Величина потенциала действия в разных тканях. Потенциал действия, определения, кривая ПД

Форма потенциала действия позволяет разделить процесс его генерации на несколько фаз: предспайк, быстрая деполяризация, реполяризация и следовые потенциалы (рис. 2.3).

Рис. 2.3.

Предспайк - это процесс медленной деполяризации мембраны, который начинается с первого отклонения от потенциала покоя и заканчивается достижением КУД. Предспайк включает пассивную деполяризацию мембраны и активный локальный ответ. Активный ответ возникает, когда пассивная деполяризация мембраны достигает 70-80% от значений КУД и является первым проявлением начинающегося активного состояния мембраны - началом ее возбуждения. Благодаря пассивной деполяризации и локальному активному ответу сдвиг потенциала на мембране достигает критического уровня деполяризации, при котором и развивается собственно ПД.

Фаза быстрой (лавинообразной) деполяризации мембраны является первой фазой ПД. На этой стадии мембранный потенциал быстро сдвигается от критического уровня деполяризации до нуля и продолжает смещаться вплоть до пика Г1Д, перезаряжая мембрану. Во время первой фазы ПД потенциал на мембране «извращается», т.е. мембрана разряжается до нуля и перезаряжается с противоположным знаком. Участок ПД со значениями от нуля до пика перезарядки носит название овершут (англ, overshoot) потенциала. Вместо отрицательных значений потенциал на мембране становится положительным. У гигантского аксона кальмара пик ПД достигает значений порядка +50 мВ, а фаза деполяризации с овер- шутом длится порядка 0,5 мс.

Фаза реполяризации является второй фазой ПД. Во время этой фазы значение потенциала на мембране возвращается к исходному значению, т.е. к потенциалу покоя. Эта фаза может быть подразделена на быструю реполяризацию от +50 мВ до 0 В и более медленную реполяризацию - от 0 В до КУД и далее до потенциала покоя. Фаза реполяризации занимает 1-2 мс.

Следовые потенциалы могут в ряде случаев развиваться в конце ПД в виде медленной деполяризации или даже медленной гиперполяризации. Следовая гиперполяризация наблюдается, в частности, на мембране гигантского аксона кальмара.

Ионная природа фаз потенциала действия была изучена в ходе экспериментов на гигантских аксонах кальмара Ходжкиным и Хаксли. Выяснилось, что в момент генерации ПД электрическое сопротивление мембраны аксона на период 1-2 мс снижается в 20-30 раз, г.е. резко возрастает проводимость мембраны, и через мембрану начинает протекать ток. Но какой это ток? Оказалось, что если удалить катионы Na + из наружного раствора и заменить их на сахарозу, то амплитуда потенциала действия резко уменьшается либо ПД вообще не возникает. Это позволило сделать заключение, что главной причиной генерации ПД и перезарядки мембраны до положительных значений является возникновение высокой проницаемости мембраны к катионам натрия и быстрый вход этих катионов внутрь клетки.

Движение натрия внутрь происходит под действием двух сил. Первая сила связана с наличием трансмембранного концентрационного градиента катионов натрия. Концентрация натрия в наружном растворе в 20-30 раз больше, чем внутри, т.е. концентрационный градиент для Na + направлен внутрь клетки, и при наличии достаточной проницаемости катионы натрия будут быстро входить в клетку. Вторая сила связана с наличием большого отрицательного заряда на внутренней стороне мембраны (порядка -70 мВ). Отрицательный заряд на внутренней стороне мембраны будет способствовать входу положительно заряженных катионов натрия в клетку. Входя, катионы натрия будут сначала стремительно уменьшать отрицательный заряд мембраны до нуля, а потом перезаряжать мембрану до положительных значений, приближая величину мембранного потенциала к равновесному потенциалу для Na + . Напомним, что равновесный потенциал для катионов Na" может быть рассчитан по уравнению Нернста и составляет для гигантского аксона кальмара +55 мВ.

В пользу участия входящего натриевого тока в создании деполяриза- ционной фазы ПД свидетельствуют результаты экспериментов с тетродо- токсином - блокатором потенциал-зависимой натриевой проницаемости. Тетродотоксин способен полностью блокировать развитие Г1Д (рис. 2.4, а).

Рис. 2.4. Изменения ПД, возникающие при действии на мембрану избирательных блокаторов натриевой проницаемости - тетродотоксина (я) или калиевой проницаемости - тетраэгиламмония (б)

Таким образом, натриевая гипотеза удовлетворительно объясняет развитие деполяризационной фазы ПД, но оставляет открытым вопрос о причинах рсиоляризации, т.е. фазы ПД, приводящей к возврату мембранного потенциала к уровню потенциала покоя. Было высказано предположение, что на мембране развивается еще один процесс - возрастает ее проницаемость к ионам калия. Было ясно, что это - особая активная калиевая проницаемость, отличающаяся от пассивной калиевой проницаемости, существующей у мембраны в покое (пассивной калиевой утечки). Дополнительная калиевая проницаемость мембраны возникает только в ответ на деполяризацию мембраны до критического уровня, причем с небольшим запаздыванием по сравнению с увеличением натриевой проницаемости. В случае возникновения такой дополнительной активной проницаемости к калию катионы К* начинают выходить из клетки под действием концентрационного градиента и заряда на мембране, созданного опережающим входом катионов натрия. Входящие катионы Na + заряжают внутреннюю сторону мембраны положительно, а наружную - отрицательно. Дополнительный выходящий ток катионов калия будет уменьшать созданный натриевым током положительный заряд внутри клетки и возвращать электрический заряд па мембране к исходным значениям, т.е. к потенциалу покоя.

В пользу участия выходящего калиевого тока в создании реполяризаци- онной фазы ПД свидетельствовали результаты экспериментов с использованием блокатора активной калиевой проницаемости - тетраэтиламмония. Тетраэтиламмоний резко замедляет протекание фазы реполяризации ПД (рис. 2.4, б).

Если ПД является результатом появления и развития на мембране двух новых ионных токов, которых не было в покое, а именно токов натрия и калия, то, следовательно, при деполяризации на мембране открываются новые потенциал-активируемые ионные каналы. Эти каналы проводят сначала натрий, а затем - калий. Свойства таких каналов можно понять, анализируя развитие токов, которые возникают при их работе. Но эти токи надо регистрировать «в чистом виде», т.е. не осложненные одновременными изменениями потенциала на мембране и емкостными токами мембраны. Для этого Ходжкиным и Хаксли в их экспериментах на гигантских аксонах кальмара впервые был использован метод фиксации потенциала на мембране (англ, voltage-clamp).

Метод фиксации потенциала на мембране заключается в подключении к мембране аксона системы двух усилителей. Один усилитель предназначен для регистрации сдвигов мембранного потенциала, второй работает по принципу отрицательной обратной связи. В аксон вводятся два проволочных микроэлектрода. Один из них измеряет сдвиги мембранного потенциала и передает их на усилитель с отрицательной обратной связью. Этот усилитель (отслеживающий сдвиги потенциала на мембране и генерирующий токи) на выходе соединяют со вторым внутриклеточным микроэлектродом - токовым. Через этот микроэлектрод будет подаваться ток, который можно измерять во внешней цепи индифферентного электрода, расположенного снаружи аксона.

Если теперь искусственно деполяризовать мембрану до КУД, то в ответ через возбужденную мембрану начинают течь потенциал-активируемые токи: натриевый и калиевый. Создаваемые этими токами сдвиги мембранного потенциала мгновенно отслеживаются при помощи усилителя обратной связи, посылающего через токовый микроэлектрод равные по амплитуде, но противоположно направленные токи, - возникает обратная связь. Такие «токи фиксации» удерживают (фиксируют) мембрану от сдвигов потенциала и являются, по существу, зеркальным отражением Na + - и К + -токов. Токи фиксации могут быть легко измерены во внешней цепи схемы (рис. 2.5).


Рис. 2.5.

(voltage-clamp ):

при помощи усилителя обратной связи токовый электрод пропускает ток фиксации, являющийся зеркальным отражением трансмембранных токов

На рис. 2.6 приведены данные, полученные с применением метода фиксации потенциала. При деполяризации мембраны от -65 до -9 мВ мембрана возбуждается, что сопровождается генерацией двухфазного тока. Видно, что сначала возникает быстрый входящий ток, который затухает и сменяется на более медленно развивающийся выходящий ток. Оказалось, что входящий ток можно полностью заблокировать с помощью тетродоток- сина - избирательного блокатора потенциал-зависимых натриевых каналов. Из этого следует, что входящий ток - натриевый ток.

Выходящий ток, также возникавший в ответ на деполяризацию, при этом сохраняется и выявляется в чистом виде. Этот ток развивается с небольшой задержкой, нарастает медленнее, но зато не затухает и сохраняется в течение всего времени деполяризации. Он полностью блокируется блокатором потенциал-активируемых калиевых каналов тетраэтилам- монием и, следовательно, представляет собой потенциал-активирусмый К + -ток. Таким образом, с помощью метода фиксации потенциала и использования избирательных блокаторов натриевого и калиевого токов удалось разделить и выявить по отдельности два тока, возникающих при генерации ПД, показать их независимость друг от друга и проанализировать каждый из них.

Рис. 2.6.

а - смещение мембранного потенциала на 56 мВ и фиксация его на уровне -9 мВ;

6 - двухфазный (ранний входящий и поздний выходящий) ток в ответ на фиксацию потенциала на уровне -9 мВ; в - фармакологическое разделение двух токов с помощью блокаторов натриевой (тетродотоксин) и калиевой (тетраэтиламмоний)

Потенциал действия - волна возбуждения, перемещающаяся по мембране живой клетки в процессе передачи нервного сигнала. По сути своей представляетэлектрический разряд - быстрое кратковременное изменение потенциала на небольшом участке мембраны возбудимой клетки (нейрона, мышечного волокна или железистой клетки), в результате которого наружная поверхность этого участка становится отрицательно заряженной по отношению к соседним участкам мембраны, тогда как его внутренняя поверхность становится положительно заряженной по отношению к соседним участкам мембраны. Потенциал действия является физической основой нервного или мышечного импульса, играющего сигнальную (регуляторную) роль.

Потенциал действия развивается на мембране в результате её возбуждения и сопровождается резким изменением мембранного потенциала.

В потенциале действия выделяют несколько фаз:

Фаза деполяризации;

Фаза быстрой реполяризации;

Фаза медленной реполяризации (отрицательный следовый потенциал);

Фаза гиперполяризации (положительный следовый потенциал).

Фаза деполяризации. Развитие ПД возможно только при действии раздражителей, которые вызывают деполяризацию клеточной мембраны. При деполяризации клеточной мембраны до критического уровня деполяризации (КУД) происходит лавинообразное открытие потенциал чувствительных Na+- каналов. Положительно заряженные ионы Na+ входят в клетку по градиенту концентрации (натриевый ток), в результате чего мембранный потенциал очень быстро уменьшается до 0, а затем приобретает положительное значение. Явление изменения знака мембранного потенциала называют реверсией заряда мембраны.

Фаза быстрой и медленной реполяризации. В результате деполяризации мембраны происходит открытие потенциалчувствительных К+- каналов. Положительно заряженные ионы К+ выходят из клетки по градиенту концентрации (калиевый ток), что приводит к восстановлению потенциала мембраны. В начале фазы интенсивность калиевого тока высока и реполяризация происходит быстро, к концу фазы интенсивность калиевого тока снижается и реполяризация замедляется. Усиливает реполяризацию поступление в клетку Ca2+ Фаза гиперполяризации развивается за счет остаточного калиевого тока и за счет прямого электрогенного эффекта активировавшейся Na+/K+ помпы. Поступление в клетку Cl– дополнительно гиперполяризует мембрану Изменение величины мембранного потенциала во время развития потенциала действия связано в первую очередь с изменением проницаемости мембраны для ионов натрия и калия.

Современные представления о механизме его генерации

Методом фиксации мембранного потенциала удалось измерить токи, текущие через плазмолемму аксона (аксолемму) кальмара и убедиться в том, что в покое ток катионов (К +) направлен из цитоплазмы в интерстиций, а при возбуждении доминирует ток катионов (Na +) в клетку. В состоянии «покоя» плазмолемма почти непроницаема для ионов, находящихся в межклеточном пространстве(Na + С1 - и НСОз - ,).

При возбуждении проницаемость для ионов натрия на время, равное нескольким миллисекундам, резко возрастает, а затем снова падает.

В результате катионы (ионы Na +) и анионы (С1 - , НСОз) разобщаются на плазмолемме: Na + входит в цитоплазму, а анионы нет. Поток положительных зарядов в цитоплазму не только компенсирует потенциал покоя, но и превышает его. Возникает так называемый «овершут» (или инверсия мембранного потенциала). Входящий поток натрия - результат его пассивного движения по открывшимся мембранным каналам по концентрационному и электрическому градиентам. Выходящий поток этого катиона обеспечивается калий-натриевой помпой.

5. Законы раздражения: Закон силы. Закон «все или ничего»

1.Закон "все или ничего": При допороговых раздражениях клетки, ткани ответной реакции не возникает. При пороговой силе раздражителя развивается максимальная ответная реакция, поэтому увеличение силы раздражения выше пороговой не сопровождается ее усилением. В соответствии с этим законом реагирует на раздражения одиночное нервное и мышечное волокно, сердечная мышца.

2.Закон силы: Чем больше сила раздражителя, тем сильнее ответная реакция. Однако выраженность ответной реакции растет лишь до определенного максимума. Закону силы подчиняется целостная скелетная, гладкая мышца, так как они состоят из многочисленных мышечных клеток, имеющих различную возбудимость.

3.Закон силы-длительности . Между силой и длительностью действия раздражителя имеется определенная взаимосвязь. Чем сильнее раздражитель, тем меньшее время требуется для возникновения ответной реакции. Зависимость между пороговой силой и необходимой длительностью раздражения отражается кривой силы-длительности. По этой кривой можно определить ряд параметров возбудимости.

(ПД) — это кратковременные амплитудные изменения мембранного потенциала покоя (МПС), возникающие при возбуждении живой клетки. По сути это электрический разряд — быстрая кратковременное изменение потенциала на небольшом участке мембраны возбудимой клетки (нейрона или мышечного волокна), в результате которого внешняя поверхность этого участка становится отрицательно заряженной по отношению к соседним участкам мембраны, тогда как его внутренняя поверхность становится положительно заряженной по отношению к соседним участкам мембраны. Потенциал действия является физической основой нервного или мышечного импульса, который играет сигнальную (регуляторную) роль.

Общая характеристика

Потенциалы действия могут отличаться по своим параметрам в зависимости от типа клетки и даже на разных участках мембраны одной и той же клетки. Наиболее характерный пример различий: потенциал действия сердечной мышцы и потенциал действия большинства нейронов. Все же, в основе любого потенциала действия лежат следующие явления:

  1. «Мембрана живой клетки поляризована» — ее внутренняя поверхность заряжена отрицательно по отношению к наружной благодаря тому, что в растворе у ее внешней поверхности находится большее количество положительно заряженных частиц (катионов), а у внутренней поверхности — большее количество отрицательно заряженных частиц (анионов).
  2. «Мембрана имеет избирательную проницаемость ‘- ее проницаемость для различных частиц (атомов или молекул) зависит от их размеров, электрического заряда и химических свойств.
  3. «Мембрана возбудимой клетки способна быстро менять свою проницаемость ‘для определенного вида катионов, вызывая переход положительного заряда с внешней стороны на внутреннюю

Первые два свойства характерны для всех живых клеток. Третья же является особенностью клеток возбудимых тканей и причиной, по которой их мембраны способны генерировать и проводить потенциалы действия.

Основной математической моделью, описывающей генерацию и передачу потенциала действия, является модель Ходжкина-Хаксли.

Фазы

Можно четко выделить пять фаз развития ПД:

Нарастание (деполяризация)

Возникновение потенциала действия (ПД) связано с увеличением проницаемости мембраны для ионов натрия (в 20 раз по сравнению с проницаемостью для К +, и в 500 раз по сравнению с исходной проницаемостью Na +) и последующим усилением диффузии этих ионов по концентрационном градиенту внутрь клетки, приводит к изменению (уменьшение) мембранного потенциала. Уменьшение мембранного потенциала приводит к увеличению проницаемости мембраны для натрия путем открытия потенциал-зависимых натриевых каналов, а увеличение проницаемости сопровождается усилением диффузии натрия в цитоплазму, что вызывает еще более значительную деполяризацию мембраны. Благодаря наличию положительной обратной связи деполяризация мембраны при возбуждении происходит с ускорением и поток ионов натрия в клетку все время растет. Интенсивность же потока ионов калия, направленного из клетки наружу, в первые моменты возбуждения остается в начале. Усиленный поток положительно заряженных ионов натрия внутрь клетки вызывает сначала исчезновение избыточного отрицательного заряда на внутренней поверхности мембраны, а затем приводит к перезарядки мембраны. Поступления ионов натрия происходит до тех пор, пока внутренняя поверхность мембраны не приобретет положительный заряд, достаточный для уравновешивания градиента концентрации натрия и прекращение его дальнейшего перехода внутрь клетки. Натриевый возникновения ПД подтверждают опыты с изменением внешней и внутренней концентрации этого иона. Было показано, что десятикратном изменении концентрации ионов натрия во внешнем или внутреннем среде клетки, соответствует изменение ПД на 58 мВ. При полном удалении ионов натрия из окружающей клетку жидкости ПД ни возникал. Таким образом, установлено, что ПД возникает в результате избыточной, по сравнению с покоем, диффузии ионов натрия из окружающей жидкости внутрь клетки. Период, в течение которого проницаемость мембраны для ионов натрия при открытии натриевых каналов растет, является небольшим (0,5-1 мс) вслед за этим наблюдается повышение проницаемости мембраны для ионов калия благодаря открытию потенциал-зависимых калиевых каналов, и, следовательно, усиление диффузии этих ионов из клетки наружу.

Принцип «все или ничего» Согласно закону «все-или-ничего» мембрана клетки возбудимой ткани или не отвечает стимул совсем, или отвечает с максимально возможной для нее на данный момент силой. Действие раздражителя обычно приводит к локальной деполяризации мембраны. Это вызывает открытие натриевых каналов, которые чувствительны к изменениям потенциала, а через это — увеличивает натриевую проводимость, что приводит к еще большей деполяризации. Существование такой обратной связи обеспечивает регенеративную (возобновляемую) деполяризацию клеточной мембраны. Величина потенциала действия зависит от силы раздражителя, а сам он возникает только в том случае, когда деполяризация превышает некоторый определенный для каждой клетки предельный уровень. Это явление получило название «все или ничего». Однако, если деполяризация составляет 50-75% от предельной величины, то в клетке может возникнуть локальный ответ, амплитуда которой значительно ниже амплитуду потенциала действия. Отсутствие потенциала действия при пидграничному уровне деполяризации объясняется тем, что при этом недостаточно увеличивается натриевая проницаемость, чтобы вызвать регенеративную деполяризацию. Уровень деполяризации, который возникает при этом, не вызывает открытие новых натриевых каналов, поэтому натриевая проводимость быстро уменьшается, и в клетке снова устанавливается потенциал покоя.

Овершут

Деполяризация мембраны приводит к реверсии мембранного потенциала (МП становится положительным). В фазу овершута Na + -ток начинает стремительно снижаться, что связано с инактивацией потенциал-зависимых Na + -каналов (время открытого состояния — судьбы миллисекунды) и исчезновением электрохимического градиента Na +.

Рефрактерность Одним из последствий исчезновения градиента Na + является рефрактерность мембраны — временная неспособность отвечать на раздражитель. Если раздражитель возникает сразу после прохождения потенциала действия, то возбудимость не возникнет ни при силе раздражителя на уровне порога, ни при значительно более сильное раздражителю. Такое положение полной невозбудимости называется абсолютным рефрактерным периодом. За ним следует относительный рефрактерный период, когда надпороговый раздражитель может вызвать потенциал действия со значительно меньшей амплитудой чем в норме. Потенциал действия привычной амплитуды при действии порогового раздражителя можно вызвать только после нескольких миллисекунд после предварительного потенциала действия. Абсолютный рефрактерный период ограничивает максимальную частоту генерации потенциалов действия.

Реполяризация

Увеличение ионного потока калия, направленного из клетки наружу, приводит к уменьшению мембранного потенциала, в свою очередь обусловливает уменьшение проницаемости мембраны для ионов натрия, что, как указывалось, является функцией мембранного потенциала. Таким образом, второй этап характеризуется тем, что поток ионов калия из клетки наружу растет, а встречный поток ионов натрия уменьшается. Такая реполяризация мембраны продолжается, пока не произойдет восстановление потенциала покоя — реполяризация мембраны. После этого проницаемость для ионов калия также падает до исходной величины. Внешняя поверхность мембраны за счет положительно заряженных ионов калия, вышедших в среду, вновь приобретает положительный потенциала относительно внутреннего.

Следовая деполяризация и гиперполяризация

В конечной фазе происходит замедление восстановления мембранного потенциала покоя, и при этом регистрируются следовые реакции в виде следовой деполяризации и гиперполяризации, обусловлены медленным восстановлением исходной проницаемости для ионов К +.

Распространение

Распространение в немиелинизированные волокне

В немиелинизированные (без`мякотному) нервном волокне ПД распространяется от точки к точке, поскольку возбуждение можно зарегистрировать как такое, что постепенно «бежит» по всему волокну от места своего возникновения. Ионы натрия, входящих внутрь возбуждении участка, служат источником электрического тока для возникновения ПД в прилегающих участках. В этом случае импульс возникает между деполяризована участком мембраны и ее невозбужденном участком. Разность потенциалов здесь во много раз выше, чем необходимо для того, чтобы деполяризация мембраны достигла предельного уровня. Скорость распространения импульса в таких волокнах 0,5-2 м / с

Распространение в миелинизированные волокне

Нервные отростки большинства соматических нервов миелинизированные. Только очень незначительные их участки, так называемые перехвата узла (перехват Ранвье), покрытые обычной клеточной мембраной. Такие нервные волокна характеризуются тем, что на мембране только в перехватах размещении потенциал-зависимые ионные каналы. Кроме того, эта оболочка повышает электрическое сопротивление мембраны. Поэтому при сдвиге мембранного потенциала ток проходит через мембрану перехватывающих участка, то есть прыжками (сальтаторно) от одного перехвата к другому, что позволяет увеличить скорость проведения нервного импульса, которая составляет от 5 до 120 м / с. Причем потенциал действия, который возник в одном из перехватов Ранвье, вызывает потенциалы действия в соседних перехвата за счет возникновения электрического поля, которое вызывает начальную деполяризацию в этих перехватов. Параметры ЭДС поля и дистанция его эффективного действия зависят от кабельных свойств аксона.

Типы нервных волокон, скорость проведения импульса, в зависимости от миелинизации
Тип Диаметр (мкм) Миелинизация Скорость проведения (м / с) Функциональное назначение
А alpha 12-20 сильная 70-120 Подвижные волокна соматической НС; чувствительные волокна проприорецепторов
А beta 5-12 сильная 30-70 Чувствительные волокна рецепторов кожи
А gamma 3-16 сильная 15-30 Чувствительные волокна проприорецепторов
А delta 2-5 сильная 12-30 Чувствительные волокна терморецепторов, ноцицепторов
В 1-3 слабая 3-15 Преганглионарные волокна симпатической НС
С 0,3-1,3 отсутствует 0,5-2,3 Постганглионарные волокна симпатической НС; чувствительные волокна терморецепторов, ноцицепторов некоторых механорецепторов

Распространение потенциала действия между клетками

В химическом синапсе после того, как волна потенциала действия доходит нервного окончания, она вызывает высвобождение нейротрансмиттеров из пресинаптических пузырьков в синаптическую щель. Молекулы медиатора, высвобождаемых с пресинапса, связываются с рецепторами на постсинаптической мембране, в результате чего в рецепторных макромолекулах открываются ионные каналы. Ионы, начинают поступать внутрь постсинаптической клетки через открытые каналы, изменяют заряд ее мембраны, что приводит к частичной деполяризации мембраны и, как следствие, провоцирование генерации постсинаптической клетки потенциала действия.

В электрическом синапсе отсутствует «посредник» передачи в виде нейромедиатора. Зато клетки соединены между собой с помощью специфических протеиновых тоннелей — конексонив, поэтому ионные токи, с пресинаптической клетки могут стимулировать постсинаптическую клетку, вызывая зарождения в ней потенциала действия. Благодаря такому строению, потенциал действия может распространяться в обе стороны и значительно быстрее, чем через химический синапс.

    Схема процесса передачи нервного сигнала в химическом синапсе

    Схема строения электрического синапса

Потенциал действия в различных типах клеток

Потенциал действия в мышечных тканях

Потенциал действия в скелетных мышечных клетках аналогичный потенциала действия в нейронах. Потенциал покоя в них как правило -90мВ, что меньше, чем потенциал покоя типовых нейронов. Потенциал действия мышечных клеток длится примерно 2-4 мс, абсолютный рефрактерный период составляет примерно 1-3 мс, а скорость проводимости вдоль мышц примерно 5 м / с.

Потенциал действия в сердечных тканях

Потенциал действия клеток рабочего миокарда состоит из фазы быстрого деполяризации, начальной быстрой реполяризации, которая переходит в фазу медленной реполяризации (фаза плато), и фазы быстрой конечной реполяризации. Фаза быстрой деполяризации обусловлена ​​резким повышением проницаемости мембраны для ионов натрия, вызывает быстрый входящий натриевый ток, при достижении мембранного потенциала 30-40 мВ инактивируется и в дальнейшем главную роль играют кальциевый ионный ток. Деполяризация мембраны вызывает активацию кальциевых каналов, в результате чего возникает дополнительный Деполяризующий входящий кальциевый ток.

Потенциал действия в сердечной ткани играет важную роль в координации сокращений сердца.

Молекулярные механизмы возникновения потенциала действия

Активные свойства мембраны, обеспечивающие возникновение потенциала действия, основанные главным образом на поведении потенциал-зависимых натриевых (Na +) и калиевых (K +) каналов. Начальная фаза ПД формируется входным натриевым током, позже открываются калиевые каналы и выходной K + -ток возвращает потенциал мембраны к исходному уровню. Начальное концентрацию ионов затем восстанавливает натрий-калиевый насос.

По ходу ПД каналы переходят из состояния в состояние: в Na + -каналов основных состояния трех — закрытый, открытый и инактивированный (в реальности все сложнее, но этих трех состояний достаточно для описания), в K + каналов два — закрытый и открытый.

Поведение каналов, участвующих в формировании ПД, описывается через проводимость и рассчитывается через коэффициенты переноса (трансфера).

Коэффициенты переноса были выведены Алан Ллойд Ходжкин и Эндрю Хаксли.

Проводимость для калия G K на единицу площади Проводимость для натрия G Na на единицу площади

рассчитать сложнее, поскольку, как уже было упомянуто, в потенциал-зависимых Na + каналов, кроме закрытого / открытого состояний, переход между которыми параметром, еще инактивированный / никак инактивированный состояния, переход между которыми описывается через параметр

, ,
где: где:
a m — Коэффициент трансфера из закрытого в открытое состояние для Na + каналов ; a h — Коэффициент трансфера из инактивированного в не-инактивированный состояние для Na + каналов ;
b m — Коэффициент трансфера из открытого в закрытое состояние для Na + каналов ; b h — Коэффициент трансфера из не-инактивированного в инактивированный состояние для Na + каналов ;
m — Фракция Na + каналов в открытом состоянии; h — Фракция Na + каналов в не-инактивированном состоянии;
(1 — m) — Фракция Na + каналов в закрытом состоянии (1 — h) — Фракция Na + каналов в инактивированном состоянии.

Методы исследования

История

Основные положения мембранной теории возбуждения сформулированы немецким нейрофизиологом Ю.Бернштейном

В 1902 году Юлиус Бернштейн выдвинул гипотезу, согласно которой клеточная мембрана пропускает внутрь клетки ионы К +, и они накапливаются в цитоплазме. Расчет величины потенциала покоя по уравнению Нернста для калиевого электрода удовлетворительно совпал с измеренным потенциалом между саркоплазме мышцы и окружающей средой, который составил около — 70 мВ. Согласно теории Ю.Бернштейна, при возбуждении клетки ее мембрана повреждается, и ионы К + выходят из клетки по концентрационном градиента до тех пор, пока потенциал мембраны не становится равным нулю. Затем мембрана восстанавливает свою целостность, и потенциал возвращается к уровню потенциала покоя.

Эту модель развили в своей работе 1952 Алан Ллойд Ходжкин и Эндрю Хаксли в которой описали электрические механизмы, обусловливающие генерацию и передачу нервного сигнала в гигантском аксоне кальмара. За это авторы модели получили Нобелевскую премию в области физиологии и медицины за 1963 год. Модель получила название модель Ходжкина-Хаксли

В 2005 году Томасом Геймбургом и Анрю Д. Джексоном предложена солитонном модель, основанная на предположении, что сигнал по нейронам распространяется в виде солитонов — устойчивых волн, распространяющихся по клеточной мембране.

Влияние некоторых веществ на потенциал действия

Некоторые вещества органического или синтетического происхождения могут блокировать образование или прохождения ПД:

  • Батрахотоксин найден у некоторых представителей рода листолазов. Устойчиво и необратимо повышает проницаемость мембран для ионов натрия.
  • Понератоксин был найден в муравьях рода Paraponera. Блокирует натриевые каналы.
  • Тетродотоксин найден в тканях рыб семейства Скелезубови, из которых готовят японский деликатес Фугу. Блокирует натриевые каналы.
  • Механизм действия большинства анестетиков (Прокаин, Лидокаин) базируется на блокировании натриевых каналов и соответственно на блокировании проведении импульсов по чувствительным нервным волокнам.
  • 4-Аминопиридин — обратно блокирует калиевые каналы, удлиняет срок потенциала действия. Может использоваться в терапии рассеянного склероза.
  • ADWX 1 — обратно блокирует калиевые каналы. В условиях опыта облегчал течение острого рассеянного энцефаломиелита у крыс.

Изображения по теме

Потенциал действия (ПД) - быстрое колебание МП - само­распространяющийся процесс, связанный с изменениями ионной проводимости мембраны, вызванными функционированием ион­ных каналов. ПД распространяется без затухания, то есть практи­чески без уменьшения амплитуды.

Проведение ПД по мембране можно сравнить с поджиганием пороховой дорожки: вспыхнувший порох немедленно воспламеняет впереди лежащие частицы, и пла­мя движется вперёд до конца дорожки.

Временной ход потенциала действия

Продолжительность потенциала действия не­рвной клетки измеряется единицами миллисекунд (мс).

Потенциалы действия , заре­гистрированные двумя электродами, один из которых находится внутри клетки, а другой - в окружающем растворе, представлены на рис. 5-3 и 5-7.

Рис. 5–3. . Вертикальная стрелка в нижней части рисунка - момент появления раздражающего стимула, на отметке –80 мВ - исходный уровень МП.

Между моментом нанесения раздражения и первым проявлени­ем ПД имеется задержка - латентный период. Латентный период соответствует времени, когда ПД движется по мембране нервной клетки от места раздражения до отводящего электрода. Под дей­ствием раздражающего стимула происходит нарастающая деполя­ризация мембраны - локальный ответ. При достижении крити­ческого уровня деполяризации, который в среднем составляет -55 мВ, начинается фаза деполяризации. В эту фазу уровень МП падает до нуля и даже приобретает положительное значение (овершут), а затем возвращается к исходному уровню (фазареполяризации). Фазы деполяризации, овершута и реполяризации образуют спайк (пик) ПД. Длительность спайка составляет 1-2 мс. После спайка наблю­дается замедление скорости спада потенциала - (раза следовой де­поляризации. После достижения исходного уровня покоя нередко наблюдается фаза следовой гиперполяризации. Эти следовые потен­циалы могут длиться десятки и сотни миллисекунд.

Ионные механизмы потенциала действия

В основе изменений мембранного потенциала (МП), происходящих в течение потенциала действия (ПД), лежат ионные механизмы. На рис. 5-7 представлены суммарные ионные токи, протекающие че­рез мембрану нервной клетки в ходе потенциала действия .

Рис. 5-7. }

Понравилась статья? Поделитесь с друзьями!