В статистике максвелла функция распределения имеет вид. Закон максвелла о распределении молекул по скоростям

Так как в состоянии равновесия давление во всех частях системы одинаково, то естественно допустить, что в газе отсутствуют какие-либо направленные движения молекул, то есть движения молекул предельно неупорядочены.

В отношении скоростей молекулы это означает:

Скорость молекул и ее проекции являются непрерывными величинами, так как ни одно значение скорости не имеет преимущества перед другими значениями;

При тепловом равновесии в газе все направления скоростей молекул равновероятны. В противном случае это привело бы к образованию направленных макроскопических потоков молекул и возникновению перепадов давления.

Так как скорость и ее проекции являются непрерывными величинами, вводится понятие функции плотности распределения f(v x), f(v y), f(v z) по компонентам скоростей молекул (v x , v y , v z) и по модулю скорости f(v)

Выражения для функций плотности вероятности по компонентам скоростей v x , v y , v z имеют вид

;

.

График функции f(v x)изображен на рис. 1.

Функция имеет максимум при v x = 0, симметрична относительно его и экспоненциально стремится к нулю при v x ® ± ¥. Отложим по оси абсцисс элементарные скоростные интервалы dv x около значений v x , равных 0; ± v x ¢; ± v x ¢¢. Произведение f(v x) dv x равно доле молекул, компонента скорости v x которых лежит в интервале около указанных значений. С другой стороны, произведение f(v x) dv x на графике равно заштрихованным площадкам около выбранных скоростей.

Из сопоставления размеров заштрихованных площадей следует:

Относительное большинство молекул имеет проекцию скорости вдоль оси v x , близкую к нулю;

Доли молекул, имеющих одинаковые значения v x , но летящие в противоположных направлениях (разные знаки +v x и -v x), одинаковы;

Число молекул, имеющих большие значения компонент скоростей, мало (мала площадь около ± v x ¢¢).

Аналогичный анализ можно провести и для f(v y), f(v z).

График функции f(v) изображен на рис. 2.

Функция равна 0 при v = 0; стремится к нулю при v ® ¥, при v = v b имеет максимум. Значение скорости v b , при которой функция плотности распределения достигает максимума, называется наиболее вероятной скоростью. Ее значение находится из условия экстремума.

.

Произведение f(v) dv дает долю молекул, скорости которых лежат в выбранном интервале dv. На графике это произведение равно заштрихованным площадкам. Как видно из графика, максимальная площадка соответствует скорости v b . С увеличением скорости доля молекул, обладающих большими скоростями, уменьшается (малая площадь при v 3). Зная аналитический вид f(v), можно найти

;

.

Распределение молекул по скоростям зависит от температуры.

Закон Максвелла распределения молекул газа по скоростям описывает поведение очень большого числа частиц, то есть является статистическим законом. Распределение молекул по скоростям устанавливается посредством их столкновений. При столкновениях изменяются скорости отдельных молекул, но закон распределения по скоростям не изменяется.

Характерными параметрами распределения Максвелла являются наиболее вероятная скорость υ в, соответствующая максимуму кривой распределения, и среднеквадратичная скорость где – среднее значение квадрата скорости.

Вы также можете найти интересующую информацию в научном поисковике Otvety.Online. Воспользуйтесь формой поиска:

Еще по теме Распределение Максвелла по скоростям. Наиболее вероятная среднеквадратичная скорость движения молекулы.:

  1. 57. Молекулярно-кинетический смысл температуры. Энергия и скорость теплового движения молекул.
  2. Механическое движение Относительность движения, Система отсчета, Материальная точка, Траектория. Путь и перемещение. Мгновенная скорость. Ускорение. Равномерное и равноускоренное движение

§4 Закон Максвелла о распределении по скоростям и энергиям

Закон распределения молекул идеального газа по скоростям, теоретически полученный Максвеллом в 1860 г. определяет, какое число dN молекул однородного (p = const) одноатомного идеального газа из общего числа N его молекул в единице объёма имеет при данной температуре Т скорости, заключенные в интервале от v до v + dv .

Для вывода функции распределения молекул по скоростям f ( v ) равной отношению числа молекул dN , скорости которых лежат в интервале v ÷v + dv к общему числу молекул N и величине интервала dv

Максвелл использовал два предложения:

а) все направления в пространстве равноправны и поэтому любое направление движения частицы, т.е. любое направление скорости одинаково вероятно. Это свойство иногда называют свойством изотропности функции распределения.

б) движение по трем взаимно перпендикулярным осям независимы т.е. х-компоненты скорости не зависит от того каково значения ее компонент или . И тогда вывод f ( v ) делается сначала для одной компоненты , а затем обобщается на все координаты скорости.

Считается также, что газ состоит из очень большого числа N тождественных молекул находящихся в состоянии беспорядочного теплового движения при одинаковой температуре. Силовые поля на газ не действуют.

Функции f ( v ) определяет относительное число молекул dN ( v )/ N скорости которых лежат в интервале от v до v + dv (например: газ имеет N = 10 6 молекул, при этом dN = 100

молекул имеют скорости от v =100 до v + dv =101 м/с (dv = 1 м ) тогда .

Используя методы теории вероятностей, Максвелл нашел функцию f ( v ) - закон распределения молекул идеального газа по скоростям:

f ( v ) зависит от рода газа (от массы молекулы) и от параметра состояния (от температуры Т )

f ( v ) зависит от отношения кинетической энергии молекулы, отвечающей рассматриваемой скорости к величине kT характеризующей среднюю тепловую энергию молекул газа.

При малых v и функция f ( v ) изменяется практически по параболе . П ри возрастании v множитель уменьшается быстрее, чем растет множитель , т.е. имеется max функции f ( v ) . Скорость, при которой функция распределения молекул идеального газа по скоростям максимальна, называется наиболее вероятной скоростью найдем из условия

Следовательно, с ростом температуры наиболее вероятная скорость растёт, но площадь S , ограниченная кривой функции распределения остаётся неизменной, так как из условия нормировки (так как вероятность достоверного события равна 1), поэтому при повышении температуры кривая распределения f ( v ) будет растягиваться и понижаться.

В статистической физике среднее значение какой-либо величины определяется как интеграл от 0 до бесконечности произведения величины на плотность вероятности этой величины (статистический вес)

< X >=

Тогда средняя арифметическая скорость молекул

И интегрируя по частям получили

Скорости, характеризующие состояние газа

§5 Экспериментальная проверка закона распределения Максвелла - опыт Штерна

Вдоль оси внутреннего цилиндра с целью натянута платиновая проволока, покрытая слоем серебра, которая нагревается током. При нагревании серебро испаряется, атомы серебра вылетают через щель и попадают на внутреннюю поверхность второго цилиндра. Если оба цилиндра неподвижны, то все атомы независимо от их скорости попадают в одно и то же место В. При вращении цилиндров с угловой скоростью ω атома серебра попадут в точки В’, B ’’ и так далее. По величине ω, расстоянию? и смещению х = ВВ’ можно вычислить скорость атомов, попавших в точку В’.

Изображение щели получается размытым. Исследуя толщину осаждённого слоя, можно оценить распределение молекул по скоростям, которое соответствует максвелловскому распределению.

§6 Барометрическая формула

Распределение Больцмана

До сих пор рассматривалось поведение идеального газа, не подверженного воздействию внешних силовых полей. Из опыта хорошо известно, что при действии внешних сил равномерное распространение частиц в пространстве может нарушиться. Так под действием силы тяжести молекулы стремятся опуститься на дно сосуда. Интенсивное тепловое движение препятствует осаждению, и молекулы распространяются так, что их концентрация постепенно уменьшается по мере увеличения высоты.

Выведем закон изменения давления с высотой предполагая, что поле тяготения однородно, температура постоянна и масса всех молекул одинакова. Если атмосферное давление на высоте h равно p , то на высоте h + dh оно равно p + dp (при dh > 0, dp < 0, так как p уменьшается с увеличением h ).

Разность давления на высотах h и h + dh мы можем определить как вес молекул воздуха заключённого в объёме с площадью основания равного 1 и высотой dh .

плотность на высоте h , и так как , то = const .

Тогда

Из уравнения Менделеева-Клапейрона.

Тогда

Или

С изменением высоты от h 1 до h 2 давление изменяется от p 1 до p 2

Пропотенцируем данное выражение (

Барометрическая формула, показывает, как меняется давление с высотой

Распределение Максвелла (распределение молекул газа по скоростям). В равновесном состоянии параметры газа (давле­ние, объем и температура) остаются неизменными, однако микро­состояния - взаимное расположение молекул, их скорости - не­прерывно изменяются. Из-за огромного количества молекул прак­тически нельзя определить значения их скоростей в какой-либо момент, но возможно, считая скорость молекул непрерывной слу­чайной величиной, указать распределение молекул по скоростям.

Выделим отдельную молекулу. Хаотичность движения позволяет, например, для проекции скорости x молекулы принять нормальный закон распределения. В этом случае, как показал Дж. К. Максвелл, плотность вероятности записывается следующим образом:

где т 0 - масса молекулы, Т - термодинамическая температура газа, k - постоянная Больцмана.

Аналогичные выражения могут быть получены для f ( у ) иf ( z ).

На основании формулы (2.15) можно записать вероятность то­го, что молекула имеет проекцию скорости, лежащую в интервалеот x до x + d х :

аналогично для других осей

Каждое из условий (2.29) и (2.30) отражает независимое событие. Поэтому вероятность того, что молекула имеет скорость, проекции которой одновременно удовлетворяют всем условиям, можно найти по теореме умножения вероятностей [см. (2.6)]:

Используя (2.28), из (2.31) получаем:

Отметим, что из (2.32) можно получить максвелловскую функ­цию распределения вероятностей абсолютных значений скорости (распределение Максвелла по скоростям):

(2.33)

и вероятность того, что скорость молекулы имеет значение, лежа­щее в интервале от до + d :

График функции (2.33) изображен на рисунке 2.5. Скорость, соответствующую максимуму кривой Максвелла, называют наивероятнейшей в. Ее можно определить, используя условие максимума функции:

или

Среднюю скорость молекулы (математическое ожидание) мож­но найти по общему правилу [см. (2.20)]. Так как определяется среднее значение скорости, то пределы интегрирования берут от 0 до  (математические подробности опущены):

где М = т 0 N A - молярная масса газа, R = k N A - универсальная газовая постоянная, N A - число Авогадро.

При увеличении температуры максимум кривой Максвелла смещается в сторону больших скоростей и распределение молекулпо видоизменяется (рис. 2.6; Т 1 < Т 2 ). Распределение Максвелла позволяет вычислить число моле­кул, скорости которых лежат в определенном интервале. Полу­чим соответствующую формулу.

Так как общее число N молекул в газе обычно велико, то веро­ятность dP может быть выражена как отношение числа dN моле­кул, скорости которых заключены в некотором интервале d , к общему числу N молекул:

Из (2.34) и (2.37) следует, что

Формула (2.38) позволяет определить число молекул, скорости которых лежат в интервале от и: до i> 2 . Для этого нужно проинтег­рировать (2.38):

либо графически вычислить площадь криволинейной трапеции в пределах от 1 до 2 (рис. 2.7).

Если интервал скоростей d достаточно мал, то число молекул, скорости которых соответствуют этому интервалу, может быть рассчитано приближенно по формуле (2.38) или графически как площадь прямоугольника с основаниемd .

На вопрос, сколько молекул имеют скорость, равную како­му-либо определенному значению, следует странный, на первый взгляд, ответ: если совершенно точно задана скорость, то интер­вал скоростей равен нулю(d = 0) и из (2.38) получаем нуль, т. е. ни одна молекула не имеет скорости, точно равной наперед задан­ной. Это соответствует одному из положений теории вероятнос­тей: для непрерывной случайной величины, каковой является скорость, невозможно «угадать» совершенно точно ее значение, которое имеет по крайней мере хотя бы одна молекула в газе.

Распределение молекул по скоростям подтверждено различны­ми опытами.

Распределение Максвелла можно рассматривать как распреде­ление молекул не только по скоростям, но и по кинетическим энергиям (так как эти понятия взаимосвязаны).

Распределение Больцмана. Если молекулы находятся в ка­ком-либо внешнем силовом поле, например гравитационном поле Земли, то можно найти распределение по их потенциальным энергиям, т. е. установить концентрацию частиц, обладающих не­которым определенным значением потенциальной энергии.

Распределение частиц по потенциальным энергиям в си­ ловых полях -гравитационном, электрическом и др. -называют распределением Больцмана.

Применительно к гравитационному полю это распределение может быть записано в виде зависимости концентрации п моле­кул от высотыh над уровнем Земли или от потенциальной энер­гии молекулы mgh :

Выражение (2.40) справедливо для частиц идеального газа. Графи­чески эта экспоненциальная зависимость изображена на рис. 2.8.


Такое распределение молекул в поле тяготения Земли можно ка­чественно, в рамках молекулярно-кинетических представлений, объяснить тем, что на молекулы оказывают влияние два противо­положных фактора: гравитационное поле, под действием которого все молекулы притягиваются к Земле, и молекулярно-хаотическоедвижение, стремящееся равномерно разбросать молекулы по всему возможному объему.

В заключение полезно заметить некоторое сходство экспонен­циальных членов в распределениях Максвелла и Больцмана:

В первом распределении в показателе степени отношение кине­тической энергии молекулы к kT , во втором - отношение потен­циальной энергии к kT .

Функция плотности распределения

Распределение Ма́ксвелла - распределение вероятности , встречающееся в физике и химии . Оно лежит в основании кинетической теории газов , которая объясняет многие фундаментальные свойства газов, включая давление и диффузию . Распределение Максвелла также применимо для электронных процессов переноса и других явлений. Распределение Максвелла применимо к множеству свойств индивидуальных молекул в газе. О нем обычно думают как о распределении энергий молекул в газе, но оно может также применяться к распределению скоростей, импульсов, и модуля импульсов молекул. Также оно может быть выражено как дискретное распределение по множеству дискретных уровней энергии, или как непрерывное распределение по некоторому континууму энергии.

Распределение Максвелла может быть получено при помощи статистической механики (см. происхождение статсуммы). Как распределение энергии, оно соответствует самому вероятному распределению энергии, в столкновительно-доминируемой системе, состоящей из большого количества невзаимодействующих частиц, в которой квантовые эффекты являются незначительными. Так как взаимодействие между молекулами в газе является обычно весьма небольшим, распределение Максвелла даёт довольно хорошее приближение ситуации, существующей в газе.

Во многих других случаях, однако, даже приблизительно не выполнено условие доминирования упругих соударений над всеми другими процессами. Это верно, например, в физике ионосферы и космической плазмы , где процессы рекомбинации и столкновительного возбуждения (то есть излучательные процессы) имеют большое значение, в особенности для электронов. Предположение о применимости распределения Максвелла дало бы в этом случае не только количественно неверные результаты, но даже предотвратило бы правильное понимание физики процессов на качественном уровне. Также, в том случае где квантовая де Бройлева длина волны частиц газа не является малой по сравнению с расстоянием между частицами, будут наблюдаться отклонения от распределения Максвелла из-за квантовых эффектов.

Распределение энергии Максвелла может быть выражено как дискретное распределение энергии:

,

где является числом молекул имеющих энергию при температуре системы , является общим числом молекул в системе и - постоянная Больцмана . (Отметьте, что иногда вышеупомянутое уравнение записывается с множителем , обозначающим степень вырождения энергетических уровней. В этом случае сумма будет по всем энергиям, а не всем состояниям системы). Поскольку скорость связана с энергией, уравнение (1) может использоваться для получения связи между температурой и скоростями молекул в газе. Знаменатель в уравнении (1) известен как каноническая статистическая сумма .

Распределение Максвелла

Распределение по вектору импульса

Представленное ниже очень сильно отличается от вывода, предложенного Джеймсом Клерком Максвеллом и позже описанного с меньшим количеством предположений Людвигом Больцманом .

В случае идеального газа , состоящего из невзаимодействующих атомов в основном состоянии, вся энергия находится в форме кинетической энергии. Кинетическая энергия соотносится с импульсом частицы следующим образом

,

где - квадрат вектора импульса .

Мы можем поэтому переписать уравнение (1) как:

,

где - статсумма , соответствующая знаменателю в уравнении (1), - молекулярная масса газа, - термодинамическая температура, и - постоянная Больцмана . Это распределение пропорционально функции плотности вероятности нахождения молекулы в состоянии с этими значениями компонентов импульса. Таким образом:

Постоянная нормировки C , определяется из условия, в соответствии с которым вероятность того, что молекулы имеют какой-либо вообще импульс, должна быть равна единице. Поэтому интеграл уравнения (4) по всем значениям и должен быть равен единице. Можно показать, что:

.

Таким образом, чтобы интеграл в уравнении (4) имел значение 1 необходимо, чтобы

.

Подставляя выражение (6) в уравнение (4) и используя тот факт, что , мы получим

.

Распределение по вектору скорости

Учитывая, что плотность распределения по скоростям пропорциональна плотности распределения по импульсам:

и используя мы получим:

,

что является распределением Максвелла по скоростям. Вероятность обнаружения частицы в бесконечно малом элементе около скорости равна

Распределение по абсолютной величине импульса

Интегрируя, мы можем найти распределение по абсолютной величине импульса

Распределение по энергии

Наконец, используя соотношения и , мы получаем распределение по кинетической энергии:

Распределение по проекции скорости

Распределение Максвелла для вектора скорости - является произведением распределений для каждого из трех направлений:

,

где распределение по одному направлению:

Это распределение имеет форму нормального распределения . Как и следует ожидать для покоящегося газа, средняя скорость в любом направлении равна нулю.

Распределение по модулю скоростей

Обычно, более интересно распределение по абсолютному значению, а не по проекциям скоростей молекул. Модуль скорости, v определяется как:

поэтому модуль скорости всегда будет больше или равен нулю. Так как все распределены нормально , то будет иметь хи-квадрат распределение с тремя степенями свободы. Если - функция плотности вероятности для модуля скорости, то:

,

таким образом, функция плотности вероятности для модуля скорости равна

Характерная скорость

Хотя Уравнение (11) дает распределение скоростей, или, другими словами, долю молекул, имеющих специфическую скорость, часто более интересны другие величины, такие как средние скорости частиц. В следующих подразделах мы определим и получим наиболее вероятную скорость , среднюю скорость и среднеквадратичную скорость .

Наиболее вероятная скорость

наиболее вероятная скорость , - вероятность обладания которой любой молекулой системы максимальна, и которая соответствует максимальному значению . Чтобы найти её, необходимо вычислить , приравнять её нулю и решить относительно :

Средняя скорость

Среднеквадратичная скорость

Подставляя и интегрируя, мы получим

Вывод распределения по Максвеллу

Получим теперь формулу распределения так, как это делал сам Джеймс Клерк Максвелл .
Рассмотрим пространство скоростных точек (каждую молекулу представляем как точку в системе координат ) в стационарном состоянии газа. Выберем бесконечно малый элемент объема . Так как газ стационарный, количество скоростных точек в остается неизменным с течением времени. Пространство скоростей изотропно , поэтому функции плотности вероятности для всех направлений одинаковы.

Максвелл предположил, что распределения скоростей по направлениям статистически независимы, то есть компонента скорости молекулы не зависит от и компонент.

- фактически вероятность нахождения скоростной точки в объеме .

Правая часть не зависит от и , значит и левая от и не зависит. Однако и равноправны, следовательно левая часть не зависит также и от . Значит данное выражение может лишь равняться некоторой константе.

Теперь нужно сделать принципиальный шаг - ввести температуру. Кинетическое определение температуры (как меры средней кинетической энергии движения молекул).



Понравилась статья? Поделитесь с друзьями!