Волоконная оптика. "Волоконная оптика" в книгах

Доброго дня, читатель! Наверняка, каждый слышал о волоконной оптике, многие имели с ней дело в телекоммуникациях, у кого-то даже проведен оптоволоконный кабель в дом. В общем, этот термин на слуху; да и суть вопроса - передача света на расстояние по тонкому волокну - в общем виде понятна. Но я предлагаю немного углубиться в эту технологию, во многом изменившую мир. В этом посте я постараюсь простым и понятным языком объяснить суть волоконной оптики, как это работает - на уровне простого физического понимания, с упрощениями и примерами, без страшных формул. Иными словами, «на пальцах». Если интересно, то добро пожаловать под кат. Осторожно: много текста, наличествуют картинки.

Волею судеб так уж сложилось, что мое образование, а потом и профессиональная деятельность плотно связана с оптическим волокном и лазерами. Некоторое время проработав в телекоме, а потом перейдя в область научной разработки и измерений, имел возможность заметить, что с оптическим волокном на уровне глубокого понимания знакомы далеко не все даже среди технарей-лазерщиков и телекомщиков. Те, кто занимаются телекомом, в большинстве своем воспринимают волокно на уровне «патчкорда» или кабеля. Для них - это коммутационный шнур или абстрактная линия связи. Да, с затуханием, дисперсией, сварками и рефлектограммами, но лишь с поверхностным пониманием физического принципа работы. Безусловно, это вовсе не плохо, просто таковы особенности их работы. Во всяком случае, желание написать научно-популярную статью по самой сути волоконной оптики возникало неоднократно, тем более что образование и опыт позволяют это сделать: все, что написано в этой статье не только «материал из учебников», но еще и мой личный опыт. С одной стороны, хочется подробно остановиться на многих моментах, а с другой — статья получится слишком большого объема. Решено сделать так: эта статья вводно-обзорная. Если у общественности возникнет интерес, последует цикл постов, посвящённых наиболее интересным вопросам в обширной оптоволоконной теме. Надеюсь, будет интересно. Итак, поехали!

Как это работает?

Первая мысль, возникшая в моем, тогда еще детском мозгу, когда я впервые увидел такой световодный светильник , была «Как же это работает!?». В школе нас учили, что свет в однородной среде распространяется прямолинейно. А как согнуть свет? Ответ узнал несколько позже. Все мы слышали об эффекте полного внутреннего отражения, т.н. ПВО. Если свет выходит из более плотной оптической среды (стекло) в менее плотную (воздух), n стекла > n воздуха, то при некотором угле падения свет может не выйти наружу, а отразится обратно. Это все хорошо знакомо нам еще со школьной скамьи. За этим явлением скрываются достаточно толстые уравнения волнового распространения света и объемная теория. Но нам это не нужно сейчас, достаточно знать, что такое есть. ПВО в обычной жизни наблюдал почти каждый. По крайней мере, тот, кто нырял с маской под воду. Из воды мы можем видеть все, что прямо над нами, но на некоторой периферии мы видим зеркальную поверхность воды и не видим то, что над нею - это и есть ПВО.

Теперь представим, что имеем лист стекла в воздухе. Если посветить ему в торец лазерной указкой под небольшим углом к плоскости поверхности, то ее свет, многократно отразившись, выйдет с другой стороны этого стекла - это работает явление ПВО. А теперь возьмем стеклянный стержень - эффект будет тот же. В данном случае свет ограничен не в одной, а уже в двух плоскостях, разумеется, если угол падения света не превышает угла ПВО.

А вот если стеклянный стержень мы заменим прозрачной леской, то и в ней свет будет распространяться, но его уже можно будет «согнуть». Разумеется, до тех пор, пока радиус изгиба достаточно велик. Когда радиус изгиба становится малым, свет будет выходить в этом месте из лески, поскольку угол падения света на поверхность лески будет больше угла ПВО. Заметьте, у лески нет зеркального покрытия, свет держится в ней сам. Примерно так и работают оптические световоды. Свет в них распространяется до тех пор, пока не нарушится закон ПВО и свет не выйдет из световедущей жилы. Оптическое волокно, по своей сути, та же леска в декоративном светильнике, но имеет более сложную структуру.

Вообще, оптических волокон существует огромное количество видов, различающихся формой, размером, материалом, покрытием, свойствами, областями применения и т.д. Обзор и сравнение различных типов волокон - это тема для отдельной огромной статьи. Однако все эти волокна конструктивно объединяет одно: у них есть светонесущая сердцевина (core) с бОльшим показателем преломления и оболочка (cladding) с меньшим показателем преломления. За счет этого достигается эффект ПВО. Что касается размеров волокон, то, в зависимости от конструкции и области применения, они могут быть от 50мкм до 1мм и более в диаметре (имеется в виду само волокно без защитных оболочек). Накладывание различных защитных оболочек увеличивает диаметр волокна в разы. В этой статье я рассмотрю только самые простые и распространенные типы волокон, применяющихся в телекоммуникациях. Если возникнет интерес, поговорим и о других.

Как это делают?

Телекоммуникационные волокна, да и многие другие, в 99.9% случаев изготавливаются из чистого кварцевого стекла. Химическая формула SiO 2 . Оконные стекла изготавливаются из него же, но с примесями, блокирующими УФ излучение: Na 2 C0 3 , К 2 СО 3 , СаС0 3 . На Википедии про диоксид кремния достаточно информации. Да, гибкие оптические волокна действительно сделаны из стекла — некоторые мне так и не поверили. Стереотип о том, что стекло не гнется, а колется и бьется въелся в людские головы прочно.

Хорошо известно, что стекло имеет аморфную структуру, а значит, не имеет фиксированной температуры плавления, как кристаллические вещества. Стекло при нагревании размягчается и становится вязким и из него легко можно вытянуть «нитку». Впрочем, такое волокно, хоть и гнется, весьма хрупкое, поскольку на его поверхности быстро образуются микротрещины, которые и разрушают волокно при возрастании напряжения на их поверхности при изгибе. Свежевытянутое волокно сразу же покрывается полимерной пленкой, защищающей от микротрещин. Но обо всем по порядку.

Опишу «классическую» схему изготовления телекоммуникационных одномодовых волокон с осаждением из газовой фазы. Сначала берется стеклянная труба длиной около метра или чуть более и толщиной несколько сантиметров. Внутри она полая. Ее внутренний диаметр определяет толщину светонесущей сердцевины. Основное отличие такого стекла - очень высокая степень очистки от примесей и OH-групп. Это необходимо для того, чтобы волокно имело максимальную прозрачность. Труба укладывается на станок и начинает вращаться вокруг своей оси, постепенно прогреваясь горелкой с температурой 1200-1500°С. С торца в трубу под давлением вдувается смесь газов O 2 , SiCl 4 , GeCl 4 , и др., предусмотренные технологией.

На поверхности горячей стеклянной трубы-заготовки происходит эпитаксия диоксида германия и SiO 2 . Диоксид германия повышает показатель преломления чистого кварца и практически не оказывает влияния на прозрачность. Нужный профиль показателя преломления сердцевины выращивается из газовой фазы путем регулирования соотношения газов, подаваемых в заготовку.

После наращивания слоя нужной толщины увеличивается температура горелки. Стекло размягчается сильнее и полость сердцевины, через которую продували газ, постепенно схлопывается под действием поверхностной силы натяжения. Выглядит это примерно так:

А так выглядят готовые к вытяжке заготовки:

Получается цельный стеклянный стержень с повышенным показателем преломления внутри - это будущая световедущая сердцевина. Затем стержень устанавливается вертикально и горелка разогревает его нижний конец, размягчая его сильнее. К заготовке подносится затравка, после чего начинается процесс вытягивания. Кто когда-нибудь клеил клеем а-ля «Момент» прекрасно представляет на что это похоже.

Схема башни для вытяжки оптоволокна:

Аппарат по вытяжке волокна занимает 2-3 этажа:

Волоконно-оптический кабель для подводной прокладки:

В такой кабель, разумеется, укладывается не одно волокно, а несколько десятков, а то и сотен. Об укладке таких кабелей, если память мне не изменяет, на Хабре уже когда-то писалось.

Что же касается производителей волокна, то существует их очень много. Гиганты в производстве телекоммуникационных волокон Fujikura и Corning (которые делают Gorilla Glass). Они производят большую часть телекоммуникационных волокон. Так же стоит отметить таких производителей как Draka, Fibercore, Nufern, Samsung, Ceramoptec, OFS, NKT Photonics и другие. Даже в России производятся оптические волокна, например на Питерском предприятии НИТИОМ и др. К сожалению, говорить о серьезном массовом производстве высококачественных дешевых волокон для телекома в России пока не приходится - под натиском дешевой качественной продукции Китайских, Японских, Американских и Европейских производителей наши предприятия не выдерживают конкуренции. То волокно, что производится у нас, в основном, специализированное и узкопрофильное.

А вот оптические кабели, кстати, в России производятся весьма интенсивно. Но о процессе изготовления оптоволоконных кабелей различной конструкции говорить тут не буду, поскольку это тема отдельной статьи. Если будет интересно, раскрою и её.

Зачем все это нужно? Небольшой экскурс в историю

Теперь, наверное, самое интересное. Поговорили о процессе изготовления и немного о физических принципах работы. Ну а сейчас разберемся в том, почему, собственно, волоконная оптика нынче является основой современных телекоммуникаций.

Генерировать траффик мы умеем. Развитие полупроводниковой техники привело к колоссальному росту вычислительной мощности компьютеров. Это не могло не привести к росту и объемов генерируемой информации. Но мало толка от огромных залежей информации, если ее нельзя быстро передать. Как передать большое количество информации на расстояние быстро? Правильно, нужно взять высокоскоростной канал связи. А вот тут человечество в какой-то момент своего технологического развития уткнулось в проблему. К определенному времени пришло осознание, что нет достаточно скоростных каналов связи. А если они теоретически и есть, то непомерно дороги и сложны. Конечно, все это было давно, когда компьютеры были большими. Но уже тогда вопрос расширения каналов возникал все отчетливее. К 60-70м он уже требовал решения, несмотря на то, что объем информации, генерируемый вычислительными машинами был ничтожен по сравнению с тем трафиком , который источали телефонные сети, телевидение и радио. Это сейчас все иначе.

Нам известно, что информацию можно передавать электромагнитными волнами. Они могут распространяться как в воздухе (вакууме), так и по проводам - медным коаксиальным или витым. Вполне очевидно, что какой бы информация ни была - аналоговой или цифровой - скорость ее передачи зависит от частоты электромагнитной волны, несущей эту информацию. Чем выше частота несущей, тем больше может быть скорость передачи информации. Таким образом, вполне очевидно, что для увеличения скорости передачи в любой среде нужно принципиально увеличить частоту несущей. Это важно.

Теперь вспомним курс физики из школы - урок про электромагнитные волны. Представим шкалу частот электромагнитных волн:

Представили? Радиоволны и микроволны - инфракрасный свет - видимый свет - ультрафиолетовый - рентген - гамма излучение. Картинка из учебника по физике. Дальний инфракрасный свет условно граничит с радиодиапазоном, а ближний ИК - это уже оптический диапазон, в который входит и видимый свет. На каких частотах у нас работает радио? Сотни мегагерц. А WiFi , Bluetooth и т.д.? Несколько гигагерц. Можно и дальше увеличить частоту радиосигнала. Но генератор высокой частоты, особенно на большие мощности, необходимые для передачи на большие расстояния - штука нетривиальная и весьма сложная. Полупроводниковая электроника имеет «потолок» рабочих частот. Это уже фундаментальное ограничение - pn-переход просто не может работать быстрее. Самый быстрый полупроводниковый транзистор работает на частоте около 1ТГц при температуре 4.7К. А в 60-е годы о такой частоте и не мечтали. Стало быть, в радиодиапазоне дальше частоту уже не повысить. Нужен новый источник высокочастотных электромагнитных колебаний с гораздо более высокой частотой.

Какие доступные источники достаточно высокочастотных электромагнитных колебаний можно предложить? Если взглянуть на картинку выше, можно увидеть, что дальше по шкале частот от радиоволн идет ИК и видимый свет. Свет генерировать мы можем, кое-как управлять им - тоже. Уже хорошо. В 1960-м году появляется первый в мире лазер. Лазер - это генератор высокочастотных электромагнитных волн с определенной частотой, световых волн. В отличие от лампочки, лазер генерирует очень узкий спектр, почти одну длину волны. Да и излучение у него когерентное. Стало быть, лазер подходит на роль генератора несущей частоты для высокоскоростной передачи данных. Частоты ближнего ИК - сотни ТГц - частота выше традиционных радиоволн на 4-5 порядков. Источник несущей высокочастотной электромагнитной волны появился, возникла и перспектива развития высокоскоростной передачи данных.

Первый газовый лазер показал теоретическую возможность создания когерентного источника электромагнитных волн световой частоты. Появление и развитие других видов лазеров - дело времени, ибо принципы их работы стали широко известны. Но вопрос передачи такого высокочастотного электромагнитного излучения на большие расстояния стал крайне актуален. Свет живет по законам оптики, в отличие от радиоволн, а значит, надо было найти аналог коаксиальным кабелям, только для света.

Уже в 1966 году исследователи Као и Хокам из STC Laboratory представили первые оптические световоды в виде нитей из обыкновенного стекла. Затухание света в них составляло около 1000дБ/км, что делало невозможным передачу какого-либо сигнала на большие расстояния. Такие потери обуславливались наличием большого количества примесей в стекле.

В 1970м появились оптические волокна производства фирмы Corning, имевшие затухание около 20дБ/км. Сейчас такие величины кажутся несовместимыми с передачей данных, однако тогда они казались приемлемыми для организации связи по волокну. Примерно в то же время были изобретены достаточно компактные полупроводниковые лазеры на арсениде галлия. С 1975 по 1980 была реализована первая коммерческая линия связи со скоростью 45Мбит/с., а уже в 1988м был проложен первый трансатлантический оптоволоконный кабель.

Типы волокон

Любые волокна, в т.ч. телекоммуникационные делятся на два типа: одномодовые и многомодовые. Несмотря не огромное разнообразие видов, каждый из них принадлежит либо к одному, либо к другому типу. Чем они отличаются - разберемся. Исторически так сложилось, что первые коммерческие волокна, ввиду несовершенства технологии изготовления, имели достаточно толстую светонесущую сердцевину. В ней могло распространяться несколько световых мод, поэтому они получили название многомодовых. Давайте «на пальцах» поймем, что такое световая мода.

Свет - электромагнитная волна. Свет от лазера - когерентная волна, а значит, она может интерферировать. Интерферировать она может и в световоде, т.е. волокне. Вопреки распространенному мнению, свет от лазера в волокно вводится не в виде абсолютно идеального параллельного узкого пучка, а с некоторой угловой расходимостью. И она не так уж и мала. Да и невозможно сформировать идеальный параллельный луч - всегда есть некоторая расходимость. Представьте, что в волокно ввели такой луч с некоторой расходимостью. Луч, распространяясь в сердцевине, в какой-то момент начнет отражаться от верхней и нижней границы сердцевины и подложки. Отраженные части луча сформируют интерференцию, поскольку они когерентны. Интерференция, как известно, — это чередование светлых и темных полос, дискретная пространственная структура перераспределения интенсивности света. Оказывается, что в ограниченном пространстве, когда его размер сравним с длиной волны света, световой луч, распространяющийся в этом пространстве, распадается на несколько дискретных пространственных структур, которые и называются световыми модами.

Сложно? На самом деле нет. Световая мода - это всего лишь стоячая световая волна, возникшая в поперечном сечении световода. Что такое стоячая волна, думаю, объяснять не нужно. Если у стоячей волны в сечении световода одна пучность, то это первая мода, если 2 - вторая, 3 - третья, и т.д. Моды - это устойчивые дискретные пространственно-энергетические структуры распределения электромагнитного поля световой волны, обусловленные возникновением интерференции на отражениях света от стенок световода. Мода в волокне возникает только в том случае, если свет в волокно был введен под определенным углом. Угол ввода света в волокно, при котором образуется определенная световая мода, называется модовым углом. Свет, введенный не под модовым углом, перекачает свою энергию в ближайшие моды или излучится наружу. Иными словами, свет в световоде может распространяться только под определенными углами - модовыми. При этих углах возникают стоячие волны в сечении волокна.

При уменьшении размеров светонесущей сердцевины можно добиться одномодового режима работы световода. При этом стоячая волна в нем имеет только одну пучность.

В толстых волокнах, размеры сердцевины которых значительно превышают длину волны света, количество мод очень велико. Такие волокна называются обыкновенными световодами, к ним можно с некоторой оговоркой применять законы лучевой оптики. Световоды с относительно малым числом мод, а так же одномодовые принято называть волноводами, а при их расчетах необходимо учитывать волновые свойства света. Оптические волноводы являются аналогами коаксиальных кабелей для света.

Как уже говорилось, исторически первыми были многомодовые волокна. У них есть существенный недостаток, ограничивающий скорость передачи и дальность: межмодовая дисперсия.

Первые многомодовые волноводы, имевшие ступенчатый профиль показателя преломления (рис. а.), имели и значительное временное уширение светового импульса и искажали его форму. На рисунке хорошо виден механизм этого процесса. Световой импульс, введенный в волокно, распадался на дискретные моды, однако, за счет разных углов, каждая мода имела различный оптический путь, а значит и различное время распространения. На практике это приводило к тому, что световой импульс растягивался по времени и мог перекрываться со следующим, идущим за ним. Это означало много ошибок и потерю информации.

В дальнейшем технология позволила изготавливать многомодовые волноводы с градиентным профилем показателя преломления (рис. б.). Это привело к уменьшению межмодовой дисперсии и увеличению скорости передачи, однако принципиально проблему не решало. Значительно увеличить скорость и дальность передачи позволило одномодовое волокно. Если нет посторонних мод, то нет и межмодовой дисперсии, световой импульс не уширяется.

Нынче в ходу оба типа волокна, однако, одномодовое встречается гораздо чаще. По цене оно уже не превосходит многомодовые. Стандартный одномод распространен повсеместно. Современный телекомщик задумывается о типе волокна весьма редко. По умолчанию везде одномодовое. Есть, конечно, еще и специфические типы волокон, применяющиеся в телекоммуникациях: с ненулевой дисперсией, со смещенной ненулевой дисперсией, с отрицательной дисперсией, активные волокна с легирующими присадками и т.д., однако рассматривать их в рамках этой статьи не представляется возможным.

Длина волны, затухание и дисперсия

Уже упоминалось, что первые стеклянные световоды имели затухание около 1000дБ/км, а первые коммерческие волокна - около 20дБ/км. Сейчас затухания гораздо меньше. Но давайте разберемся в этом поглубже. Затухание в волокне зависит не только от чистоты материала и качества изготовления волновода, но и от длины волны света.

UPD: Чуть менее наглядный, но более правильный график затухания (спасибо enclis) выглядит вот так:

На рисунке изображена кривая затухания света в кварцевом волокне. Из графика хорошо видны 3 минимума затухания - окна прозрачности. Исторически первое окно пропускания на 850нм используется до сих пор в многомодовых волокнах для связи на небольшие расстояния. Затухания в нем 3-5дБ/км. Для сравнения: представьте кусок оконного стекла толщиной 1 км. В нем свет затухнет всего лишь в 2 раза. Второе окно прозрачности на 1300-1310нм имеет затухание на уровне 0.3-0.4дБ/км. Третье окно, самое популярное сегодня, с длиной волны 1500-1550нм, имеет затухание около 0.22-0.3дБ/км. Кусок стекла толщиной 10км ослабит свет всего лишь в 2 раза. Свет с длинами волн короче 850нм достаточно активно рассеивается, длиннее 1650нм - уже сильно поглощается стеклом. Пики поглощения между окнами прозрачности обусловлены наличием примеси и OH-группами, колебательные уровни которых хорошо поглощают свет в этих диапазонах. Следует отметить, что эта кривая для современных волокон выглядит еще позитивнее: научились делать волокна с низким содержанием ОН и примесей, поэтому практически отсутствует пик поглощения между 1300 и 1500нм; стала возможна организация многоканальных систем предачи со спектральным уплотнением во всем диапазоне длин волн с 1270 по 1610нм (CWDM системы). На сегодняшний день 850нм обычно используется в многомодовых линиях с дальностью передачи до 3-5км, все остальные длины волн - для одномодовых волокон с передачей на бОльшие расстояния.

Еще одним важным фактором, помимо затухания, ограничивающим дальность и скорость передачи, является хроматическая дисперсия. Нет, это не межмодовая, свойственная многомодовым волокнам. Хроматическая дисперсия на порядки слабее и имеет другую природу, но ее приходится учитывать при расчете протяженных линий связи, особенно со скоростями более 10Гбит/с. Помните, как белый свет в стеклянной призме раскладывается в радугу? Вот это и есть хроматическая дисперсия - зависимость показателя преломления от длины волны. Иными словами, каждая длина волны света имеет свою, отличную от других, скорость распространения. В волоконных линиях связи хроматическая дисперсия приводит к уширению светового импульса по времени. Любой лазер неидеален: он излучает не одну длину волны, а целый спектр волн, пусть и узкий. Т.е. каждый световой импульс, излученный лазером, имеет в своем составе некоторый набор различных длин волн. Каждая из этих волн, распространяясь по волокну, обладает собственной скоростью, отличной от других. Это приводит к тому, что на выходе из волокна импульс расширяется во времени. Конечно, этот эффект гораздо менее заметен, чем межмодовая дисперсия, но результат тот же - уширение импульса и потеря информации, ошибки. Хроматическое уширение импульса зависит от ширины спектра лазера, дальности передачи и коэффициента дисперсии волокна. Стандартное волокно имеет хроматическую дисперсию на уровне 18пс/(нм*км) для длины волны 1550нм. Поскольку в большинстве случаев ВОЛС состоят из стандартного волокна, компенсацию дисперсии приходится производить примерно через каждые 70-90км (справедливо для 10Gbit/s линков, организованных парой трансиверов).

Я не рассматриваю другие виды дисперсии, они гораздо менее критичны для оптоволоконных линий связи, однако интересующиеся могут ознакомиться с ее видами

Немного об усилении, спектральном уплотнении и расчете

Обычно канал связи организовывается по двум волокнам. В понимании телекомщиков в большинстве случаев любой канал связи дуплексный, т.е. идет одновременная передача из узла А в Б и из Б в А. Осуществляется она, обычно, по двум волокнам: из передатчика (Тх) в пункте А в приемник (Rx) узла Б и из Tx Б в Rx А. Свет не является трамваем на рельсах, он нематериален и может распространяться по одному волокну в обе стороны одновременно практически без взаимодействия. Вопрос лишь в том, как на входе и выходе разделить передаваемый и принимаемый сигнал. Способы есть, и их несколько. Вообще, каждое волокно в кабеле имеет огромный потенциал передачи информации, но количество волокон в любом кабеле конечно. Использовать пару волокон для организации одного дуплексного канала, да еще если в нем и невысокая скорость - верх расточительства.

Конечно, можно проложить больше кабелей - сам волоконно-оптический кабель не так уж и дорог - дорого его согласование и прокладка. Экстенсивно расширять пропускную способность и количество каналов путем прокладки новых кабелей - глупость, если у нас по паре волокон работает лишь один канал. Необходимо увеличивать количество каналов в паре волокон (или вообще в одном волокне), чтобы использование кабеля и волокна стало более выгодным. Как можно запихнуть максимальное количество информации в волокно? Для начала, следует агрегировать информационные потоки - электрическими методами. Если вы думаете, что, когда разговариваете с человеком в другой стране или городе по скайпу или смотрите онлайн фильм с удаленного хостинга, вам выделяется отдельная пара волокон на все время сеанса, вы сильно заблуждаетесь. На самом деле ваш траффик делится на пакетики и многократно объединяется с траффиком других пользователей и в виде большущего цифрового контейнера отсылается по волокну. На приемной стороне происходит разборка этого контейнера и ваш маленький пакетик траффика отправляется далее адресату. Агрегация каналов - отличный способ увеличить эффективность использования линии, ведь вместо большого количества «худых» каналов по куче волокон можно передать один «толстых» канал всего лишь по одной паре. Кстати, первым узлом агрегации можно считать ваш домашний WiFi роутер, который собирает в один информационный поток траффик с ваших телефонов, ноутбуков, пк, планшетов и т.д. и отсылает в сторону провайдера.

А вот если у нас уже имеется много агрегированных «толстых» каналов, а свободных волокон всего лишь пара, то приходится организовывать другой тип уплотнения - оптическими методами, или спектральное уплотнение. Суть его заключается в том, что для каждого «толстого» канала выделяется определенная частота (длина волны света, свой лазер) из набора стандартизированных длин волн. Именно эта длина волны модулируется сигналом. Таких несущих модулированных волн набирается несколько, они мультиплексируются в одно волокно и в виде такого набора засылаются по волокну. Удобно и эффективно. Выделяют технологию CWDM (coarse wavelength division multiplexing), позволяющую организовать до 16 каналов по паре волокон или до 8 по одному, и DWDM (dense wavelength division multiplexing), имеющую гораздо больший потенциал в уплотнении. Суть CWDM и DWDM схожа, основная разница лишь в частотном плане. По приведенным ссылкам наличествует отличное описание обеих технологий.

Трансконтинентальные и магистральные каналы связи имеют очень высокую степень агрегированности и спектрального уплотения. Сети уровня городов и областей обычно ограничиваются агрегированностью до 10-40Гбит/с на канал с уплотнением до 10-15 каналов и обходятся обыкновенными трансиверами, но бывают и исключения. А вот сети районов редко выходят за рамки простой технологии CWDM со скоростями до 10Гбит/с на канал. Что касается домов, то разводка по подъезду чаще всего осуществляется уже медным кабелем. В подъездный маршрутизатор входит оптика, а из него по квартирам расходится витая пара.

Какими бы хорошими волокна ни были, затухание, пусть и малое, присутствует. Свет в волокне ослабляется. Пройдя расстояние 80км, свет затухнет приблизительно на 20дБ — в 100 раз, это без учета потерь на соединениях, сварках, неоднородностях, мультиплексорах и т.п. Для организации протяженных линий связи необходимо использовать усилители и регенераторы сигнала. Регенератор производит полное оптоэлектронное преобразование, восстановление формы сигнала и его ресинхронизацию (3R-регенерация) с последующим переизлучением в волокно. Они дороги и весьма сложны. Усилители, в отличие от 3R преобразователей, лишь усиливают сигнал, увеличивая их амплитуду, но они значительно проще и дешевле. Еще одно их преимущество: они усиливают сразу все каналы.

Усилители применяются, главным образом, к DWDM системам. Оптический усилитель - это не обыкновенный радиочастотный операционник на микросхеме, ведь полупроводниковая электроника тут не работает. Оптический усилитель, по сути, — это лазер, не имеющей резонаторной области и работающий «в один проход». Существует несколько разных видов таких усилителей, но наиболее распространенные - EDFA , усилители на волокне, легированном эрбием. Если коротко, то активная среда формируется в сердцевине легированного волокна под действием накачки на 980 или 1490нм. Сигнальное излучение, входящее в активную среду, вызывает вынужденную эмиссию фотонов, которые складываются с сигналом, усиливая его. Принцип лазера. EDFA вносят шум, который ограничивает количество применяемых каскадов усиления и требует учета при расчете и проектировании линий связи с усилением.

Про компенсацию дисперсии я уже упоминал. Дисперсионные искажения сигнала накапливаются, искажая и расширяя сигнальные импульсы. Коррекция дисперсии при проектировании протяженных линий связи выполняется с помощью модулей компенсации дисперсии, DCM (dispersion compensation module). Обычно не считают временное расширение импульса, а говорят, что нужно, например «скомпенсировать 40км волокна». Предварительный расчет ВОЛС сводится к учету всех затуханий по трассе от Tx до Rx и по обратному направлению, учету хроматической дисперсии, учету вносимого усилителями шума. В простейшем случае, если не требуется усиления и компенсации дисперсии, рассчитываются только затухания от Tx до Rx, к ним прибавляется технологический запас в 3-6дБ на «старение» линии и сравнивается с оптическим бюджетом пары трансиверов (приемопередающих модулей), на которых планируется организовывать связь. Если бюджет трансиверов превышает расчетную величину - их можно использовать для организации линии связи. Если расчетная величина больше, то придется подбирать более «мощные» или чувствительные трансиверы или искать альтернативные пути решения вплоть до перехода на усиливаемые длины волн и установки усилителей.

Тема проектирования и расчетов линий связи по оптике очень широка и полна нюансов, ей может быть посвящена не одна статья. Если читателя заинтересуют эти вопросы, я постараюсь ответить на них в будущих публикациях и комментариях.

Я не рассказал подробно о спектральном уплотнении и мультиплексорах, измерительном оборудовании, сварке волокон и изготовлению кабелей, моделированию усилителей, не рассказал об элементной базе и о многом другом, о чем хотел бы поведать. К сожалению, все вместе это не поместится ни в одну статью.

Публикация получилась немного сумбурная и поверхностная. Она носит обзорно-ознакомительный характер, чтобы понять, какие из представленных в ней направлений представляют наибольший интерес для читателей.



Презентация к уроку «Полное внутреннее отражение»

учителя МАОУ лицея №14

Ермаковой Т.В.

2014 год


Волоконная оптика - это раздел оптики, в котором изучаются распространение света и передача информации по световодам.

Это одно из наиболее быстро развивающихся направлений современной лазерной физики.



  • Принцип передачи света, используемый в волоконной оптике, был впервые продемонстрирован во времена королевы Виктории (1837-1901 гг.)
  • Нариндер Капани (12.10.1926 г) - один из основоположников волоконной оптики
  • Развитие современной волоконной технологии началось в 1966 году, когда двое японских ученых Као и Хокэма предложили использовать для передачи светового сигнала длинные стеклянные волокна.
  • В 1970 году фирма «Корнинг Гласе» впервые разработала световод, пригодный для передачи светового сигнала.

  • Оптическое волокно представляет собой диэлектрический волновод, изготовленный из кварцевого стекла
  • Сердцевина – это область в центре волокна, показатель преломления которой больше, чем у оболочки, и в которой распространяется большая часть энергии светового сигнала.
  • Оболочка – это область волокна вокруг сердцевины, которая чаще всего изготавливается с постоянным и всегда более низким, чем у сердцевины, показателем преломления. Граница двух областей с более высоким и низким показателями преломления создаёт световодную структуру, удерживающую большую часть света в зоне сердцевины.

  • Распространение световых лучей в оптических волокнах

В основе волоконно-оптической связи лежит явление полного внутреннего отражения электромагнитных волн на границе раздела диэлектриков с разными показателями преломления

Световод представляет собой стеклянное волокно цилиндрической формы, покрытое оболочкой из прозрачного материала с меньшим, чем у волокна, показателем преломления. За счет многократного полного отражения свет может быть направлен по любому (прямому или изогнутому) пути. Волокна набираются в жгуты. При этом по каждому из волокон передается какой-нибудь элемент изображения

Распространение луча света в волноводе


Для передачи сигналов применяются два вида волокна: одномодовое SMF и многомодовое MMF.

Первые оптические волокна были многомодовыми, т.е. по ним могло проходить несколько световых волн одновременно.

Одномодовое волокно новейшей технологии имеет настолько малый диаметр сердцевины, что позволяет спрямить путь отдельного луча и намного снизить потери интенсивности сигнала


По одному волокну можно передать одновременно

10 миллионов телефонных разговоров и миллион видеосигналов. Скорость передачи данных может быть увеличена за счет передачи информации сразу в двух направлениях, так как световые волны могут распространяться в одном волокне независимо друг от друга. Кроме того, в оптическом волокне могут распространяться световые сигналы двух разных поляризаций, что позволяет удвоить пропускную способность оптического канала связи.


Методы волоконной оптики используются:

  • в медицинских приборах (освещение носоглотки, желудка и т. д.) ;
  • в скоростной киносъемке;
  • в ядерной физике (регистрация треков ядерных частиц);
  • в оптической связи;
  • в фототелеграфии и телеметрии (преобразователи кода и шифровальные устройства);
  • в вычислительной технике, акустике и т. д.

Одним из важных устройств, в котором применяется волоконная оптика, является волоконно-оптический телефон, используемый для двухсторонней связи.


  • Волоконно-оптический канал имеет намного более широкую полосу пропускания, чем металлический кабель. То есть он может нести больше данных.
  • Оптико-волоконный кабель менее чувствителен к помехам, чем металлический, и намного тоньше и легче, чем металлический.
  • Данные могут передаваться в цифровом виде, а не в аналоговом.
  • Важное свойство оптического волокна – долговечность.

  • Основной недостаток волоконной оптики в том, что волоконно-оптический кабель является самым дорогим из всех типов кабеля.
  • Волоконно-оптический кабель очень хрупкий, поэтому монтаж его очень затруднителен.

Оптоволокно в природе

Исследователи недавно обнаружили в теле глубоководных губок рода Euplectellas высококачественное оптоволокно.


Заключение

Волоконно-оптические системы связи обеспечивают максимальную скорость передачи информации.

Они включают в себя последние достижения оптики, электроники, материаловедения и технологий.

Тенденции развития :

Увеличение информационной емкости линий связи

Увеличение скорости обработки информации

Уменьшение потерь и искажений оптических сигналов


  • Агравал Г. Волоконная оптика.- М.: Мир, 2010.
  • Гроднев И. И. Оптоэлектронные системы передачи информации. – М.: Знание, 2012
  • Ремизов А.Н. Физика: учебник. -М.: Дрофа, 2011

раздел оптики, в котором рассматривается передача света и изображения по Светопроводам и волноводам оптического диапазона, в частности по многожильным световодам и пучкам гибких волокон. В. о. возникла лишь в 50-е гг. 20 в.

В волоконно-оптических деталях световые сигналы передаются по световодам с одной поверхности (торца световода) на другую - выходную как совокупность элементов изображения, каждый из которых передаётся по своей световедущей жиле (рис. ). В волоконных деталях обычно применяют стеклянное волокно, световедущая жила которого (сердцевина) имеет высокий показатель преломления и окружена стеклом - оболочкой с более низким показателем преломления. Вследствие этого на поверхности раздела сердцевины и оболочки лучи претерпевают полное внутреннее отражение и распространяются только по световедущей жиле. Несмотря на множество таких отражений, потери в световодах обусловлены главным образом поглощением света в массе стекла жилы. Коэффициент пропускания световодов в видимой области спектра составляет 30-70% при длине 1 м . Диаметр световедущих жил в деталях различных назначений составляет от нескольких микрон до сантиметра. Распространение света по световодам, диаметр которых велик по сравнению с длиной волны, происходит по законам геометрической оптики (См. Геометрическая оптика), по более тонким же волокнам (порядка длины волны) распространяются лишь отдельные типы волн или их совокупности, что рассматривается в рамках волновой оптики.

Для передачи изображения применяются жёсткие многожильные световоды и жгуты с регулярной укладкой волокон. На входной торец изображение проецируется объективом, а на выходном наблюдается в окуляр. Качество изображения в таких приборах определяется диаметром световедущих жил, их общим числом и совершенством изготовления. Обычно Разрешающая способность таких жгутов составляет 10-50 линий на 1 мм , а в жёстких многожильных световодах и спечённых из них деталях -до 100 линий на 1 мм . Дефекты таких деталей, где бы они ни находились на длине световедущих жил, передаются по жилам на выходной торец и портят изображение. Это затрудняет изготовление высококачественных деталей.

Пластины, вырезанные поперёк из плотно спечённых волокон, служат фронтальными стеклами Кинескопов и переносят изображение на их внешнюю поверхность, что позволяет контактно его фотографировать. При этом до плёнки доходит основная часть света, излучаемого люминофором, а освещённость на ней создаётся в десятки раз большая, чем при съёмке фотоаппаратом с объективом.

Числовая Апертура волоконных деталей обычно лежит в пределах 0,4-1,0. Сужающиеся пучки световодов - фоконы (фокусирующие конусы) - собирают на узком торце световой поток, падающий на широкий торец. При этом на выходе возрастают освещённость и наклон лучей. Повышение концентрации возможно до тех пор, пока числовая апертура конуса лучей на выходе не достигает числовой апертуры световода. Дальнейшее уменьшение диаметра выходного торца приводит к выходу части лучей из боковой поверхности световода или же возвращению их к широкому торцу.

В. о. применяют почти во всех отраслях научных исследований. Выпускают сотни типов оптических и электронно-оптических приборов с такими деталями. Жёсткие прямые или заранее изогнутые одножильные световоды и жгуты из волокон диаметром 15-50 мкм применяют в медицинских приборах холодного света для освещения носоглотки, желудка и т.д. В таких приборах свет от электрической лампы собирается конденсором на входном торце световода или жгута и по нему подаётся в освещаемую полость; это позволяет удалить от неё лампу - источник нагревания. Световоды с заданным переплетением применимы в скоростной киносъёмке, для регистрации треков ядерных частиц, как преобразователи сканирования в фототелеграфии и телевизионной измерительной технике, как преобразователи кода и как шифровальные устройства. Созданы активные (лазерные) волокна, работающие как квантовые усилители (См. Квантовый усилитель) и квантовые генераторы (См. Квантовый генератор) света, предназначенные для быстродействующих вычислительных машин и выполнения функций логических элементов (См. Логический элемент), ячеек памяти (См. Ячейка памяти) и др. Волокна, закреплённые одним концом (подобно косой щётке), - септроны - позволяют анализировать спектры звуковых частот, выделять голоса из шума толпы, создавать устройства, управляющие машинами от голосовых сигналов, и т.д.

Волоконные детали изготовляются из особо чистых материалов. Из расплавов подходящих марок стекол вытягиваются световод и волокно. Предложен новый оптический материал - кристалловолокно, выращиваемое из расплава. В нём световодами являются нитевидные кристаллы, а прослойками - добавки, вводимые в расплав.

Лит.: Капани Н. С., Волоконная оптика, пер. с англ., М., 1969; Вейнберг В. Б. и Саттаров Д. К., Оптика световодов, М., 1969.

В. Б. Вейнберг.

  • -  ...

    Физическая энциклопедия

  • - раздел физики, изучающий закономерности световых явлений, природу света и его взаимодействия с веществом...

    Астрономический словарь

  • - раздел физики, в котором исследуются свойства света, его распространение в различных средах и взаимодействие с веществом...

    Словарь военных терминов

  • - отрасль оптики, занимающаяся передачей данных и изображений с помощью тонких оптических стекловолокон, способных пропускать внутри себя...

    Научно-технический энциклопедический словарь

  • - Fiber metallurgy - ...

    Словарь металлургических терминов

  • - технология передачи света по тонким нитям из прозрачных материалов. Этот свет используется для передачи электронных сигналов на большие расстояния...

    Энциклопедия Кольера

  • - раздел оптики, в к-ром изучаются распространение света и передача информации по световодам. Методы В. о. используются в оптич...
  • - раздел физики, в к-ром исследуются процессы излучения света, его распространение в разл. средах и взаимодействие света с в-вом. О. изучает широкую область спектра эл.-маш. волн, примыкающую к видимому свету:...

    Естествознание. Энциклопедический словарь

  • - использование волокон для передачи световых изображений...

    Медицинские термины

  • - раздел оптики, в к-ром рассматриваются явления, возникающие в волоконных световодах при распространении в них оптич. излучения...

    Большой энциклопедический политехнический словарь

  • - I. Содержание этой науки. - О. представляет собой отдел физики, в котором рассматриваются световые явления...

    Энциклопедический словарь Брокгауза и Евфрона

  • - раздел оптики, в котором рассматривается передача света и изображения по Светопроводам и волноводам оптического диапазона, в частности по многожильным световодам и пучкам гибких волокон...
  • - раздел физики, в котором изучаются природа оптического излучения, его распространение и явления, наблюдаемые при взаимодействии света и вещества...

    Большая Советская энциклопедия

  • - раздел физики, в котором исследуются процессы излучения света, распространения его в различных средах и взаимодействия его с веществом...

    Современная энциклопедия

  • - раздел оптики, в котором изучаются распространение света и передача информации по световодам...
  • - раздел физики, в котором исследуются процессы излучения света, его распространение в различных средах и взаимодействие света c веществом...

    Большой энциклопедический словарь

"Волоконная оптика" в книгах

Оптика Леонардо

Из книги Леонардо да Винчи. Настоящая история гения автора Алферова Марианна Владимировна

Оптика Леонардо Леонардо проводил исследования распределения света как от одного источника, так и от нескольких.На одном из рисунков да Винчи нарисовал шар, освещенный светом из окна. Мастер показал, как идущие из окна лучи освещают поверхность сферы. Он определил четыре

Оптика в войне

Из книги Накануне и в дни испытаний автора Новиков Владимир Николаевич

Оптика в войне В. М. Рябиков - первый заместитель наркома вооружения. - Самое "тонкое" производство. - Волжский оптический. - Накал соревнования. - Подвиг ГОИ. - С. И. Вавилов. - Герои ГОМЗа. - Ученые-оптики смотрели далеко вперед. - Рождение радиолокации. С оптической

Художественная оптика

Из книги Визуальное народоведение империи, или «Увидеть русского дано не каждому» автора Вишленкова Елена Анатольевна

Художественная оптика Приступая к анализу графических источников, я предполагала, что специфика их языка обусловлена особенностями производства, воспроизводства и потребления образов в культуре вообще и в российской культуре исследуемого периода в частности. В ходе

Оптика

Из книги Советский кишлак [Между колониализмом и модернизацией] автора Абашин Сергей

Оптика Войдя или входя (этот процесс вряд ли можно считать в какой-то момент законченным) в поле, я уже оказался в определенных отношениях с разными людьми и группами, какие-то из них были мне ближе, какие-то - дальше, с одними я мог найти контакт, с другими - нет. Вся эта

Оптика

Из книги Улица с односторонним движением автора Беньямин Вальтер

Оптика Летом бросаются в глаза толстые люди, зимой – худые.Весной в ясную солнечную погоду замечаешь молодую листву, а когда холодно и дождливо – еще не покрывшиеся листвой ветви.Тот, кто остался, сразу видит по положению тарелок и чашек, стаканов и блюд, как прошел

2. Оптика

Из книги Революция в физике автора де Бройль Луи

2. Оптика Если гидродинамика или теория упругости не представляют непосредственного интереса для изучения квантовой теории, то с оптикой дело обстоит совершенно иначе, поскольку ее прогресс тесным образом связан с развитием новейшей физики. Подобно явлениям,

Оптика

Из книги Курс истории физики автора Степанович Кудрявцев Павел

Оптика Учение о теплоте развивалось в XVIII в. в тесной связи с химией и оптикой. Огонь, как известно, дает тепло и свет, вызывает химические превращения.Все это заставляло ученых искать взаимосвязи между тепловыми, химическими и световыми явлениями. Ломоносов был

52. Оптика

автора

52. Оптика Оптика – раздел физики, в котором рассматриваются закономерности излучения, поглощения и распространения света.Закон прямолинейного распространения света.Свет в прозрачной однородной среде распространяется прямолинейно.Световой луч – это бесконечно

53. Волновая оптика

Из книги Медицинская физика автора Подколзина Вера Александровна

53. Волновая оптика Волновые свойства света. Свет – это электромагнитные волны в интервале частотой 13 х 1014-8 х ч 1014 Гц воспринимаемые человеческим глазом, т. е. длина волн 380 х 770 нм. Свету присущи все свойства электромагнитных волн: отражение, преломление, интерференция,

Адаптивная оптика

Из книги История лазера автора Бертолотти Марио

Адаптивная оптика Мы теперь опишем несколько применений, которые, на первый взгляд, могут показаться из научной фантастики. Одно из них - т.н. адаптивная оптика.Адаптивная оптика улучшает качество изображения в больших телескопах путем компенсации искажений, вызываемых

Нелинейная оптика

Из книги История лазера автора Бертолотти Марио

Нелинейная оптика До появления лазеров, прозрачные оптические материалы рассматривались, по существу, как пассивные объекты, не влияющие на проходящий через них свет. Высокая мощность лазерных пучков, впервые, позволила наблюдать, что присутствие света само по себе

Оптика

Из книги История естествознания в эпоху эллинизма и Римской империи автора Рожанский Иван Дмитриевич

Оптика

Из книги Энциклопедический словарь (Н-О) автора Брокгауз Ф. А.

Оптика Оптика. 1 Содержание этой науки. – О. представляет собой отдел физики, в котором рассматриваются световые явления; подразделяется на следующие части: а) геометрическая О., b) физическая О. и с) физиологическая О. Основание геометрической О. составляют опытом

Волоконная оптика

Из книги Большая Советская Энциклопедия (ВО) автора БСЭ

Оптика

Из книги Большая Советская Энциклопедия (ОП) автора БСЭ

Оптические волокна показывают пример того, как научные знания переходят в технологический прогресс, в конечном итоге облегчая жизнь обычного человека. С волоконной оптикой уже несколько лет связаны коммуникационные средства передачи электрических сигналов. Тонкие нити размером с человеческий волос могут использоваться для передачи широкого которые требуются для работы телефона, интернет-соединения, телевизора и т. д. Разумеется, благодаря высоким эксплуатационным возможностям волоконная оптика нашла применение не только в бытовых нуждах.

Технология передачи сигнала через оптоволокно

Само по себе использование оптоволокна в качестве транслятора сигналов - лишь часть раскрытого знания, которые исследуются в научном разделе волоконной оптики. Специалисты этого направления занимаются изучением передачи информации и распространения света, причем в одном контексте, объединенном световодами. Последние используются и в качестве распространителей света, и как передатчики информации. К слову, на светодиодах же основываются современные направления развития лазерных технологий. В данном же случае интереснее другой вопрос - какое явление заложено в основу волоконной оптики? Это электромагнитного излучения в границах раздела диэлектриков, имеющих различные показатели преломления. Причем носителем информации выступает вовсе не электромагнитный сигнал, а закодированный световой поток. Для понимания степени превосходства оптоволоконных кабелей перед традиционными металлическими стоит еще раз обратиться к их пропускной способности. Уже упомянутая волоконная нить, толщина которой составляет не более 0,5 мм, способна передавать объем информации, который обычная медная проводка обслужит только при толщине в 50 мм.

Методы изготовления оптоволокна

Существует два основных метода, по которым может изготавливаться оптическое волокно. Это техника экструзии и плавление с использованием преформ. Первая технология позволяет получать материал низкого качества на основе пластиков, поэтому сегодня ее практически не используют. Второй метод считается основным и наиболее эффективным. Преформа - это заготовка, находящаяся в конструкции, предназначенной для вытяжки нитей. По современным стандартам преформы могут иметь высоту до нескольких десятков метров. Внешне это стеклянный стержень диаметром порядка 10 см, из которого выплавляется сердцевина нити. В процессе изготовления стержень вместе со смесью для волокон нагревается до высоких температур, после чего происходит формование нитей. Длина получаемого материала может достигать нескольких километров, хотя диаметр при этом остается неизменным - его контролируют автоматизированные регуляторы. В зависимости от того, где будет применяться волоконная оптика, материал для нее предварительно может обрабатываться покрытиями, обеспечивающими химическую и физическую защиту. Что касается самих смесей для нитей, то в их состав обычно входят такие материалы, как полиимид, акрилат и силикон.

Конструкционные особенности оптоволокна

Центральную часть нити представляет ядро - та самая сердцевина волокна, которая и будет распространять свет в процессе эксплуатации. Ядро характеризуется повышенными показателями преломления света, что достигается при использовании легирования стекла с модификацией специальными добавками. Например, для кварцевых волокон используют типичные преломляющие компоненты наподобие допанта. В свою очередь, оболочка выполняет несколько задач, главной из которых является непосредственная физическая защита сердцевины. Данная часть также обеспечивает эффект преломления, но с минимальным коэффициентом. Граница между двумя материалами формирует световодную структуру, которая не позволяет основному объему света выходить за пределы ядра. Также стоит отметить, что основы волоконной оптики относят материал к разновидностям световодов. Если быть точнее, то речь идет о диэлектрических волноводах, передающих световые сигналы.

Разновидности оптических волокон

Наиболее распространены кварцевые, пластиковые и флюоридные волокна. Кварцевые нити основываются на расплавах оксида или похожих по структуре материалах, среди которых допированный оксид кремния. Данная основа позволяет изготавливать гибкие и длинные волокна, отличающиеся при этом и высокой механической прочностью. Пластико-волоконная оптика производится из полимеров и, как уже отмечалось, не может обеспечивать высокие эксплуатационные показатели. В частности, такие нити имеют большой процент потери данных, что ограничивает их применение в требовательных сферах. С другой стороны, ценовая доступность пластиковых волокон сохраняет спрос на этот материал в направлениях, ориентированных на бытовой сегмент. Что касается флюоридных оптических материалов, то их основа базируется на фторцирконатном и фторалюминатном стеклах. Это вполне современные и технологичные решения для обеспечения оптической коммуникации, но содержание тяжелых металлов в структуре тоже не позволяет их использовать, например, в медицинской отрасли.

Измерительное оборудование для оптоволокна

Самым распространенным оборудованием, которое используется в комплектах с оптическим волокном, являются датчики и брэгговские решетки. Оптоволоконные датчики - это устройства, предназначенные для фиксации некоторых значений, характеризующих состояние материала в данный момент. Например, разные датчики могут определять механическое напряжение, температуру, вибрации, давление и другие величины. Брэгговская решетка по своей функции более приближена именно к оптическим характеристикам. Она фиксирует в сердцевине оптоволокна апериодическое возмущение преломления. Данное измерение позволяет определять, насколько волоконная оптика эффективна при трансляции сигнала в конкретных условиях. Также специалисты применяют оптический рефлектометр, регистрирующий показатели рассеивания и сопротивления.

Оптоволоконные усилители и лазеры

Это наиболее прогрессивная продукция, которую разрабатывают на базе технологии волоконной оптики. В отличие от лазеров других типов, использование оптических нитей позволяет создавать компактные и в то же время эффективные аппараты. В частности, технология волоконной оптики позволила заменить классические лазерные приборы благодаря следующим преимуществам:

  • Эффективность теплового отвода.
  • Повышенные показатели выходного излучения.
  • Эффективная накачка.
  • Высокая надежность и стабильность работы лазера.
  • Небольшая масса оборудования.

В свою очередь, усилители в зависимости от типа могут применяться и в домашних сетевых линиях, повышая рабочие показатели основной волоконной линии. Впрочем, сферы эксплуатации оптоволокна стоит рассмотреть подробнее.

Для чего используется волоконная оптика?

Можно выделить несколько направлений, в которых задействуются оптоволоконные материалы. Это сфера бытового применения, телекоммуникационное оборудование и компьютерная техника, а также узкоспециализированные ниши, среди которых отдельные направления медицины. Для каждого из этих сегментов производится специальная волоконная оптика. Применение в качестве типового средства передачи ТВ- или интернет-сигнала, к примеру, ограничивается дешевыми пластиковыми моделями среднего качества. Но для лазерного оборудования и дорогостоящих медицинских аппаратов используют высококачественные кварцевые волокна, обеспеченные также дополнительными модификаторами.

Применение оптоволокна в медицине

Такие волокна могут использоваться в медицинском оборудовании и инструментах. Стандартная технология предполагает возможность введения специального аппарата на преломляемых световых волокнах, которые уже в самом органе тела могут передавать сигнал на внешнюю телекамеру. Применяется волоконная оптика в медицине и как осветительный материал. Аппараты, снабженные волоконными модулями, позволяют безболезненно подсвечивать полости желудка, носоглотки и т.д.

Применение оптоволокна в компьютерном оборудовании

Пожалуй, это наиболее распространенная ниша, в которой нашло свое место оптоволокно. Без него сегодня уже не обходятся линии связи между отдельными устройствами, передающие информацию. Разумеется, это касается тех областей, в которых невозможно или нецелесообразно применение беспроводных соединений, которые также активно вытесняют кабели как таковые. Например, крупнейшие телекоммуникационные компании прокладывают межрегиональные магистральные сети, в которых задействуется волоконная оптика. Использование таких каналов для связи периферийного оборудования и обычных потребителей телекоммуникационных услуг позволяет оптимизировать финансовые расходы на обслуживание сетевой инфраструктуры, а также повышает эффективность самой передачи данных.

Недостатки оптоволокна

К сожалению, оптические нити не обходятся и без слабых мест. Хотя содержание такой проводки обходится дешевле, не говоря об отсутствии необходимости частого обновления, стоимость самого материала гораздо выше тех же металлических аналогов. Кроме того, волоконная оптика и ее использование в медицине крайне ограничено из-за содержания в отдельных сплавах свинцовых и циркониевых примесей, токсически опасных для человека. В основном это касается именно самых высококачественных стеклянных моделей, а не пластковых.

Производство оптоволокна в России

В рамках программы импортзамещения в 2015 г. в Мордовии был открыт завод «Оптико-волоконные системы». Это единственное предприятие в РФ, которое на данный момент по мере возможности старается восполнять нужды отечественных потребителей в оптоволокне. До 2015 г. российская промышленность также занималась изготовлением оптоволоконных материалов, но только в рамках отдельных целевых проектов. Эта же ситуация отчасти сохраняется и сегодня. Если определенной компании потребуется волоконная оптика и ее использование в медицине или в сфере телекоммуникационного обеспечения будет финансово оправдано, то есть немало заводов, готовых работать над подобными спецзаказами в индивидуальном порядке. Однако серийным выпуском тех же кабелей из оптоволокна в ближайшем будущем будет работать только мордовский завод. Более того, пока и он не в состоянии снабжать рынок в соответствии с объемами спроса. Значительная доля продукции по-прежнему закупается в США и Японии. И даже отечественные изделия производятся на импортном сырье.

Заключение

Оптоволоконная продукция формируется как сегмент рынка уже порядка 15-20 лет. За эти годы потребитель смог высоко оценить достоинства новых кабелей, однако прогресс не стоит на месте. По мере повышения технико-физических качеств расширяются и области применения материала. Новейшее оптоволокно на основе нанотехнологий, в частности, активно используют в нефтегазодобывающей промышленности и оборонном комплексе. В свою очередь, нелинейная волоконная оптика развивает пока только концептуальные, но весьма перспективные направления технологии. Среди них можно выделить компрессионные лазерные импульсы, оптические солитоны, ультракороткие оптические излучения и т.д. Очевидно, что кроме теоретических исследований с возможными открытиями и в рамках сугубо научного знания, новые разработки позволят и на рынке сделать новые предложения потребителям разного уровня.

ВОЛОКОННАЯ ОПТИКА - раздел оптики, в к-ром изучаются распространение оптич. по волоконным световодам (ВС) и возникающие при этом явления.

В. о. возникла в 50-х гг. 20 в. В первые 20 лет развития в качестве элементов В. о. использовались гл. обр. жгуты (с регулярной и нерегулярной укладкой) длиной порядка неск. м. Материалом для изготовления таких ВС являлись многокомпонентные оптич. стёкла; пропускание световодов в видимой области спектра составляло 30-70% на длине в 1 м. Низкий коэф. пропускания обусловлен затуханием света в стекле из-за большой концентрации примесей. Числовая апертура световодов составляет величину 0,5-1. Наиб. широкое применение для освещения труднодоступных объектов и для передачи изображений жгуты световодов нашли в приборостроении, в частности для техн. и медицинской эндоскопии. В 70-х гг. 20 в. произошло второе рождение

В. о., когда были разработаны ВС на основе кварцевого стекла с оптич. потерями ~1 дБ/км в ближней ИК-области спектра. (Пропускание таких световодов составляет ~50% при длине световода в неск. км.) Эти световоды используются в системах дальней оптической связи , в бортовых системах связи, системах передачи телеметрич. информации, в датчиках разл. физ. полей (магн. поля, темп-ры, вращения, акустич. волн) и др.

Волоконный световод в простейшем варианте представляет собой длинную гибкую нить, сердцевина к-рой из высокопрозрачного с показателем преломления п 1 окружена оболочкой с показателем преломления

Характер распространения оптич. излучения по ВС зависит от его поперечных размеров и профиля показателя преломления по сечению. Так, напр., число типов колебаний (мод), к-рые могут распространяться по ВС для заданной длины волны излучения, пропорционально квадрату диаметра сердцевины и разности показателей преломления сердцевины и оболочки . Уменьшая произведение этих величин, можно добиться распространения по световоду лишь одной моды. В этом случае ВС наз. одномодовым. Имеется много типов структур ВС, однако к 80-м гг. 20 в. наиб. распространение получили три типа ВС (рис. 1): многомодовые со ступенчатым профилем показателя преломления, многомодовые с градиентным профилем показателя преломления и одномодовые. В одномодовых ВС обычно 5-10 мкм (для ближнего ИК-диапазона), в многомодовых - от неск. десятков до неск. сотен мкм. Разность Dn для многомодовых световодов составляет ~1-2%, для одномодовых - неск. десятых долей процента. Полный диаметр световодов составляет ~10 2 -10 3 мкм.

Рис. 1. Поперечное сечение и профиль показателя преломления по сечению для световодов: а - многомодовых ступенчатых; б - одномодовых; в - многомодовых градиентных.

Распространение света по ВС обусловлено полным внутр. на границе сердцевина-оболочка. Лучи, падающие на границу сердцевина-оболочка под углом , где испытывают полное внутр. отражение, приводя к зигзагообразному распространению света вдоль световода (рис. 2). При этом угол падения луча на торец световода составляет

Рис. 2. Траектория лучей в многомодовом световоде со ступенчатым профилем показателя преломления.

Меридиональные лучи, падающие на границу сердцевина-оболочка под углом (прерывистая линия на рис. 2), частично отражаясь на границе раздела, преломляются в оболочку и поглощаются внеш. поглощающим покрытием. Следовательно, угол является мерой способности ВС захватывать свет, и синус этого угла наз. числовой апертурой ВС. .

Лучевой подход правильно отражает осн. особенности распространения света в многомодовых ВС, для к-рых (длина волны света). Однако полную картину распространения света по ВС даёт волновая теория, допускающая распространение по нему лишь дискретного набора мод.

При анализе распространения света по ВС, для к-рых , широко применяется приближение слабо направляемых мод. В этом приближении поля направляемых мод являются практически линейно поляризованными и все компоненты поля могут быть получены как производные одной преобладающей поперечной компоненты вектора электрич. поля, к-рая выражается след. образом:


Здесь А - константа; временная зависимость опущена; - ф-ция Бесселя и ф-ция Макдональда порядка -постоянная распространения направляемых мод, определяемая из решения граничной задачи ( может принимать лишь дискретные значения в интервале ); z - направление распространения, совпадающее с осью ВС; - поперечное волновое число в сердцевине ВС; = - поперечное в оболочке ВС; -волновое число в свободном пространстве.

Величина наз. характеристическим параметром световода и определяет число мод N , к-рые могут распространяться по ВС. Для ВС со ступенчатым профилем показателя преломления

Распространение света по ВС сопровождается такими оптич. явлениями, как затухание оптич. сигнала, уширение коротких импульсов света, разл. нелинейные процессы.

Потери в волоконном световоде. Затухание оптич. сигнала в стеклянном ВС в видимом и ближнем ИК-диапазонах длин волн, т. е. в областях спектра, где кварцевые стёкла имеют макс. прозрачность, определяется как фундам. механизмами поглощения и рассеяния света в стёклах, так и рассеянием и поглощением примесями и дефектами структуры.

К фундам. механизмам оптич. потерь в кварцевых стёклах относятся: поглощение, обусловленное электронными переходами (на=0,8 мкм не превышает 1 дБ/км); ИК-поглощение, обусловленное колебаниями решётки, к-рое начинает играть существ. роль (поглощение более иеск. дБ/км) лишь на1,8 мкм; рэлеевское на неоднородностях состава и плотности стекла, меньших(на=0,8 мкм не превышает неск. дБ/км). Т.о., наиб. прозрачностью ВС на основе кварцевых стёкол обладают в области 0,8-1,8 мкм. На рис. 3 приведены спектральные зависимости оптических потерь а, обусловленных фундаментальными механизмами, для кварцевого стекла, легированного Ge.

Рис. 3. Спектральные зависимости оптических потерь в кварцевом стекле, легированном германием: 1 - поглощение, обусловленное электронными переходами; S - ; 3 - поглощение, обусловленное колебаниями решётки; 4 - суммарные потери.

Примесное поглощение в указанном спектральном диапазоне определяется гл. обр. поглощением ионами переходных металлов (Fe, Cu, Cr, Ni, V и др.) и гидроксильными группами. Чтобы поглощение света не превышало неск. дБ/км, содержание переходных металлов и гидроксильных групп в стекле не должно превышать неск. частей на 1 миллиард (10 -9) и 1 миллион (10 -6) соответственно. Вклад указанных примесей в полные потери совр. ВС пренебрежимо мал. Полные потери ВС на основе кварцевых стёкол близки к предельно низким (рис. 4).

Уширение оптич. импульсов при распространении по ВС приводит к их взаимному перекрытию, что ограничивает информац. полосу пропускания ВС. За уширение импульсов в ВС ответственны три механизма: межмодовая дисперсия, материальная дисперсия и водноводная дисперсия. Наиб. вклад в уширение импульса в многомодовых ВС вносит межмодовая дисперсия - разл. распространения разл. мод. При типичных параметрах многомодовых ВС межмодовая дисперсия ограничивает полосу пропускания световода до неск. десятков Мгц*км. Различие групповых скоростей мод можно значительно снизить, обеспечив плавное изменение показателя преломления по закону, близкому к параболическому, с максимумом на оси световода. В результате полоса пропускания ВС увеличивается до 600-800 Мгц*км и более.

Материальная дисперсия ВС обусловлена зависимостью показателя преломления материала, из к-рого изготовлен световод, от. В этом случае групповая скорость моды зависит от частоты света, а поскольку оптич. импульс всегда имеет конечную спектральную ширину , происходит уширение импульса при его распространении по световоду. Уширение импульса вследствие материальной дисперсии при распространении по световоду длины L равно


При распространении по ВС с сердцевиной из кварца уширение импульса от светодиода на основе GaAlAs, работающего на волне =0,8 мкм и имеющего относит. спектральную ширину =0,04, составляет =4 нс/км. Уширение импульса вследствие материальной дисперсии резко уменьшается, если несущего излучения выбрана в спектральной области вблизи 1,3 мкм, т. к. в этой области для кварцевых стёкол величина

Волноводная дисперсия связана с зависимостью групповой скорости данной моды от Волноводная дисперсия обычно пренебрежимо мала по сравнению с величиной материальной дисперсии.

В ВС из легированного кварцевого стекла существуют области, где материальная дисперсия равна по величине волноводной дисперсии и отличается от неё знаком. В этих областях, лежащих в диапазоне 1,2<<1,7 мкм, можно выбором легирования и подбором диаметра сердцевины ВС добиться взаимной компенсации и обеспечить наим. уширение импульса (наиб. полосу пропускания) в одномодовых ВС.

Нелинейные процессы в волоконных световодах . Вследствие изотропии материала сердцевины стеклянных световодов младший нелинейный член в разложении поляризации по полю-кубический, т. е. нелинейная поляризация . Кубическая восприимчивость связана с нелинейным показателем преломления n нл след. соотношением: Величина n нл плавленого кварца невелика: n нл ~ 10 -13 в системе единиц CGSE. Однако уменьшение диаметра сердцевины (до ~ 10 мкм) и низкие оптич. потери ВС позволяют поддерживать высокую интенсивность оптич. излучения (~10 10 Вт/см 2) на длинах световода более 1 км, и поэтому в ВС легко наблюдать разл. нелинейные явления. Напр., 1-я стоксова компонента вынужденного комбинац. рассеяния света (BKP, см. Вынужденное рассеяние света )наблюдается при мощности накачки в неск. сотен мВт. Спектр комбинац. рассеяния в кварцевых стёклах широк, и с помощью дисперс. элемента можно получать перестройку частоты порядка 300 см -1 . На основе BKP созданы перестраиваемые волоконные генераторы лазерного излучения в ближней ИК-области спектра.

Рис. 4. Спектр оптических потерь одномодового волоконного световода.

Принципиальным преимуществом ВС для оптич. связи является огромная широкополосность при низких оптич. потерях. Так, напр., стеклянные ВС в области нулевой материальной дисперсии (1,3 мкм) позволяют передавать сигналы с полосой пропускания ~100 ГГц*км при потерях <1 дБ/км. Волоконная связь отличается также невосприимчивостью к эл--магн. помехам, малым объёмом и весом линий передач; помогает экономить дефицитные цветные металлы.

К нач. 80-х гг. создана элементная база волоконнооптич. систем связи первого поколения, разработаны и испытаны в реальных условиях разл. системы. Эти системы применяются в телефонных сетях, кабельном телевидении, бортовой связи, вычислит. технике, системах контроля и управления технол. процессами и мощными электростанциями.

Лит.: Вейнберг В. Б., Саттаров Д. К., Оптика световодов, 2 изд., Л., 1877; Капани H. С., Волоконная оптика, пер. с англ., M., 1969; Тидекен Р., Волоконная оптика и ее применение, пер. с англ., M., 1975; Девятых Г.Г., Дианов E. M., Волоконные световоды с малыми оптическими потерями, "Вестн. АН СССР", 1981, M 10, с. 54; Mидвинтер Дж. Э., Волоконные световоды для передачи информации, пер. с англ., M., 1983; Дианов E. M., Прохоров A. M., Лазеры и волоконная оптика, "УФН", 1986, т. 148, с. 289.



Понравилась статья? Поделитесь с друзьями!