Устойчивость системы по критерию гурвица. Минимаксное решение

Критерий Гурвица.

Линейная система, характеристический полином которой равен

где a 0 >0, устойчива, если положительны n главных определителей матрицы Гурвица:

(5.8)

Порядок составления матрицы Гурвица следующий. На главной диагонали записываются все коэффициенты, начиная с первого. Далее заполняются строки: четными коэффициентами по порядку, если на главной диагонали стоит четный коэффициент, и нечетными, если на главной диагонали стоит нечетный коэффициент. Если какой-либо коэффициент отсутствует, то вместо него заносится нуль.

Для оценки устойчивости системы необходимо вычислить определители Гурвица D i (i = 1, 2, ... , n), которые получают из матрицы (5.8) путем отчеркивания равного числа строк и столбцов в левом верхнем углу матрицы.

Система устойчива, если D i > 0 для всех i = 1, 2, ... , n.

Последний определитель Гурвица, как видно из приведенной выше матрицы, равен

D n = a n ´ D n -1 .

Поэтому его положительность сводится при D n -1 >0 к условию a n >0,

Для систем первого и второго порядка критерий Гурвица сводится просто к положительности коэффициентов a i .

Если определитель D n =0, то система находится на границе устойчивости. Возможны два случая: апериодическая граница устойчивости, если свободный член характеристического уравнения равен нулю, что соответствует нейтрально устойчивой системе; колебательная граница устойчивости, если определитель D n -1 =0. Из условия D n -1 =0 можно определить параметры, при которых система находится на границе устойчивости.

Пример. Передаточная функция разомкнутой системы задана в виде: . Исследовать устойчивость системы.

Решение. Характеристическое уравнение замкнутой системы

D(p)=0, где .

Откуда следует

Раскрыв скобки, получим

T 1 T 2 p 3 + (T 1 + T 2)p 2 + p + k = 0.

Тогда имеем: a 0 = T 1 T 2 ; a 1 = (T 1 + T 2); a 2 = 1; a 3 = k.

Коэффициенты характеристического уравнения положительны.

Составляем матрицу Гурвица

и найдем определители этой матрицы. Для устойчивости системы все они должны быть положительными:

D 1 = a 1 , откуда (T 1 + T 2) > 0;

D 2 = a 1 ´a 2 - a 0 ´a 3 , откуда (T 1 + T 2) - kT 1 T 2 > 0;

D 3 = a 1 ´a 2 ´a 3 - a 0 ´a 3 2 = a 3 (a 1 ´a 2 - a 0 ´a 3), откуда a 3 >0 , то есть k > 0.

Условие устойчивости по критерию Гурвица получает вид

(T 1 + T 2) > kT 1 T 2 или k < ( + ).

Границы устойчивости:

1) a n = 0, k = 0;

2) D n -1 = 0, k гр = ( + );

3) a 0 = 0, T 1 T 2 = 0.

Эти три границы устойчивости можно изобразить графически в пространстве параметров k, T 1 , T 2 и найти области устойчивости системы.

Найдем сначала область устойчивости системы по одному параметру k (общий коэффициент передачи разомкнутой системы). Пространство параметров здесь одна прямая линия, а границы устойчивости - точки на ней: k = 0 и k = k гр (рис.5.6). Область устойчивости лежит между этими точками.

Рис. 5.6. Область устойчивости по одному параметру

Те же границы устойчивости системы можно построить на плоскости двух параметров, например: k и T 1 (рис.5.7). Первая граница k = 0 лежит на оси T 1 . Вторая граница = k - имеет вид гиперболы с асимптотами k = 0 и k = . Третья граница T 1 = 0 совпадает с осью k. Штриховка границ сделана в сторону области устойчивости.

Критерий Гурвица основан на следующих двух предположениях: «природа» может находиться в самом невыгодном состоянии с вероятностью (1 - y) и в самом выгодном состоянии с вероятностью y , где y - коэффициент доверия. Если результат h ji - прибыль, полезность, доход и т.п., то критерий Гурвица записывается так:

W = max[ y max+(1- y)min]

Когда целевая функция представляет затраты (потери), то:

W = min[ y min+(1- y)max]

Назначение сервиса . С помощью онлайн калькулятора выбирается оптимальная стратегия по критерию Гурвица. Результаты вычислений оформляются в отчете формата Word (см. Пример оформления).

Инструкция Для расчета и оформления решения в формате Word и Excel необходимо выбрать

размерность платежной матрицы 2 3 4 5 6 7 8 9 10 x 2 3 4 5 6 7 8 9 10

Критерий Гурвица устанавливает баланс между случаями крайнего пессимизма и крайнего оптимизма путем взвешивания обоих способов поведения соответствующими весами (1 - y) и y , где 0Пример . Исходные данные:

8 4 6 20
7 7 7 7
6 12 8 10
Критерий Вальда .
По критерию Вальда за оптимальную принимается чистая стратегия, которая в наихудших условиях гарантирует максимальный выигрыш, т.е.
a = max(min a ij)
Критерий Вальда ориентирует статистику на самые неблагоприятные состояния природы, т.е. этот критерий выражает пессимистическую оценку ситуации.
A i П 1 П 2 П 3 П 4 min(a ij)
A 1 8 4 6 20 4
A 2 7 7 7 7 7
A 3 6 12 8 10 6
Выбираем из (4; 7; 6) максимальный элемент max=7
Вывод: выбираем стратегию N=2.
Критерий Севиджа .
Критерий минимального риска Севиджа рекомендует выбирать в качестве оптимальной стратегии ту, при которой величина максимального риска минимизируется в наихудших условиях, т.е. обеспечивается:
a = min(max r ij)
Критерий Сэвиджа ориентирует статистику на самые неблагоприятные состояния природы, т.е. этот критерий выражает пессимистическую оценку ситуации.
Находим матрицу рисков.
Риск – мера несоответствия между разными возможными результатами принятия определенных стратегий. Максимальный выигрыш в j-м столбце b j = max(a ij) характеризует благоприятность состояния природы.
1. Рассчитываем 1-й столбец матрицы рисков.
r 11 = 8 - 8 = 0; r 21 = 8 - 7 = 1; r 31 = 8 - 6 = 2;
2. Рассчитываем 2-й столбец матрицы рисков.
r 12 = 12 - 4 = 8; r 22 = 12 - 7 = 5; r 32 = 12 - 12 = 0;
3. Рассчитываем 3-й столбец матрицы рисков.
r 13 = 8 - 6 = 2; r 23 = 8 - 7 = 1; r 33 = 8 - 8 = 0;
4. Рассчитываем 4-й столбец матрицы рисков.
r 14 = 20 - 20 = 0; r 24 = 20 - 7 = 13; r 34 = 20 - 10 = 10
A i П 1 П 2 П 3 П 4
A 1 0 8 2 0
A 2 1 5 1 13
A 3 2 0 0 10
Результаты вычислений оформим в виде таблицы.
A i П 1 П 2 П 3 П 4 max(a ij)
A 1 0 8 2 0 8
A 2 1 5 1 13 13
A 3 2 0 0 10 10
Выбираем из (8; 13; 10) минимальный элемент min=8

Критерий Гурвица .
Критерий Гурвица является критерием пессимизма - оптимизма. За оптимальную принимается та стратегия, для которой выполняется соотношение:
max(s i)
где s i = y min(a ij) + (1-y)max(a ij)
При y = 1 получим критерий Вальде, при y = 0 получим – оптимистический критерий (максимакс).
Критерий Гурвица учитывает возможность как наихудшего, так и наилучшего для человека поведения природы. Как выбирается y? Чем хуже последствия ошибочных решений, тем больше желание застраховаться от ошибок, тем y ближе к 1.
Рассчитываем s i .
s 1 = 0.5 4+(1-0.5) 20 = 12
s 2 = 0.5 7+(1-0.5) 7 = 7
s 3 = 0.5 6+(1-0.5) 12 = 9
A i П 1 П 2 П 3 П 4 min(a ij) max(a ij) y min(a ij) + (1-y)max(a ij)
A 1 8 4 6 20 4 20 12
A 2 7 7 7 7 7 7 7
A 3 6 12 8 10 6 12 9
Выбираем из (12; 7; 9) максимальный элемент max=12
Вывод: выбираем стратегию N=1.
Обобщенный критерий Гурвица .
Данный критерий является некоторым обобщением критериев крайнего пессимизма и крайнего оптимизма и также представляет собой частный случай обобщенного критерия Гурвица относительно выигрышей при следующем допущении:
λ 1 =1-λ, λ2=λ3=…=λ n-1 =0, λ n =λ, где 0 ≤ λ ≤ 1
Тогда показатель эффективности стратегии A i по Гурвицу есть:
G i =(1-λ)min a ij + λmax a ij
Оптимальной стратегией A i0 считается стратегия с максимальным значением показателя эффективности.
Строим вспомогательную матрицу B, полученную путем упорядочивания показателей доходностей в каждой строке.
Подход пессимиста . λ выбирается из ус

В 1895 г. швейцарским ученым А. Гурвицем был предложен критерий, определяющий условия, которым должны удовлетворять коэффициенты характеристического уравнения системы для обеспечения отрицательности вещественных частей корней ее характеристического уравнения.

Приведем формулировку критерия Гурвица без доказательства. Так как характеристическое уравнение всегда может быть приведено к виду, когда а п > 0, то можно дать следующую формулировку критерия Гурвица.

Для того, чтобы система управления была устойчива, необходимо и достаточно, чтобы определитель Гурвица и все его диагональные миноры были положительными.

Если характеристическое уравнение системы я-го порядка имеет вид:

а п Х п + а я _ х я " х + ... + а } Х + я 0 =0,

то определитель Гурвица, составленный из коэффициентов характеристического уравнения, будет иметь вид:

а его диагональные миноры, определяемые из определителя Гурвица так, как показано в (6.8), будут иметь вид:

Для составления определителя Гурвица из коэффициентов характеристического уравнения я-й степени целесообразно сначала выписать по главной диагонали определителя все коэффициента уравнения от я л _, до а 0 в порядке убывания индексов коэффициентов. Затем необходимо дополнить столбцы определителя вверх и вниз от элементов главной диагонали. При дополнении столбцов вверх следует вписать в столбец коэффициенты с последовательно убывающими индексами, а при дополнении вниз - коэф-

фициенты с последовательно возрастающими индексами. На место коэффициентов, индексы которых больше чем п и меньше чем нуль, необходимо поставить нули. Условия устойчивости системы порядка п по данному критерию запишутся в виде:

а п > 0; А, > 0; Д 2 > 0 ... Д > 0; Д„>0. (6.9)

Элементы последнего столбца определителя, за исключением нижнего, будут равны нулю. Поэтому он может быть представлен в следующем виде:

Так как для устойчивой системы Д„_, > 0, то условие Д„ > 0 сводится к условию а 0 > 0.

Для получения условий нахождения системы на границе устойчивости необходимо Д п приравнять нулю, т. е. Д„ =0, соблюдая при этом условие положительности всех остальных определителей (миноров). Но условие Д п =д 0 Д„_, =0 распадается на два условия:

а 0 = 0 (6.10)

А я _,=0. (6.11)

Условие (6.10) соответствует границе устойчивости, когда характеристическое уравнение имеет нулевой корень (апериодическая граница устойчивости). Условие (6.11) соответствует границе устойчивости, когда характеристическое уравнение имеет пару чисто мнимых корней (колебательная граница устойчивости).

Значения параметров систем управления, при которых система находится на границе устойчивости, будем называть критическими значениями параметров.

Рассмотрим определение условий устойчивости для систем 1-, 2- и 3-го порядков, используя критерий устойчивости Гурви-ца. При этом считаем, что характеристическое уравнение системы приведено к виду, когда а п > 0.

1. Система управления, движение которой описывается уравнением первого порядка. Ее характеристическое уравнение имеет вид:

я,Х. + а 0 = 0.

Условия устойчивости:

д, > 0; Д, = д 0 > 0.

2. Система управления, движение которой описывается уравнением второго порядка. Ее характеристическое уравнение имеет вид:

а 2 Х 2 + а{к + д 0 = 0; д 2 >0.

Условия устойчивости:

или д, д 0 > 0, но так как д, > 0, то для того чтобы Д2 = д, д 0 >0, необходимо, чтобы д 0 > 0.

Таким образом, необходимым и достаточным условием устойчивости систем 1-го и 2-го порядков является положительность коэффициентов их характеристических уравнений, что подтверждает выводы, сделанные в предыдущем параграфе.

3. Система управления, движение которой описывается уравнением 3-го порядка. Ее характеристическое уравнение имеет вид:

д 3 А 3 + а 2 Х 2 + д,^ + д 0 =0; д 3 > 0. Условия устойчивости по Гурвицу имеют вид:

Д2 = Д 2 Д| - а ц а г >0» Д = о 0 а 2 > 0.

Так как Д 2 >0, то для выполнения последнего неравенства необходимо, чтобы д 0 > 0.

Окончательно условия устойчивости по критерию Гурвица для данной системы выглядят следующим образом:

д 3 > 0; д 2 > 0; д, > 0; д 0 > 0; д 2 д, >д 0 д 3 .

Полученный результат подтверждает ранее сделанный вывод, что положительность коэффициентов является только необходимым, но недостаточным условием устойчивости для систем третьего и выше порядков.

Рассмотрим для примера исследование устойчивости системы управления, уравнение движения которой имеет вид:

0,001 + 0,18-Р + 0,97-^- + 1,8- + 50* =

0,0015^^ + 1,5- + 10#. сИ 1 сИ

Характеристическое уравнение исследуемой системы имеет вид:

0,001Х 4 + 0,18А 3 + 0,97А. 2 + 1,8А. + 50 = 0.

Все коэффициенты характеристического уравнения положительные, поэтому необходимое условие устойчивости выполняется.

Составляем определитель Гурвица по ранее изложенному правилу:

  • 0,18 1,8 0 0
  • 0,001 0,97 50 0
  • 0 0,18 1,8 0
  • 0 0,001 0,97 50

Условия устойчивости:

  • 1) Д = 0,18 > 0;
  • 0,18 1,8 0,001 0,97
  • 2) Д 2 =
  • 3) Д, =

0,18-0,97 - 1,8 -0,001 =0,1728 > 0;

0,18 1,8 0 0,001 0,97 50 0 0,18 1,8

1,8(0,18-0,97 - 0,001 - 1,8) -

0,18 2 50 = -1,31

Следовательно, исследуемая система неустойчивая.

Применение критерия устойчивости Гурвица ограничено рядом присущих ему недостатков. Во-первых, применение этого критерия требует знания всех коэффициентов характеристического уравнения системы, т. е. всех параметров системы, что крайне неудобно при экспериментальных исследованиях систем, так как обычно характеристики рассматриваемой системы определяются из испытаний разомкнутой системы. Во-вторых, критерий устойчивости Гурвица позволяет определить, устойчива система или нет, но не позволяет определить, как следует изменить параметры системы, чтобы сделать систему устойчивой, если она неустойчивая. И, наконец, применение критерия Гурвица для системы высокого порядка связано со значительными математическими трудностями, особенно, если необходимо получить буквенный результат. Значительными достоинствами по сравнению с этим критерием обладают частотные критерии устойчивости.

Контрольные вопросы

  • 1. Записать условия устойчивости по Гурвицу в общем виде для систем 5-го порядка.
  • 2. Определить критическое значение передаточного коэффициента системы, передаточная функция которой в разомкнутом состоянии имеет вид:
  • -. Ответ: 1с п = 122,21.
  • (0,5р + 1)(0,05р + 1)(0,005 + 1) р
  • 3. Исследовать устойчивость системы, характеристическое уравнение которой имеет вид: X 6 + 6А. 5 + 15Х 4 + 20А 3 + 5Х 2 + + 1 = 0. Ответ: система устойчивая.

В статье рассмотрены такие понятия, как критерии Гурвица, Сэвиджа и Вальда. Упор сделан преимущественно на первый. Критерий Гурвица подробно описан как с алгебраической точки зрения, так и с позиции принятия решения в условиях неопределенности.

Стоит начать с определения понятия устойчивости. Оно характеризует способность системы возвращаться к равновесному состоянию по окончании возмущения, которое нарушило сформировавшееся ранее равновесие.

Важно отметить, что его оппонент - неустойчивая система - постоянно удаляется от своего равновесного состояния (совершает колебания вокруг него) с возвращающей амплитудой.

Критерии устойчивости: определение, виды

Это свод правил, которые позволяют судить о существующих знаках корней характеристического уравнения без поиска его решения. А последние, в свою очередь, предоставляют возможность судить об устойчивости конкретной системы.

Как правило, они бывают:

  • алгебраическими (составление по конкретному характеристическому уравнению алгебраических выражений с применением специальных правил, которые характеризуют устойчивость САУ);
  • частотными (объект изучения - частотные характеристики).

Критерий устойчивости Гурвица с алгебраической точки зрения

Им выступает алгебраический критерий, подразумевающий рассмотрение определенного характеристического уравнения в виде стандартной формы:

A(p)=aᵥpᵛ+aᵥ₋₁pᵛ¯¹+…+a₁p+a₀=0 .

Посредством его коэффициентов формируется матрица Гурвица.

Правило составления матрицы Гурвица

В направлении сверху вниз по порядку выписываются все коэффициенты соответствующего характеристического уравнения, начиная от aᵥ₋₁ до a0. Во всех столбцах вниз от главной диагонали указывают коэффициенты возрастающих степеней оператора p, затем вверх - убывающих. Недостающие элементы заменяются нулями.

Принято считать, что когда все имеющиеся диагональные миноры рассматриваемой матрицы положительны. Если главный определитель равен нулю, то можно говорить о нахождении ее на границе устойчивости, причем аᵥ=0. В случае соблюдения остальных условий рассматриваемая система располагается на границе новой апериодической устойчивости (предпоследний минор приравнивается к нулю). При положительном значении оставшихся миноров - на границе уже колебательной устойчивости.

Принятие решения в ситуации неопределенности: Гурвица, Сэвиджа

Они являются критериями выбора наиболее целесообразной вариации стратегии. Критерий Сэвиджа (Гурвица, Вальда) применяется в ситуации, когда имеют место неопределенные априорные вероятности состояний природы. Их основа - анализ либо платежной матрицы. В случае неизвестности распределения вероятностей будущих состояний вся имеющаяся информация сводится к списку ее возможных вариантов.

Итак, стоит начать с максиминного критерия Вальда. Он выступает критерием крайнего пессимизма (осторожного наблюдателя). Данный критерий можно сформировать и для чистых, и для смешанных стратегий.

Свое название он получил на основании предположения статиста касательно того, что природа может реализовать состояния, в рамках которых величина выигрыша приравнена к наименьшему значению.

Этот критерий тождественен пессимистическому, который применяется в ходе решения матричных игр, чаще всего в чистых стратегиях. Так, сначала необходимо выбрать из каждой строки минимальное значение элемента. Затем выделяется стратегия ЛПР, которая соответствует максимальному элементу среди уже отобранных минимальных.

Выбранные посредством рассматриваемого критерия варианты лишены риска, так как ЛПР не сталкивается с более плохим результатом, чем тот, который выступает ориентиром.

Итак, самой приемлемой, согласно критерию Вальда, признана чистая стратегия, так как она в худших условиях гарантирует максимально предельный выигрыш.

Далее стоит рассмотреть критерий Сэвиджа. Здесь при выборе 1-го из доступных решений на практике, как правило, останавливаются на таком, который приведет к минимальным последствиям в случае, если выбор все же окажется ошибочным.

Согласно данному принципу, всякое решение характеризуется некой величиной дополнительных потерь, возникающих в ходе его осуществления, по сравнению с правильным при имеющимся состоянии природы. Очевидно, что правильное решение не может нести дополнительные потери, ввиду чего их величина приравнена к нулю. Так, в роли наиболее целесообразной принимается стратегия, величина потерь в которой минимальна при худшем стечении обстоятельства.

Критерий пессимизма-оптимизма

Так по-другому называется критерий Гурвица. В процессе выбора решения, в ходе оценки сложившейся ситуации вместо двух крайностей придерживаются так называемой промежуточной позиции, которая учитывает вероятность как благоприятного, так и наихудшего поведения природы.

Данный компромиссный вариант предложил Гурвиц. Согласно ему, для всякого решения понадобится установить линейную комбинацию min и max, далее выбрать стратегию, которая соответствует их наибольшему значению.

Когда оправдано применение рассматриваемого критерия?

Использовать критерий Гурвица целесообразно в ситуации, характеризующейся следующими признаками:

  1. Существует необходимость взятия во внимание наихудшего из вариантов.
  2. Отсутствие знаний касательно вероятностей состояний природы.
  3. Допустим некоторый риск.
  4. Реализуется достаточно малое число решений.

Заключение

Напоследок будет нелишне напомнить, что в статье были рассмотрены критерии Гурвица, Сэвиджа и Вальда. Критерий Гурвица подробно описан с различных точек зрения.

Критерии устойчивости

Определение устойчивости АСУ по корням характеристического уравнения сопряжено с большими трудностями, связанными с решением дифференциального уравнения и большим объемом вычислений. Поэтому в практике ТАУ для определения устойчивости чаще используют критерии устойчивости.

Критерием устойчивости называется совокупность правил, методов или алгоритмов, которые позволяют судить об устойчивости АСУ без решения характеристического уравнения, используя другие признаки. Все критерии можно разделить на две группы: алгебраические критерии устойчивости и частотные критерии устойчивости. К алгебраическим критериям устойчивости относятся:

1) критерий устойчивости Вишнеградского;

2) критерий устойчивости Гурвица;

3) критерий устойчивости Рауса.

К частотным критериям устойчивости относятся:

4) частотный критерий устойчивости Найквиста;

5) частотный критерий устойчивости Михайлова.

Критерий устойчивости Гурвица можно сформулировать в форме, предложенной автором:

Если система описывается линейным дифференциальным уравнением, характеристическое уравнение которого имеет вид:

то для того, чтобы она была устойчива, т.е. чтобы все действительные корни и действительные части комплексных корней характеристического уравнения были бы отрицательны, необходимо и достаточно, чтобы все коэффициенты уравнения имели бы один и тот же знак, а диагональный детерминант порядка п-1 , составленный из коэффициентов уравнения, и все его диагональные миноры были бы положительными.

Диагональный детерминант составляется следующим образом: по диагонали определителя выписывают коэффициенты характеристического уравнения, начиная с a n -1 по а 1 . Таким образом, получается матрица, содержащая n-1 строку и n-1 столбец. Столбцы заполняют следующим образом: вверх выписывают коэффициенты с убывающими индексами, а вниз – с возрастающими. При достижении нулевого или n -го индекса далее ставят нули.

(8.6)

Таким образом, получается квадратная матрица размером (n-1 )* (n-1 ), на главной диагонали которой расположены коэффициенты от a n -1 по a 1 .

Каждый диагональный минор получают из предыдущего минора путем вычеркивания последней строки и последнего столбца.

(8.7)

(8.8)

(8.9)

D 1 =a n -1 (8.10)

Для решения вопроса об устойчивости АСУ выполняется анализ матрицы по следующим правилам:

1) если определители матрицы и всех диагональных миноров положительны, то АСУ устойчива;

2) если определитель или хотя бы один минор равен нулю, то АСУ находится на границе устойчивости;

3) если определитель или хотя бы один минор отрицательны, то АСУ неустойчива.



Рассмотрим конкретные примеры исследования систем на устойчивость с помощью критерия Гурвица.

Пример №1. АСУ включает статический объект второго порядка с передаточной функцией и интегральный регулятор с передаточной функцией . Определить при каком значении коэффициента передачи регулятора система будет устойчивой.

Запишем передаточную функцию замкнутой системы, при этом неважно по какому каналу будет записана передаточная функция, так как нас будет интересовать только знаменатель передаточной функции.

(811)

Знаменатель передаточной функции, приравненный к нулю, является характеристическим уравнением, т.е.

(8.12)

Подставим в уравнение (8.12) значения передаточных функций:

(8.13)

Приводя уравнение (8.13) к общему знаменателю и приравнивая числитель к нулю, получим характеристическое уравнение для системы

Составим главный детерминант, который для данного случая имеет второй порядок:

(8,15)

Из последнего равенства получим

(8.16)

В уравнении (8.16) слева записан параметр настройки регулятора, а справа параметры объекта. Чтобы система была более устойчивой, необходимо иметь как можно меньшее значение коэффициента передачи регулятора. Но в этом случае регулятор будет медленно воздействовать на объект. Поэтому приходится принимать компромиссное решение: чтобы система была устойчивой и регулятор достаточно быстро воздействовал на объект.

Если в уравнении (8.16) поставить знак равенства, т.е. , то система окажется на границе устойчивости. Если , то система будет неустойчивой. Поскольку параметры объекта изменяются довольно медленно, то воздействовать на характер переходного процесса можно, изменяя параметры регулятора.

Коэффициент передачи регулятора, при котором система оказывается на границе устойчивости, называется критическим.

Условие (8.17) можно записать и так

(8.18)

Уравнение (8.18) перепишем в форме

Уравнение (8.19) является уравнением гиперболы Вышнеградского, который сформулировал критерий устойчивости для систем, описываемых уравнениями не выше третьего порядка.

При переходе от уравнения (8.18) к уравнению (8.19) необходимо соблюдать следующие правила:

1) параметры X и Y должны быть безразмерными;

2) параметр X должен быть пропорционален коэффициенту передачи регулятора.

(8.20)

Построим гиперболу Вышнеградского в полученных координатах (рис. 8.4).

Рисунок 8.4 – Гипербола Вышнеградского для систем третьего порядка

Пример №2. Рассмотрим задачу, сформулированную в примере №1, но для случая, когда объект имеет передаточную функцию вида

Приравняв в уравнении (8.14) Т 2 к нулю, получим характеристическое уравнение

(8.22)

Составим главный детерминант, который для данного случая имеет первый порядок:

Получено условие, которое выполняется при любых параметрах системы.

Системы, которые при определенных значениях своих параметров могут быть устойчивыми, называются структурно-устойчивыми.

Пример №3. АСУ включает астатический объект второго порядка с передаточной функцией и интегральный регулятор с передаточной функцией . Определить, при каком значении коэффициента передачи регулятора система будет устойчивой.

Используя уравнение (8.13) и подставляя в него значения передаточных функций, получим

(8.23)

(8.24)

Перепишем уравнение (8.24) следующим образом:

Тогда главный детерминант примет вид:

В данном случае главный детерминант отрицательный, т.е. система неустойчивая, при этом она неустойчивая при любых своих параметрах. О таких системах говорят, что она структурно-неустойчивая.

Из последнего примера можно сделать вывод: что интегральный регулятор нельзя устанавливать на астатическом объекте, так как в любом случае мы получим неустойчивую систему.

Несмотря на простоту применения критерия Гурвица, он обладает рядом недостатков:

1) необходимо рассматривать передаточную функцию замкнутой системы, которая получается достаточно сложной;

2) с помощью критерия можно анализировать системы, у которых в знаменателе передаточной функции стоит рациональный многочлен.

Действительно, если передаточная функция объекта , а регулятора , то характеристическое уравнение имеет вид:

С помощью критерия устойчивости Гурвица эту систему исследовать нельзя. В этом случае нужны другие критерии.



Понравилась статья? Поделитесь с друзьями!