 равные части, то каждая из этих

такую часть.

Теперь мы можем сказать, что весь пирог - это целое, которое разделили на 8 долей. Сосчитав количество съеденных кусков пирога 2 + 2 + 1 = 5, узнаем, что всего съели 5 долей из 8, а осталось 8 - 5 = 3 доли.

Покажем это на рисунке:

Желтым цветом закрашены 5 долей пирога, которые съели, это

Дробями называют одну или несколько равных долей целого. Записывают дроби двумя

Число m, записанное над чертой, называется числителем. Числитель показывает, сколько частей целого взяли.

Число n, записанное под чертой, называется знаменателем. Знаменатель показывает, на сколько равных частей разделили целое.

число 3 - числитель данной дроби - показыват, что взяли 3 части целого; число 7 - знаменатель данной дроби - показывает, что целое разделили на 7 равных частей.

Следует отметить, что при чтении дробей надо помнить: числитель - количественное числительное женского рода, а знаменатель - порядковое числительное

§ 2 Краткие итоги по теме урока

Доли - это равные части одного целого.

Список использованной литературы:

  1. Петерсон Л.Г. Математика. 4 класс. Часть 1. / Л.Г. Петерсон. – М.: Ювента, 2014. – 96 с.: ил.
  2. Математика. 4 класс. Методические рекомендации к учебнику математики «Учусь учиться» для 4 класса. / Л.Г. Петерсон. – М.: Ювента, 2014. – 280 с.: ил.
  3. Зак С.М. Все задания к учебнику математики для 4 класса Л.Г. Петерсон и комплекту самостоятельных и контрольных работ. ФГОС. – М.: ЮНВЕС, 2014.
  4. CD-ROM. Математика. 4 класс. Сценарии уроков к учебнику к 1 части Петерсон Л.Г. – М.: Ювент, 2013.

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Ну-ка, проверь дружок, Ты готов начать урок? Всё ль на месте, Всё ль в порядке, Ручка, книжка и тетрадка? Все ли правильно сидят? Все ль внимательно глядят? Каждый хочет получать Толька лишь оценку пять.

Доли Обыкновенные дроби

Цели и задачи: Познакомить с понятием доля, половина, треть, четверть, обыкновенная дробь, числитель и знаменатель дроби Развивать умение читать и записывать обыкновенную дробь по числителю и знаменателю Воспитывать уважительное отношение к окружающим, внимание

Вопросы к рассмотрению: Доля Половина, треть, четверть Обыкновенная дробь Что показывают числитель и знаменатель дроби Из истории дробей

Мама купила арбуз. Разрезала его на 6 равных частей:

бабушке, дедушке, папе, двум детям и себе.

Что такое доля? Доля – каждая из равных частей единицы. Так как арбуз разрезали на 6 равных частей, значит его разделили на 6 долей и каждый получил «одну шестую» долю арбуза, или, короче «одну шестую арбуза».

Как записывают доли? Для записи любой доли используют горизонтальную чёрточку. Её называют дробной чертой Пишут:

Что показывает число под чертой? Число под чертой показывает на сколько равных частей (долей) разделили единицу целое разделили на 5 равных частей (долей)

Подумай и ответь. Как образуются доли Когда один предмет или единица измерения делятся на равные части. Что показывает число под чертой Число под чертой показывает на сколько равных долей разделили единицу.

Половина. Самая известная доля – это, конечно, половина. Слова с приставкой «пол» можно услышать часто: полчаса, полкилометра… Разделили целое на две части – «половина». Долю называют половина.

Треть. Название доли зависит от того, на сколько равных частей разделили единицу. Разделили на три части – «треть». Долю называют «треть»

Четверть. Если целое разделили на 4 части, то получается или по другому говорят «четверть» .

Как называются другие доли? А если разделить на пять частей, то что ли «пятерть», на шесть – «шестерть»? Таких смешных слов в русском языке нет. Чтобы назвать доли пользуются словами «пятая», «шестая»

Выполни задания. Прочитайте доли Как по другому можно назвать доли четверть, треть, половина.

Одолела нас дремота, Шевельнуться неохота Ну-ка делайте со мною Упражнение такое: Раз – поднялись, потянулись, Два – нагнулись, разогнулись, Три – в ладоши три хлопка Головою три кивка.

Разгадайте ребус и узнаете с чем мы сейчас познакомимся. «Дроби»

Обыкновенная дробь. Записи вида называют обыкновенными дробями … Числитель дроби Черта дроби (дробная черта) Знаменатель дроби

Обыкновенные дроби. Каждый может за версту Видеть дробную черту. Над чертой – числитель, знайте, Под чертою – знаменатель. Дробь такую, непременно, Надо звать обыкновенной. Назовите числитель и знаменатель каждой дроби

При чтении дробей надо помнить: числитель дроби – количественное числительное женского рода (одна, две, восемь и т.д.), а знаменатель – порядковое числительное (седьмая, сотая, двести тридцатая и т.д.) Например: - одна пятая; - две шестых; - восемьдесят три сто пятьдесят вторых

Что показывают числитель и знаменатель дроби? Знаменатель показывает, на сколько долей делят, а числитель – сколько таких долей взято. Прочитайте дроби. Что показывает числитель и знаменатель каждой дроби?

Запишите в виде обыкновенной дроби. Две седьмых Четыре девятых Одна сотая Шесть восьмых Три двадцать пятых Половина

Подумай и ответь. Какая часть фигуры закрашена?

Работа в тетради. №868.

Домашнее задание: Составьте задания по теме обыкновенные дроби,п.23, №901, 902 Окончен урок. И опять перемена. И шум в коридоре опять. Друг другу должны мы Успеть непременно Скорей обо всём рассказать



МЕТОДИКА ИЗУЧЕНИЯ ДОЛЕЙ И ДРОБЕЙ

Наименование параметра Значение
Тема статьи: МЕТОДИКА ИЗУЧЕНИЯ ДОЛЕЙ И ДРОБЕЙ
Рубрика (тематическая категория) Математика

Задачи:

1. Научить образовывать доли и дроби.

2. Научить называть и записывать доли и дроби (запись их предусмотрена не во всœех программах).

3. Сравнивать доли и дроби.

4. Решать задачи на доли и дроби.

Этот материал изучается в 3-4 классах. Создаётся конкретное представление о доле и дроби на практической базе с использованием дидактического материала. Эта тема служит предварительной основой для изучения в 5-6 классах.

Источники получения долей и дробей:

1. Делœение предметов на равные части.

2. Измерение величин.

3. Действия над числами (делœение).

В начальной школе доли и дроби получают только на основании делœения предмета на равные части, т. к. дети должны получить конкретное представление об этих понятиях.

Конкретное представление о долях создаётся в результате выполнения практической работы с демонстрацией. Учитель делит яблоко на две равные части и говорит, что каждая из равных частей принято называть половиной и ещё 1\2, показывает, что таких половин две в целом яблоке. Далее учитель делит яблоко на четыре равные части, каждая часть принято называть – четверть или 1\4 и таких четвёртых долей в целом яблоке четыре. Потом сообщается, что для записи долей крайне важно два числа и черта (m\n). Причём, число, стоящее под чертой (дробная черта ), показывает, на сколько равных частей разделили целое (знаменатель ), а число, стоящее над чертой – сколько таких равных частей взяли (числитель ).

Закрепление:

§ Практическая работа: детям выдаются полоски бумаги, и предлагается разделить их перегибанием на 2 равные части, на 4, на 8, сказать, как принято называть каждая часть, закрасить 1\2, 1\4, 1\8 отрезка.

§ Рассматриваются рисунки с геометрическими фигурами, разбитыми на равные части подписанным названием частей. Дети должны объяснить смысл записи.

§ Предлагается начертить квадрат с заданной длиной стороны, разбить его на 2, 3, 4. 6, 8 равных частей, закрасить одну из них, назвать, записать. Возможны различные варианты разбиения, но должно учитываться одно условие – всœе части одинаковые.

Несколько позже учитель вводит понятие дроби на практической основе. Детям предлагается разделить отрезок на 4 равные части, назвать каждую из них, обвести сначала одну часть, а потом ещё одну. Учитель, сообщает, что получилось собрание долей – оно принято называть дробью . Далее учитель учит читать и записывать дроби.

Сравнение долей также происходит на наглядно - практической базе в 2 этапа.

1. Практическая работа: детям выдаётся 2 равные полоски бумаги и предлагается на одной закрасить половину, а на другой четверть, а потом сравнить их наложением. Делается вывод, что одна четверть меньше половины.

2. Работа с иллюстрацией в учебнике или таблицей на доске.

Учащиеся должны выявить название каждой части и визуально сравнить их, причём можно сравнить как доли: 1\2>1\4, так и дроби с одинаковыми знаменателями: 1\8<3\8 и разными знаменателями: 1\2=2\4, 1\4<3\8. Дети находят ответы на вопросы: сколько половин в одной целой, сколько четвёртых долей в одной целой, в половинœе. В дальнейшем эти задания дети выполняют по представлению, в случае если же появляются затруднения, то опять используется иллюстрация. Формулируются правила: больше та доля, знаменатель которой меньше. К примеру, 1\2>1\4, так как 2<4. Дроби сравнивают только с одинаковым знаменателœем: из двух дробей с одинаковым знаменателœем больше та͵ у которой числитель больше. К примеру, 3\8>2\8, так как 3>2.

Методика работы с задачами на доли и дроби. В 3 классе рассматриваются задачи на доли (по программе Моро), на доли и дроби (по программе Петерсон).

При знакомстве с задачами этого вида учитель предлагает разделить перегибанием полоску бумаги длиной 12см на 4 равные части и вычислить длину каждой части. Возможны вопросы:

§ Какова длина всœей полоски? (12см).

§ На сколько частей нужно разделить? (на 4 частей).

§ Какие части: равные по длинœе или различные? (разделим на 4 равные части).

§ Как можно назвать каждую часть? (четверть).

§ Как узнать длину каждой части? (разделить 12см на 4).

§ Сколько получится? (3см).

§ Проверьте по линœейке.

Затем решаются простые задачи на нахождение доли от числа, от величины. Причём по программе Моро в задаче доля задаётся словами: ʼʼДлина ленты 10см. Найдите пятую часть этой лентыʼʼ. Рекомендуется делать чертеж к условию задачи, что позволит наглядно применить конкретный смысл доли для решения задачи.

В дальнейшем такие задачи включаются в содержание составных задач. К примеру: ʼʼНайдите площадь четвёртой части квадрата со стороной 9см.ʼʼ или ʼʼВ один магазин привезли 28кг яблок, во второй четвёртую часть того, что привезли в первый , а в третий магазин на 12кг больше, чем во второй. Сколько всœего килограммов яблок привезли в три магазина вместе?ʼʼ.

Задачи других видов решаются реже, а задачи на дроби и проценты рассматриваются уже в 5-6 классах.

По программе Петерсон рассматриваются задачи всœех видов на доли и дроби:

Виды задач Задачи на доли Задачи на дроби
Задачи на нахождение части от целого Длина ленты 10м. Найдите 1\5этой ленты. 10:5=2(м)- длина 1\5 всœейленты. Длина ленты 10м. Найдите 3\5этой ленты. 1) 10:5=2(м)- длина 1\5 всœейленты. 2) 2*3=6(м)- длина 3\5 всœейленты.
Задачи на нахождение целого по его части От ленты отрезали 4м. Найдите длину всœей ленты, в случае если отрезали 1\4 ленты. 4*4=16(м)- длина всœей ленты. От ленты отрезали 9м. Найдите длину всœей ленты, в случае если отрезали 3\4 ленты. 1)9:3=3(м)- длина 1\4 всœейленты. 2) 3*4=12(м)- длина всœейленты.
Задачи на нахождение дробного отношения От ленты длиной 10м отрезали 1м. Какую часть ленты отрезали. Чаще всœего такие задачи решаются устно. Или так 1:10=1/10 – всœей ленты. От ленты длиной 10м отрезали 5м. Какую часть ленты отрезали. Чаще всœего такие задачи решаются устно. Или так 5:10=5/10 – всœей ленты(сокращать в начальной школе дети не умеют).

МЕТОДИКА ИЗУЧЕНИЯ ДОЛЕЙ И ДРОБЕЙ - понятие и виды. Классификация и особенности категории "МЕТОДИКА ИЗУЧЕНИЯ ДОЛЕЙ И ДРОБЕЙ" 2017, 2018.


Эта статья про обыкновенные дроби . Здесь мы познакомимся с понятием доли целого, которое приведет нас к определению обыкновенной дроби. Дальше остановимся на принятых обозначениях для обыкновенных дробей и приведем примеры дробей, скажем про числитель и знаменатель дроби. После этого дадим определения правильных и неправильных, положительных и отрицательных дробей, а также рассмотрим положение дробных чисел на координатном луче. В заключение перечислим основные действия с дробями.

Навигация по странице.

Доли целого

Сначала введем понятие доли .

Предположим, что у нас есть некоторый предмет, составленный из нескольких абсолютно одинаковых (то есть, равных) частей. Для наглядности можно представить, например, яблоко, разрезанное на несколько равных частей, или апельсин, состоящий из нескольких равных долек. Каждую из этих равных частей, составляющих целый предмет, называют долей целого или просто долей .

Заметим, что доли бывают разные. Поясним это. Пусть у нас есть два яблока. Разрежем первое яблоко на две равные части, а второе – на 6 равных частей. Понятно, что доля первого яблока будет отличаться от доли второго яблока.

В зависимости от количества долей, составляющих целый предмет, эти доли имеют свои названия. Разберем названия долей . Если предмет составляют две доли, любая из них называется одна вторая доля целого предмета; если предмет составляют три доли, то любая из них называется одна третья доля, и так далее.

Одна вторая доля имеет специальное название – половина . Одна третья доля называется третью , а одна четверная доля – четвертью .

Для краткости записи были введены следующие обозначения долей . Одну вторую долю обозначают как или 1/2 , одну третью долю – как или 1/3 ; одну четвертую долю – как или 1/4 , и так далее. Отметим, что запись с горизонтальной чертой употребляется чаще. Для закрепления материала приведем еще один пример: запись обозначает одну сто шестьдесят седьмую долю целого.

Понятие доли естественным образом распространяется с предметов на величины. Например, одной из мер измерения длины является метр. Для измерения длин меньших, чем метр, можно использовать доли метра. Так можно воспользоваться, например, половиной метра или десятой или тысячной долей метра. Аналогично применяются доли других величин.

Обыкновенные дроби, определение и примеры дробей

Для описания количества долей используются обыкновенные дроби . Приведем пример, который позволит нам подойти к определению обыкновенных дробей.

Пусть апельсин состоит из 12 долей. Каждая доля в этом случае представляет одну двенадцатую долю целого апельсина, то есть, . Две доли обозначим как , три доли – как , и так далее, 12 долей обозначим как . Каждую из приведенных записей называют обыкновенной дробью.

Теперь дадим общее определение обыкновенных дробей .

Озвученное определение обыкновенных дробей позволяет привести примеры обыкновенных дробей : 5/10 , , 21/1 , 9/4 , . А вот записи не подходят под озвученное определение обыкновенных дробей, то есть, не являются обыкновенными дробями.

Числитель и знаменатель

Для удобства в обыкновенной дроби различают числитель и знаменатель .

Определение.

Числитель обыкновенной дроби (m/n ) – это натуральное число m .

Определение.

Знаменатель обыкновенной дроби (m/n ) – это натуральное число n .

Итак, числитель расположен сверху над чертой дроби (слева от наклонной черты), а знаменатель – снизу под чертой дроби (справа от наклонной черты). Для примера приведем обыкновенную дробь 17/29 , числителем этой дроби является число 17 , а знаменателем – число 29 .

Осталось обговорить смысл, заключенный в числителе и знаменателе обыкновенной дроби. Знаменатель дроби показывает, из скольких долей состоит один предмет, числитель в свою очередь указывает количество таких долей. Например, знаменатель 5 дроби 12/5 означает, что один предмет состоит из пяти долей, а числитель 12 означает, что взято 12 таких долей.

Натуральное число как дробь со знаменателем 1

Знаменатель обыкновенной дроби может быть равен единице. В этом случае можно считать, что предмет неделим, иными словами, представляет собой нечто целое. Числитель такой дроби указывает, сколько целых предметов взято. Таким образом, обыкновенная дробь вида m/1 имеет смысл натурального числа m . Так мы обосновали справедливость равенства m/1=m .

Перепишем последнее равенство так: m=m/1 . Это равенство дает нам возможность любое натуральное число m представлять в виде обыкновенной дроби. Например, число 4 – это дробь 4/1 , а число 103 498 равно дроби 103 498/1 .

Итак, любое натуральное число m можно представить в виде обыкновенной дроби со знаменателем 1 как m/1 , а любую обыкновенную дробь вида m/1 можно заменить натуральным числом m .

Черта дроби как знак деления

Представление исходного предмета в виде n долей представляет собой не что иное как деление на n равных частей. После того как предмет разделен на n долей, мы его можем разделить поровну между n людьми – каждый получит по одной доле.

Если же у нас есть изначально m одинаковых предметов, каждый из которых разделен на n долей, то эти m предметов мы можем поровну разделить между n людьми, раздав каждому человеку по одной доле от каждого из m предметов. При этом у каждого человека будет m долей 1/n , а m долей 1/n дает обыкновенную дробь m/n . Таким образом, обыкновенную дробь m/n можно применять для обозначения деления m предметов между n людьми.

Так мы получили явную связь между обыкновенными дробями и делением (смотрите общее представление о делении натуральных чисел). Эта связь выражается в следующем: черту дроби можно понимать как знак деления, то есть, m/n=m:n .

С помощью обыкновенной дроби можно записать результат деления двух натуральных чисел, для которых не выполняется деление нацело. Например, результат деления 5 яблок на 8 человек можно записать как 5/8 , то есть, каждому достанется пять восьмых долей яблока: 5:8=5/8 .

Равные и неравные обыкновенные дроби, сравнение дробей

Достаточно естественным действием является сравнение обыкновенных дробей , ведь понятно, что 1/12 апельсина отличается от 5/12 , а 1/6 доля яблока такая же, как другая 1/6 доля этого яблока.

В результате сравнения двух обыкновенных дробей получается один из результатов: дроби либо равны, либо не равны. В первом случае мы имеем равные обыкновенные дроби , а во втором – неравные обыкновенные дроби . Дадим определение равных и неравных обыкновенных дробей.

Определение.

равны , если справедливо равенство a·d=b·c .

Определение.

Две обыкновенные дроби a/b и c/d не равны , если равенство a·d=b·c не выполняется.

Приведем несколько примеров равных дробей. Например, обыкновенная дробь 1/2 равна дроби 2/4 , так как 1·4=2·2 (при необходимости смотрите правила и примеры умножения натуральных чисел). Для наглядности можно представить два одинаковых яблока, первое разрезано пополам, а второе – на 4 доли. При этом очевидно, что две четвертых доли яблока составляют 1/2 долю. Другими примерами равных обыкновенных дробей являются дроби 4/7 и 36/63 , а также пара дробей 81/50 и 1 620/1 000 .

А обыкновенные дроби 4/13 и 5/14 не равны, так как 4·14=56 , а 13·5=65 , то есть, 4·14≠13·5 . Другим примером неравных обыкновенных дробей являются дроби 17/7 и 6/4 .

Если при сравнении двух обыкновенных дробей выяснилось, что они не равны, то возможно потребуется узнать, какая из этих обыкновенных дробей меньше другой, а какая – больше . Чтобы это выяснить, используется правило сравнения обыкновенных дробей, суть которого сводится к приведению сравниваемых дробей к общему знаменателю и последующему сравнению числителей. Детальная информация по этой теме собрана в статье сравнение дробей: правила, примеры, решения .

Дробные числа

Каждая дробь является записью дробного числа . То есть, дробь – это всего лишь «оболочка» дробного числа, его внешний вид, а вся смысловая нагрузка содержится именно в дробном числе. Однако для краткости и удобства понятие дроби и дробного числа объединяют и говорят просто дробь. Здесь уместно перефразировать известное изречение: мы говорим дробь – подразумеваем дробное число, мы говорим дробное число – подразумеваем дробь.

Дроби на координатном луче

Все дробные числа, отвечающие обыкновенным дробям, имеют свое уникальное место на , то есть, существует взаимно однозначное соответствие между дробями и точками координатного луча.

Чтобы на координатном луче попасть в точку, соответствующую дроби m/n нужно от начала координат в положительном направлении отложить m отрезков, длина которых составляет 1/n долю единичного отрезка. Такие отрезки можно получить, разделив единичный отрезок на n равных частей, что всегда можно сделать с помощью циркуля и линейки.

Для примера покажем точку М на координатном луче, соответствующую дроби 14/10 . Длина отрезка с концами в точке O и ближайшей к ней точке, отмеченной маленьким штрихом, составляет 1/10 долю единичного отрезка. Точка с координатой 14/10 удалена от начала координат на расстояние 14 таких отрезков.

Равным дробям отвечает одно и то же дробное число, то есть, равные дроби являются координатами одной и той же точки на координатном луче. Например, координатам 1/2 , 2/4 , 16/32 , 55/110 на координатном луче соответствует одна точка, так как все записанные дроби равны (она расположена на расстоянии половины единичного отрезка, отложенного от начала отсчета в положительном направлении).

На горизонтальном и направленном вправо координатном луче точка, координатой которой является большая дробь, располагается правее точки, координатой которой является меньшая дробь. Аналогично, точка с меньшей координатой лежит левее точки с большей координатой.

Правильные и неправильные дроби, определения, примеры

Среди обыкновенных дробей различают правильные и неправильные дроби . Это разделение в своей основе имеет сравнение числителя и знаменателя.

Дадим определение правильных и неправильных обыкновенных дробей.

Определение.

Правильная дробь – это обыкновенная дробь, числитель которой меньше знаменателя, то есть, если m

Определение.

Неправильная дробь – это обыкновенная дробь, в которой числитель больше или равен знаменателю, то есть, если m≥n , то обыкновенная дробь является неправильной.

Приведем несколько примеров правильных дробей: 1/4 , , 32 765/909 003 . Действительно, в каждой из записанных обыкновенных дробей числитель меньше знаменателя (при необходимости смотрите статью сравнение натуральных чисел), поэтому они правильные по определению.

А вот примеры неправильных дробей: 9/9 , 23/4 , . Действительно, числитель первой из записанных обыкновенных дробей равен знаменателю, а в остальных дробях числитель больше знаменателя.

Также имеют место определения правильных и неправильных дробей, базирующиеся на сравнении дробей с единицей.

Определение.

правильной , если она меньше единицы.

Определение.

Обыкновенная дробь называется неправильной , если она либо равна единице, либо больше 1 .

Так обыкновенная дробь 7/11 – правильная, так как 7/11<1 , а обыкновенные дроби 14/3 и 27/27 – неправильные, так как 14/3>1 , а 27/27=1 .

Давайте поразмыслим, чем же обыкновенные дроби с числителем, превосходящим или равным знаменателю, заслужили такое название – «неправильные».

Для примера возьмем неправильную дробь 9/9 . Эта дробь означает, что взято девять долей предмета, который состоит из девяти долей. То есть, из имеющихся девяти долей мы можем составить целый предмет. То есть, неправильная дробь 9/9 по сути дает целый предмет, то есть, 9/9=1 . Вообще, неправильные дроби с числителем равным знаменателю обозначают один целый предмет, и такую дробь может заменить натуральное число 1 .

Теперь рассмотрим неправильные дроби 7/3 и 12/4 . Достаточно очевидно, что из этих семи третьих долей мы можем составить два целых предмета (один целый предмет составляют 3 доли, тогда для составления двух целых предметов нам потребуется 3+3=6 долей) и еще останется одна третья доля. То есть, неправильная дробь 7/3 по сути означает 2 предмета да еще 1/3 долю такого предмета. А из двенадцати четвертых долей мы можем составить три целых предмета (три предмета по четыре доли в каждом). То есть, дробь 12/4 по сути означает 3 целых предмета.

Рассмотренные примеры приводят нас к следующему выводу: неправильные дроби, могут быть заменены либо натуральными числами, когда числитель делится нацело на знаменатель (например, 9/9=1 и 12/4=3 ), либо суммой натурального числа и правильной дроби, когда числитель не делится нацело на знаменатель (например, 7/3=2+1/3 ). Возможно, именно этим и заслужили неправильные дроби такое название – «неправильные».

Отдельный интерес вызывает представление неправильной дроби в виде суммы натурального числа и правильной дроби (7/3=2+1/3 ). Этот процесс называется выделением целой части из неправильной дроби , и заслуживает отдельного и более внимательного рассмотрения.

Также стоит заметить, что существует очень тесная связь между неправильными дробями и смешанными числами .

Положительные и отрицательные дроби

Каждая обыкновенная дробь отвечает положительному дробному числу (смотрите статью положительные и отрицательные числа). То есть, обыкновенные дроби являются положительными дробями . К примеру, обыкновенные дроби 1/5 , 56/18 , 35/144 – положительные дроби. Когда нужно особо выделить положительность дроби, то перед ней ставится знак плюс, например, +3/4 , +72/34 .

Если перед обыкновенной дробью поставить знак минус, то эта запись будет соответствовать отрицательному дробному числу. В этом случае можно говорить об отрицательных дробях . Приведем несколько примеров отрицательных дробей: −6/10 , −65/13 , −1/18 .

Положительная и отрицательная дроби m/n и −m/n являются противоположными числами . К примеру, дроби 5/7 и −5/7 – противоположные дроби.

Положительные дроби, как и положительные числа в целом, обозначают прибавление, доход, изменение какой-либо величины в сторону увеличения и т.п. Отрицательные дроби отвечают расходу, долгу, изменению какой-либо величины в сторону уменьшения. Например, отрицательную дробь −3/4 можно трактовать как долг, величина которого равна 3/4 .

На горизонтальной и направленной вправо отрицательные дроби располагаются левее начала отсчета. Точки координатной прямой, координатами которых являются положительная дробь m/n и отрицательная дробь −m/n расположены на одинаковом расстоянии от начала координат, но по разные стороны от точки O .

Здесь же стоит сказать о дробях вида 0/n . Эти дроби равны числу нуль, то есть, 0/n=0 .

Положительные дроби, отрицательные дроби, а также дроби 0/n объединяются в рациональные числа .

Действия с дробями

Одно действие с обыкновенными дробями – сравнение дробей - мы уже рассмотрели выше. Определены еще четыре арифметических действия с дробями – сложение, вычитание, умножение и деление дробей. Остановимся на каждом из них.

Общая суть действий с дробями аналогична сути соответствующих действий с натуральными числами. Проведем аналогию.

Умножение дробей можно рассматривать как действие, при котором находится дробь от дроби. Для пояснения приведем пример. Пусть у нас есть 1/6 часть яблока и нам нужно взять 2/3 части от нее. Нужная нам часть является результатом умножения дробей 1/6 и 2/3 . Результатом умножения двух обыкновенных дробей является обыкновенная дробь (которая в частном случае равна натуральному числу). Дальше рекомендуем к изучению информацию статьи умножение дробей – правила, примеры и решения .

Список литературы.

  • Виленкин Н.Я., Жохов В.И., Чесноков А.С., Шварцбурд С.И. Математика: учебник для 5 кл. общеобразовательных учреждений.
  • Виленкин Н.Я. и др. Математика. 6 класс: учебник для общеобразовательных учреждений.
  • Гусев В.А., Мордкович А.Г. Математика (пособие для поступающих в техникумы).

Дроби мы постоянно используем в жизни. Например, когда едим торт с друзьями. Торт можно разделить на 8 равных частей или на 8 долей . Доля – это равная часть от чего-то целого. Четыре друга съели по кусочку торта. Четыре взяли из восьми кусочков можно записать математически в виде обыкновенной дроби \(\frac{4}{8}\), читается дробь “четыре восьмых” или “четыре деленное на восемь”. Обыкновенную дробь еще называют простой дробью .

Дробная черта заменяет деление:
\(4 \div 8 = \frac{4}{8}\)
Это мы записали доли в дробях. В буквенном виде будет так:
\(\bf m \div n = \frac{m}{n}\)

4 – числитель или делимое, находится вверху над дробной чертой и показывает сколько частей или долей из общего было взято.
8 – знаменатель или делитель, находится внизу под дробной чертой и показывает общее количество частей или долей.

Если мы приглядимся внимательно, то увидим, что друзья съели половину торта или одну часть из двух. Запишем в виде обыкновенной дроби \(\frac{1}{2}\), читается “одна вторая”.

Рассмотрим еще пример:
Имеется квадрат. Квадрат разделили на 5 равных частей. Две части закрасили. Запишите дробь для закрашенных частей? Запишите дробь для не закрашенных частей?

Две части закрасили, а всего частей пять, поэтому дробь будет иметь вид \(\frac{2}{5}\), читается дробь “две пятых”.
Три части не закрасили, всего частей пять, поэтому дробь запишем так \(\frac{3}{5}\), читается дробь “три пятых”.

Разделим квадрат на более мелкие квадраты и запишем дроби, для закрашенных и не закрашенных частей.

Закрашенных 6 частей, а всего 25 частей. Получаем дробь \(\frac{6}{25}\) , читается дробь “шесть двадцать пятых”.
Не закрашенных 19 частей, а всего 25 частей. Получаем дробь \(\frac{19}{25}\), читается дробь “девятнадцать двадцать пятых”.

Закрашенных 4 части, а всего 25 частей. Получаем дробь \(\frac{4}{25}\), читается дробь “четыре двадцать пятых”.
Не закрашенных 21 частей, а всего 25 частей. Получаем дробь \(\frac{21}{25}\), читается дробь “двадцать один двадцать пятых”.

Любое натуральное число можно представить в виде дроби . Например:

\(5 = \frac{5}{1}\)
\(\bf m = \frac{m}{1}\)

Любое число делиться на единицу, поэтому это число можно представить в виде дроби.

Вопросы по теме “обыкновенные дроби”:
Что такое доля?
Ответ: доля – это равная часть от чего-то целого.

Что показывает знаменатель?
Ответ: знаменатель показывает на сколько всего частей или долей поделено.

Что показывает числитель?
Ответ: числитель показывает сколько частей или долей было взято.

Дорога составляла 100м. Миша прошел 31м. Запишите дробью выражение сколько прошел Миша?
Ответ:\(\frac{31}{100}\)

Что такое обыкновенная дробь?
Ответ: обыкновенная дробь – это отношение числителя к знаменателю, где числитель меньше знаменателя. Пример, обыкновенных дробей \(\frac{1}{4}, \frac{3}{7}, \frac{5}{13}, \frac{9}{11}…\)

Как перевести натуральное число в обыкновенную дробь?
Ответ: любое число можно записать в виде дроби, например, \(5 = \frac{5}{1}\)

Задача №1:
Купили 2кг 700г дыни. Мише отрезали \(\frac{2}{9}\) дыни. Чему равна масса отрезанного кусочка? Сколько граммов дыни осталось?

Решение:
Переведем килограммы в граммы.
2кг = 2000г
2000г + 700г = 2700г всего весит дыня.

Мише отрезали \(\frac{2}{9}\) дыни. В знаменателе стоит число 9, значит на 9 частей разделили дыню.
2700: 9 =300г масса одного кусочка.
В числители стоит число 2, значит надо Мише дать два кусочка.
300 + 300 = 600г или 300 ⋅ 2 = 600г столько дыни съел Миша.

Чтобы найти какая масса дыни осталась нужно вычесть от общей массы дыни съеденную массу.
2700 — 600 = 2100г осталось дыни.



Понравилась статья? Поделитесь с друзьями!