Взаимодействие дихлорэтана с кислородом 9 газообразное состояние. Химия подготовка к зно и дпа комплексное издание

Содержание статьи

КИСЛОРОД, O (oxygenium), химический элемент VIA подгруппы периодической системы элементов: O, S, Se, Te, Po – член семейства халькогенов. Это наиболее распространенный в природе элемент, его содержание составляет в атмосфере Земли 21% (об.), в земной коре в виде соединений ок. 50% (масс.) и в гидросфере 88,8% (масс.).

Кислород необходим для существования жизни на земле: животные и растения потребляют кислород в процессе дыхания, а растения выделяют кислород в процессе фотосинтеза. Живая материя содержит связанный кислород не только в составе жидкостей организма (в клетках крови и др.), но и в составе углеводов (сахар, целлюлоза, крахмал, гликоген), жиров и белков. Глины, горные породы состоят из силикатов и других кислородсодержащих неорганических соединений, таких, как оксиды, гидроксиды, карбонаты, сульфаты и нитраты.

Историческая справка.

Первые сведения о кислороде стали известны в Европе из китайских рукописей 8 в. В начале 16 в. Леонардо да Винчи опубликовал данные, связанные с химией кислорода, не зная еще, что кислород – элемент. Реакции присоединения кислорода описаны в научных трудах С.Гейлса (1731) и П.Байена (1774). Заслуживают особого внимания исследования К.Шееле в 1771–1773 взаимодействия металлов и фосфора с кислородом. Дж.Пристли сообщил об открытии кислорода как элемента в 1774, спустя несколько месяцев после сообщения Байена о реакциях с воздухом. Название oxygenium («кислород») дано этому элементу вскоре после его открытия Пристли и происходит от греческих слов, обозначающих «рождающий кислоту»; это связано с ошибочным представлением о том, что кислород присутствует во всех кислотах. Объяснение роли кислорода в процессах дыхания и горения, однако, принадлежит А.Лавуазье (1777).

Строение атома.

Любой природный атом кислорода содержит 8 протонов в ядре, но число нейтронов может быть равно 8, 9 или 10. Наиболее распространенный из трех изотопов кислорода (99,76%) – это 16 8 O (8 протонов и 8 нейтронов). Содержание другого изотопа, 18 8 O (8 протонов и 10 нейтронов), составляет всего 0,2%. Этот изотоп используется как метка или для идентификации некоторых молекул, а также для проведения биохимических и медико-химических исследований (метод изучения нерадиоактивных следов). Третий нерадиоактивный изотоп кислорода 17 8 O (0,04%) содержит 9 нейтронов и имеет массовое число 17. После того как в 1961 масса изотопа углерода 12 6 C была принята Международной комиссией за стандартную атомную массу, средневзвешенная атомная масса кислорода стала равна 15,9994. До 1961 стандартной единицей атомной массы химики считали атомную массу кислорода, принятую для смеси трех природных изотопов кислорода равной 16,000. Физики за стандартную единицу атомной массы принимали массовое число изотопа кислорода 16 8 O, поэтому по физической шкале средняя атомная масса кислорода составляла 16,0044 .

В атоме кислорода 8 электронов, при этом 2 электрона находятся на внутреннем уровне, а 6 электронов – на внешнем. Поэтому в химических реакциях кислород может принимать от доноров до двух электронов, достраивая свою внешнюю оболочку до 8 электронов и образуя избыточный отрицательный заряд .

Молекулярный кислород.

Как большинство других элементов, у атомов которых для достройки внешней оболочки из 8 электронов не хватает 1–2 электронов, кислород образует двухатомную молекулу. В этом процессе выделяется много энергии (~490 кДж/моль) и соответственно столько же энергии необходимо затратить для обратного процесса диссоциации молекулы на атомы. Прочность связи O–O настолько высока, что при 2300° С только 1% молекул кислорода диссоциирует на атомы. (Примечательно, что при образовании молекулы азота N 2 прочность связи N–N еще выше, ~710 кДж/моль.)

Электронная структура.

В электронной структуре молекулы кислорода не реализуется, как можно было ожидать, распределение электронов октетом вокруг каждого атома, а имеются неспаренные электроны, и кислород проявляет свойства, типичные для такого строения (например, взаимодействует с магнитным полем, являясь парамагнетиком).

Реакции.

В соответствующих условиях молекулярный кислород реагирует практически с любым элементом, кроме благородных газов. Однако при комнатных условиях только наиболее активные элементы реагируют с кислородом достаточно быстро. Вероятно, большинство реакций протекает только после диссоциации кислорода на атомы, а диссоциация происходит лишь при очень высоких температурах. Однако катализаторы или другие вещества в реагирующей системе могут способствовать диссоциации O 2 . Известно, что щелочные (Li, Na, K) и щелочноземельные (Ca, Sr, Ba) металлы реагируют с молекулярным кислородом с образованием пероксидов:

Получение и применение.

Благодаря наличию свободного кислорода в атмосфере наиболее эффективным методом его извлечения является сжижение воздуха, из которого удаляют примеси, CO 2 , пыль и т.д. химическими и физическими методами. Циклический процесс включает сжатие, охлаждение и расширение, что и приводит к сжижению воздуха. При медленном подъеме температуры (метод фракционной дистилляции) из жидкого воздуха испаряются сначала благородные газы (наиболее трудно сжижаемые), затем азот и остается жидкий кислород. В результате жидкий кислород содержит следы благородных газов и относительно большой процент азота. Для многих областей применения эти примеси не мешают. Однако для получения кислорода особой чистоты процесс дистилляции необходимо повторять. Кислород хранят в танках и баллонах. Он используется в больших количествах как окислитель керосина и других горючих в ракетах и космических аппаратах. Сталелитейная промышленность потребляет газообразный кислород для продувки через расплав чугуна по методу Бессемера для быстрого и эффективного удаления примесей C, S и P. Сталь при кислородном дутье получается быстрее и качественнее, чем при воздушном. Кислород используется также для сварки и резки металлов (кислородно-ацетиленовое пламя). Применяют кислород и в медицине, например, для обогащения дыхательной среды пациентов с затрудненном дыханием. Кислород можно получать различными химическими методами, и некоторые из них применяют для получения малых количеств чистого кислорода в лабораторной практике.

Электролиз.

Один из методов получения кислорода – электролиз воды, содержащей небольшие добавки NaOH или H 2 SO 4 в качестве катализатора: 2H 2 O ® 2H 2 + O 2 . При этом образуются небольшие примеси водорода. С помощью разрядного устройства следы водорода в газовой смеси вновь превращают в воду, пары которой удаляют вымораживанием или адсорбцией.

Термическая диссоциация.

Важный лабораторный метод получения кислорода, предложенный Дж.Пристли, заключается в термическом разложении оксидов тяжелых металлов: 2HgO ® 2Hg + O 2 . Пристли для этого фокусировал солнечные лучи на порошок оксида ртути. Известным лабораторным методом является также термическая диссоциация оксосолей, например хлората калия в присутствии катализатора – диоксида марганца:

Диоксид марганца, добавляемый в небольших количествах перед прокаливанием, позволяет поддерживать требуемую температуру и скорость диссоциации, причем сам MnO 2 в процессе не изменяется.

Используются также способы термического разложения нитратов:

а также пероксидов некоторых активных металлов, например:

2BaO 2 ® 2BaO + O 2

Последний способ одно время широко использовался для извлечения кислорода из атмосферы и заключался в нагревании BaO на воздухе до образования BaO 2 с последующим термическим разложением пероксида. Способ термического разложения сохраняет свое значение для получения пероксида водорода.

НЕКОТОРЫЕ ФИЗИЧЕСКИЕ СВОЙСТВА КИСЛОРОДА
Атомный номер 8
Атомная масса 15,9994
Температура плавления, °С –218,4
Температура кипения, °С –183,0
Плотность
твердый, г/см 3 (при t пл) 1,27
жидкий г/см 3 (при t кип) 1,14
газообразный, г/дм 3 (при 0° С) 1,429
относительная по воздуху 1,105
критическая а, г/см 3 0,430
Критическая температура а, °С –118,8
Критическое давление а, атм 49,7
Растворимость, см 3 /100 мл растворителя
в воде (0° С) 4,89
в воде (100° С) 1,7
в спирте (25° С) 2,78
Радиус, Å 0,74
ковалентный 0,66
ионный (О 2–) 1,40
Потенциал ионизации, В
первый 13,614
второй 35,146
Электроотрицательность (F = 4) 3,5
а Температура и давление, при которых плотность газа и жидкости одинаковы.

Физические свойства.

Кислород при нормальных условиях – бесцветный газ без запаха и вкуса. Жидкий кислород имеет бледно-голубой цвет. Твердый кислород существует по крайней мере в трех кристаллических модификациях. Газообразный кислород растворим в воде и, вероятно, образует непрочные соединения типа O 2 Ч H 2 O, а возможно, и O 2 Ч 2H 2 O.

Химические свойства.

Как уже упоминалось, химическая активность кислорода определяется его способностью диссоциировать на атомы O, которые и отличаются высокой реакционной способностью. Только наиболее активные металлы и минералы реагируют с O 2 c высокой скоростью при низких температурах. Наиболее активные щелочные (IA подгруппы) и некоторые щелочноземельные (IIA подгруппы) металлы образуют с O 2 пероксиды типа NaO 2 и BaO 2 . Другие же элементы и соединения реагируют только с продуктом диссоциации O 2 . В подходящих условиях все элементы, исключая благородные газы и металлы Pt, Ag, Au, реагируют с кислородом. Эти металлы тоже образуют оксиды, но при особых условиях.

Электронная структура кислорода (1s 2 2s 2 2p 4) такова, что атом O принимает для образования устойчивой внешней электронной оболочки два электрона на внешний уровень, образуя ион O 2– . В оксидах щелочных металлов образуется преимущественно ионная связь. Можно полагать, что электроны этих металлов практически целиком оттянуты к кислороду. В оксидах менее активных металлов и неметаллов переход электронов неполный, и плотность отрицательного заряда на кислороде менее выражена, поэтому связь менее ионная или более ковалентная.

При окислении металлов кислородом происходит выделение тепла, величина которого коррелирует с прочностью связи M–O. При окислении некоторых неметаллов происходит поглощение тепла, что свидетельствует об их менее прочных связях с кислородом. Такие оксиды термически неустойчивы (или менее стабильны, чем оксиды с ионной связью) и часто отличаются высокой химической активностью. В таблице приведены для сравнения значения энтальпий образования оксидов наиболее типичных металлов, переходных металлов и неметаллов, элементов A- и B-подгрупп (знак минус означает выделение тепла).

О свойствах оксидов можно сделать несколько общих выводов:

1. Температуры плавления оксидов щелочных металлов уменьшаются с ростом атомного радиуса металла; так, t пл (Cs 2 O) t пл (Na 2 O). Оксиды, в которых преобладает ионная связь, имеют более высокие температуры плавления, чем температуры плавления ковалентных оксидов: t пл (Na 2 O) > t пл (SO 2).

2. Оксиды химически активных металлов (IA–IIIA подгрупп) более термически стабильны, чем оксиды переходных металлов и неметаллов. Оксиды тяжелых металлов в высшей степени окисления при термической диссоциации образуют оксиды с более низкими степенями окисления (например, 2Hg 2+ O ® (Hg +) 2 O + 0,5O 2 ® 2Hg 0 + O 2). Такие оксиды в высоких степенях окисления могут быть хорошими окислителями.

3. Наиболее активные металлы взаимодействуют с молекулярным кислородом при повышенных температурах с образованием пероксидов:

Sr + O 2 ® SrO 2 .

4. Оксиды активных металлов образуют бесцветные растворы, тогда как оксиды большинства переходных металлов окрашены и практически нерастворимы. Водные растворы оксидов металлов проявляют основные свойства и являются гидроксидами, содержащими OH-группы, а оксиды неметаллов в водных растворах образуют кислоты, содержащие ион H + .

5. Металлы и неметаллы A-подгрупп образуют оксиды со степенью окисления, соответствующей номеру группы, например, Na, Be и B образуют Na 1 2 O, Be II O и B 2 III O 3 , а неметаллы IVA–VIIA подгрупп C, N, S, Cl образуют C IV O 2 , N V 2 O 5 , S VI O 3 , Cl VII 2 O 7 . Номер группы элемента коррелирует только с максимальной степенью окисления, так как возможны оксиды и с более низкими степенями окисления элементов. В процессах горения соединений типичными продуктами являются оксиды, например:

2H 2 S + 3O 2 ® 2SO 2 + 2H 2 O

Углеродсодержащие вещества и углеводороды при слабом нагревании окисляются (сгорают) до CO 2 и H 2 O. Примерами таких веществ являются топлива – древесина, нефть, спирты (а также углерод – каменный уголь, кокс и древесный уголь). Тепло от процесса горения утилизируется на производство пара (а далее электричества или идет на силовые установки), а также на отопление домов. Типичные уравнения для процессов горения таковы:

а) древесина (целлюлоза):

(C 6 H 10 O 5) n + 6n O 2 ® 6n CO 2 + 5n H 2 O + тепловая энергия

б) нефть или газ (бензин C 8 H 18 или природный газ CH 4):

2C 8 H 18 + 25O 2 ® 16CO 2 + 18H 2 O + тепловая энергия

CH 4 + 2O 2 ® CO 2 + 2H 2 O + тепловая энергия

C 2 H 5 OH + 3O 2 ® 2CO 2 + 3H 2 O + тепловая энергия

г) углерод (каменный или древесный уголь, кокс):

2C + O 2 ® 2CO + тепловая энергия

2CO + O 2 ® 2CO 2 + тепловая энергия

Горению подвержены также ряд C-, H-, N-, O-содержащих соединений с высоким запасом энергии. Кислород для окисления может использоваться не только из атмосферы (как в предыдущих реакциях), но и из самого вещества. Для инициирования реакции достаточно небольшого активирования реакции, например удара или встряски. При этих реакциях продуктами горения также являются оксиды, но все они газообразны и быстро расширяются при высокой конечной температуре процесса. Поэтому такие вещества являются взрывчатыми. Примерами взрывчатых веществ служат тринитроглицерин (или нитроглицерин) C 3 H 5 (NO 3) 3 и тринитротолуол (или ТНТ) C 7 H 5 (NO 2) 3 .

Оксиды металлов или неметаллов с низшими степенями окисления элемента реагируют с кислородом с образованием оксидов высоких степеней окисления этого элемента:

Оксиды природные, полученные из руд или синтезированные, служат сырьем для получения многих важных металлов, например, железа из Fe 2 O 3 (гематит) и Fe 3 O 4 (магнетит), алюминия из Al 2 O 3 (глинозем), магния из MgO (магнезия). Оксиды легких металлов используются в химической промышленности для получения щелочей или оснований. Пероксид калия KO 2 находит необычное применение, так как в присутствии влаги и в результате реакции с ней выделяет кислород. Поэтому KO 2 применяют в респираторах для получения кислорода. Влага из выдыхаемого воздуха выделяет в респираторе кислород, а KOH поглощает CO 2 . Получение оксида CaO и гидроксида кальция Ca(OH) 2 – многотоннажное производство в технологии керамики и цемента.

Вода (оксид водорода).

Важность воды H 2 O как в лабораторной практике для химических реакций, так и в процессах жизнедеятельности требует особого рассмотрения этого вещества ВОДА, ЛЕД И ПАР) . Как уже упоминалось, при прямом взаимодействии кислорода и водорода в условиях, например, искрового разряда происходят взрыв и образование воды, при этом выделяется 143 кДж/(моль H 2 O).

Молекула воды имеет почти тетраэдрическое строение, угол H–O–H равен 104° 30ў . Связи в молекуле частично ионные (30%) и частично ковалентные с высокой плотностью отрицательного заряда у кислорода и соответственно положительных зарядов у водорода:

Из-за высокой прочности связей H–O водород с трудом отщепляется от кислорода и вода проявляет очень слабые кислотные свойства. Многие свойства воды определяются распределением зарядов. Например, молекула воды образует с ионом металла гидрат:

Одну электронную пару вода отдает акцептору, которым может быть H + :

Оксоанионы и оксокатионы

– кислородсодержащие частицы, имеющие остаточный отрицательный (оксоанионы) или остаточный положительный (оксокатионы) заряд. Ион O 2– имеет высокое сродство (высокую реакционную способность) к положительно заряженным частицам типа H + . Простейшим представителем стабильных оксоанионов является гидроксид-ион OH – . Это объясняет неустойчивость атомов с высокой зарядовой плотностью и их частичную стабилизацию в результате присоединения частицы с положительным зарядом. Поэтому при действии активного металла (или его оксида) на воду образуется OH – , а не O 2– :

2Na + 2H 2 O ® 2Na + + 2OH – + H 2

Na 2 O + H 2 O ® 2Na + + 2OH –

Более сложные оксоанионы образуются из кислорода с ионом металла или неметаллической частицей, имеющей большой положительный заряд, в результате получается низкозаряженная частица, обладающая большей стабильностью, например:

° С образуется темнопурпуровая твердая фаза. Жидкий озон слаборастворим в жидком кислороде, а в 100 г воды при 0° С растворяется 49 см 3 O 3 . По химическим свойствам озон намного активнее кислорода и по окислительным свойствам уступает только O, F 2 и OF 2 (дифториду кислорода). При обычном окислении образуются оксид и молекулярный кислород O 2 . При действии озона на активные металлы в особых условиях образуются озониды состава K + O 3 – . Озон получают в промышленности для специальных целей, он является хорошим дезинфицирующим средством и используется для очистки воды и как отбеливатель, улучшает состояние атмосферы в закрытых системах, дезинфицирует предметы и пищу, ускоряет созревание зерна и фруктов. В химической лаборатории часто используют озонатор для получения озона, необходимого для некоторых методов химического анализа и синтеза. Каучук легко разрушается даже под действием малых концентраций озона. В некоторых промышленных городах значительная концентрация озона в воздухе приводит к быстрой порче резиновых изделий, если они не защищены антиоксидантами. Озон очень токсичен. Постоянное вдыхание воздуха даже с очень низкими концентрациями озона вызывает головную боль, тошноту и другие неприятные состояния.

План:

    История открытия

    Происхождение названия

    Нахождение в природе

    Получение

    Физические свойства

    Химические свойства

    Применение

10. Изотопы

Кислород

Кислоро́д - элемент 16-й группы (по устаревшей классификации - главной подгруппы VI группы), второго периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 8. Обозначается символом O(лат. Oxygenium). Кислород - химически активный неметалл, является самым лёгким элементом из группы халькогенов. Простое вещество кислород (CAS-номер: 7782-44-7) при нормальных условиях - газ без цвета, вкуса и запаха, молекула которого состоит из двух атомов кислорода (формула O 2), в связи с чем его также называют дикислород.Жидкий кислород имеет светло-голубой цвет, а твёрдый представляет собой кристаллы светло-синего цвета.

Существуют и другие аллотропные формы кислорода, например, озон (CAS-номер: 10028-15-6) - при нормальных условиях газ голубого цвета со специфическим запахом, молекула которого состоит из трёх атомов кислорода (формула O 3).

    История открытия

Официально считается, что кислород был открыт английским химиком Джозефом Пристли 1 августа 1774 года путём разложения оксида ртути в герметично закрытом сосуде (Пристли направлял на это соединение солнечные лучи с помощью мощной линзы).

Однако Пристли первоначально не понял, что открыл новое простое вещество, он считал, что выделил одну из составных частей воздуха (и назвал этот газ «дефлогистированным воздухом»). О своём открытии Пристли сообщил выдающемуся французскому химику Антуану Лавуазье. В 1775 году А. Лавуазье установил, что кислород является составной частью воздуха, кислот и содержится во многих веществах.

Несколькими годами ранее (в 1771 году) кислород получил шведский химик Карл Шееле. Он прокаливал селитру с серной кислотой и затем разлагал получившийся оксид азота. Шееле назвал этот газ «огненным воздухом» и описал своё открытие в изданной в 1777 году книге (именно потому, что книга опубликована позже, чем сообщил о своём открытии Пристли, последний и считается первооткрывателем кислорода). Шееле также сообщил о своём опыте Лавуазье.

Важным этапом, который способствовал открытию кислорода, были работы французского химика Пьера Байена, который опубликовал работы по окислению ртути и последующему разложению её оксида.

Наконец, окончательно разобрался в природе полученного газа А. Лавуазье, воспользовавшийся информацией от Пристли и Шееле. Его работа имела громадное значение, потому что благодаря ей была ниспровергнута господствовавшая в то время и тормозившая развитие химии флогистонная теория. Лавуазье провёл опыт по сжиганию различных веществ и опроверг теорию флогистона, опубликовав результаты по весу сожженных элементов. Вес золы превышал первоначальный вес элемента, что дало Лавуазье право утверждать, что при горении происходит химическая реакция (окисление) вещества, в связи с этим масса исходного вещества увеличивается, что опровергает теорию флогистона.

Таким образом, заслугу открытия кислорода фактически делят между собой Пристли, Шееле и Лавуазье.

    Происхождение названия

Слово кислород (именовался в начале XIX века ещё «кислотвором») своим появлением в русском языке до какой-то степени обязано М. В. Ломоносову, который ввёл в употребление, наряду с другими неологизмами, слово «кислота»; таким образом слово «кислород», в свою очередь, явилось калькой термина «оксиген» (фр. oxygène), предложенного А. Лавуазье (от др.-греч. ὀξύς - «кислый» и γεννάω - «рождаю»), который переводится как «порождающий кислоту», что связано с первоначальным значением его - «кислота», ранее подразумевавшим вещества, именуемые по современной международной номенклатуре оксидами.

    Нахождение в природе

Кислород - самый распространённый на Земле элемент, на его долю (в составе различных соединений, главным образом силикатов) приходится около 47,4 % массы твёрдой земной коры. Морские и пресные воды содержат огромное количество связанного кислорода - 88,8 % (по массе), в атмосфере содержание свободного кислорода составляет 20,95 % по объёму и 23,12 % по массе. Более 1500 соединений земной коры в своём составе содержат кислород.

Кислород входит в состав многих органических веществ и присутствует во всех живых клетках. По числу атомов в живых клетках он составляет около 25 %, по массовой доле - около 65 %.

    Получение

В настоящее время в промышленности кислород получают из воздуха. Основным промышленным способом получения кислорода, является криогенная ректификация. Также хорошо известны и успешно применяются в промышленности кислородные установки, работающие на основе мембранной технологии.

В лабораториях пользуются кислородом промышленного производства, поставляемым в стальных баллонах под давлением около 15 МПа.

Небольшие количества кислорода можно получать нагреванием перманганата калия KMnO 4:

Используют также реакцию каталитического разложения пероксида водорода Н 2 О 2 в присутствии оксида марганца(IV):

Кислород можно получить каталитическим разложением хлората калия (бертолетовой соли) KClO 3:

К лабораторным способам получения кислорода относится метод электролиза водных растворов щелочей, а также разложение оксида ртути(II) (при t = 100 °C):

На подводных лодках обычно получается реакцией пероксида натрия и углекислого газа, выдыхаемого человеком:

    Физические свойства

В мировом океане содержание растворённого O 2 больше в холодной воде, а меньше - в тёплой.

При нормальных условиях кислород - это газ без цвета, вкуса и запаха.

1 л его имеет массу 1,429 г. Немного тяжелее воздуха. Слабо растворяется в воде (4,9 мл/100 г при 0 °C, 2,09 мл/100 г при 50 °C) и спирте (2,78 мл/100 г при 25 °C). Хорошо растворяется в расплавленном серебре(22 объёма O 2 в 1 объёме Ag при 961 °C). Межатомное расстояние - 0,12074 нм. Является парамагнетиком.

При нагревании газообразного кислорода происходит его обратимая диссоциация на атомы: при 2000 °C - 0,03 %, при 2600 °C - 1 %, 4000 °C - 59 %, 6000 °C - 99,5 %.

Жидкий кислород (температура кипения −182,98 °C) - это бледно-голубая жидкость.

Фазовая диаграмма O 2

Твёрдый кислород (температура плавления −218,35°C) - синие кристаллы. Известны 6 кристаллических фаз, из которых три существуют при давлении в 1 атм.:

    α-О 2 - существует при температуре ниже 23,65 К; ярко-синие кристаллы относятся к моноклинной сингонии, параметры ячейки a=5,403 Å, b=3,429 Å, c=5,086 Å; β=132,53°.

    β-О 2 - существует в интервале температур от 23,65 до 43,65 К; бледно-синие кристаллы (при повышении давления цвет переходит в розовый) имеют ромбоэдрическую решётку, параметры ячейки a=4,21 Å,α=46,25°.

    γ-О 2 - существует при температурах от 43,65 до 54,21 К; бледно-синие кристаллы имеют кубическую симметрию, период решётки a=6,83 Å.

Ещё три фазы образуются при высоких давлениях:

    δ-О 2 интервал температур 20-240 К и давление 6-8 ГПа, оранжевые кристаллы;

    ε-О 4 давление от 10 и до 96 ГПа, цвет кристаллов от тёмно-красного до чёрного, моноклинная сингония;

    ζ-О n давление более 96 ГПа, металлическое состояние с характерным металлическим блеском, при низких температурах переходит в сверхпроводящее состояние.

    Химические свойства

Сильный окислитель, взаимодействует практически со всеми элементами, образуя оксиды. Степень окисления −2. Как правило, реакция окисления протекает с выделением тепла и ускоряется при повышении температуры (см. Горение). Пример реакций, протекающих при комнатной температуре:

Окисляет соединения, которые содержат элементы с не максимальной степенью окисления:

Окисляет большинство органических соединений:

При определённых условиях можно провести мягкое окисление органического соединения:

Кислород реагирует непосредственно (при нормальных условиях, при нагревании и/или в присутствии катализаторов) со всеми простыми веществами, кроме Au и инертных газов (He, Ne, Ar, Kr, Xe, Rn); реакции с галогенами происходят под воздействием электрического разряда или ультрафиолета. Косвенным путём получены оксиды золота и тяжёлых инертных газов (Xe, Rn). Во всех двухэлементных соединениях кислорода с другими элементами кислород играет роль окислителя, кроме соединений со фтором

Кислород образует пероксиды со степенью окисления атома кислорода, формально равной −1.

Например, пероксиды получаются при сгорании щелочных металлов в кислороде:

Некоторые оксиды поглощают кислород:

По теории горения, разработанной А. Н. Бахом и К. О. Энглером, окисление происходит в две стадии с образованием промежуточного пероксидного соединения. Это промежуточное соединение можно выделить, например, при охлаждении пламени горящего водорода льдом, наряду с водой, образуется пероксид водорода:

В надпероксидах кислород формально имеет степень окисления −½, то есть один электрон на два атома кислорода (ион O − 2). Получают взаимодействием пероксидов с кислородом при повышенных давлении и температуре:

Калий K, рубидий Rb и цезий Cs реагируют с кислородом с образованием надпероксидов:

В ионе диоксигенила O 2 + кислород имеет формально степень окисления +½. Получают по реакции:

Фториды кислорода

Дифторид кислорода, OF 2 степень окисления кислорода +2, получают пропусканием фтора через раствор щелочи:

Монофторид кислорода (Диоксидифторид), O 2 F 2 , нестабилен, степень окисления кислорода +1. Получают из смеси фтора с кислородом в тлеющем разряде при температуре −196 °C:

Пропуская тлеющий разряд через смесь фтора с кислородом при определённых давлении и температуре, получают смеси высших фторидов кислорода O 3 F 2 , О 4 F 2 , О 5 F 2 и О 6 F 2 .

Квантовомеханические расчёты предсказывают устойчивое существование иона трифторгидроксония OF 3 + . Если этот ион действительно существует, то степень окисления кислорода в нём будет равна +4.

Кислород поддерживает процессы дыхания, горения, гниения.

В свободном виде элемент существует в двух аллотропных модификациях: O 2 и O 3 (озон). Как установили в 1899 году Пьер Кюри и Мария Склодовская-Кюри, под воздействием ионизирующего излучения O 2 переходит в O 3 .

    Применение

Широкое промышленное применение кислорода началось в середине XX века, после изобретения турбодетандеров - устройств для сжижения и разделения жидкого воздуха.

В металлургии

Конвертерный способ производства стали или переработки штейнов связан с применением кислорода. Во многих металлургических агрегатах для более эффективного сжигания топлива вместо воздуха в горелках используют кислородно-воздушную смесь.

Сварка и резка металлов

Кислород в баллонах голубого цвета широко используется для газопламенной резки и сварки металлов.

Ракетное топливо

В качестве окислителя для ракетного топлива применяется жидкий кислород, пероксид водорода, азотная кислота и другие богатые кислородом соединения. Смесь жидкого кислорода и жидкого озона - один из самых мощных окислителей ракетного топлива (удельный импульс смеси водород - озон превышает удельный импульс для пары водород-фтор и водород-фторид кислорода).

В медицине

Медицинский кислород хранится в металлических газовых баллонах высокого давления (для сжатых или сжиженных газов) голубого цвета различной ёмкости от 1,2 до 10,0 литров под давлением до 15 МПа (150 атм) и используется для обогащения дыхательных газовых смесей в наркозной аппаратуре, при нарушении дыхания, для купирования приступа бронхиальной астмы, устранения гипоксии любого генеза, при декомпрессионной болезни, для лечения патологии желудочно-кишечного тракта в виде кислородных коктейлей. Для индивидуального применения медицинским кислородом из баллонов заполняют специальные прорезиненные ёмкости - кислородные подушки. Для подачи кислорода или кислородо-воздушной смеси одновременно одному или двум пострадавшим в полевых условиях или в условиях стационара применяются кислородные ингаляторы различных моделей и модификаций. Достоинством кислородного ингалятора является наличие конденсатора-увлажнителя газовой смеси, использующего влагу выдыхаемого воздуха. Для расчёта оставшегося в баллоне количества кислорода в литрах обычно величину давления в баллоне в атмосферах (по манометру редуктора) умножают на величину ёмкости баллона в литрах. Например, в баллоне вместимостью 2 литра манометр показывает давление кислорода 100 атм. Объём кислорода в этом случае равен 100 × 2 = 200 литров.

В пищевой промышленности

В пищевой промышленности кислород зарегистрирован в качестве пищевой добавки E948, как пропеллент и упаковочный газ.

В химической промышленности

В химической промышленности кислород используют как реактив-окислитель в многочисленных синтезах, например, - окисления углеводородов в кислородсодержащие соединения (спирты, альдегиды, кислоты), аммиака в оксиды азота в производстве азотной кислоты. Вследствие высоких температур, развивающихся при окислении, последние часто проводят в режиме горения.

В сельском хозяйстве

В тепличном хозяйстве, для изготовления кислородных коктейлей, для прибавки в весе у животных, для обогащения кислородом водной среды в рыбоводстве.

    Биологическая роль кислорода

Аварийный запас кислорода в бомбоубежище

Большинство живых существ (аэробы) дышат кислородом воздуха. Широко используется кислород в медицине. При сердечно-сосудистых заболеваниях, для улучшения обменных процессов, в желудок вводят кислородную пену («кислородный коктейль»). Подкожное введение кислорода используют при трофических язвах, слоновости, гангрене и других серьёзных заболеваниях. Для обеззараживания и дезодорации воздуха и очистки питьевой воды применяют искусственное обогащение озоном. Радиоактивный изотоп кислорода 15 O применяется для исследований скорости кровотока, лёгочной вентиляции.

    Токсические производные кислорода

Некоторые производные кислорода (т. н. реактивные формы кислорода), такие как синглетный кислород, пероксид водорода, супероксид, озон и гидроксильный радикал, являются высокотоксичными продуктами. Они образуются в процессе активирования или частичного восстановления кислорода. Супероксид (супероксидный радикал), пероксид водорода и гидроксильный радикал могут образовываться в клетках и тканях организма человека и животных и вызывают оксидативный стресс.

    Изотопы

Кислород имеет три устойчивых изотопа: 16 О, 17 О и 18 О, среднее содержание которых составляет соответственно 99,759 %, 0,037 % и 0,204 % от общего числа атомов кислорода на Земле. Резкое преобладание в смеси изотопов наиболее лёгкого из них 16 О связано с тем, что ядро атома 16 О состоит из 8 протонов и 8 нейтронов (дважды магическое ядро с заполненными нейтронной и протонной оболочками). А такие ядра, как следует из теории строения атомного ядра, обладают особой устойчивостью.

Также известны радиоактивные изотопы кислорода с массовыми числами от 12 О до 24 О. Все радиоактивные изотопы кислорода имеют малый период полураспада, наиболее долгоживущий из них 15 O с периодом полураспада ~120 с. Наиболее краткоживущий изотоп 12 O имеет период полураспада 5,8·10 −22 с.

ОПРЕДЕЛЕНИЕ

Кислород - восьмой элемент Периодической таблицы. Обозначение - О от латинского «oxygenium». Расположен во втором периоде, VIА группе. Относится к неметаллам. Заряд ядра равен 8.

Кислород - самый распространенный элемент земной коры. В свободном состоянии он находится в атмосферном воздухе, в связанном виде входит в состав воды, минералов, горных пород и всех веществ, из которых построены организмы растений и животных. Массовая доля кислорода в земной коре составляет около 47%.

В виде простого вещества кислород представляет собой бесцветный газ, не имеющий запаха. Он немного тяжелее воздуха: масса 1 л кислорода при нормальных условиях равна 1,43 г, а 1 л воздуха 1,293г. Кислород растворяется в воде, хотя и в небольших количествах: 100 объемов воды при 0 o С растворяют 4,9, а при 20 o С - 3,1 объема кислорода.

Атомная и молекулярная масса кислорода

ОПРЕДЕЛЕНИЕ

Относительная атомная масса A r - это молярная масса атома вещества, отнесенная к 1/12 молярной массы атома углерода-12 (12 С).

Относительная атомная масса атомарного кислорода равна 15,999 а.е.м.

ОПРЕДЕЛЕНИЕ

Относительная молекулярная масса M r - это молярная масса молекулы, отнесенная к 1/12 молярной массы атома углерода-12 (12 С).

Это безразмерная величина.Известно, что молекула кислорода двухатомна - О 2 . Относительная молекулярная масса молекулы кислорода будет равна:

M r (О 2) = 15,999 × 2 ≈32.

Аллотропия и аллотропные модификации кислорода

Кислород может существовать в виде двух аллотропных модификаций - кислорода О 2 и озона О 3 (физические свойства кислорода описаны выше).

При обычных условиях озон - газ. От кислорода его можно отделить сильным охлаждением; озон конденсируется в синюю жидкость, кипящую при (-111,9 o С).

Растворимость озона в воде значительно больше, чем кислорода: 100 объемов воды при 0 o С растворяют 49 объемов озона.

Образование озона из кислорода можно выразить уравнением:

3O 2 = 2O 3 - 285 кДж.

Изотопы кислорода

Известно, что в природе кислород может находиться в виде трех изотопов 16 O (99,76%), 17 O (0,04%) и 18 O (0,2%). Их массовые числа равны 16, 17 и 18 соответственно. Ядро атома изотопа кислорода 16 O содержит восемь протонов и восемь нейтронов, а изотопов 17 O и 18 O- такое же количество протонов,девять и десять нейтронов соответственно.

Существует двенадцать радиоактивных изотопов кислорода с массовыми числами от 12-ти до 24-х, из которых наиболее стабильным является изотоп 15 О с периодом полураспада равным 120 с.

Ионы кислорода

На внешнем энергетическом уровне атома кислорода имеется шесть электронов, которые являются валентными:

1s 2 2s 2 2p 4 .

Схема строения атома кислорода представлена ниже:

В результате химического взаимодействия кислород может терять свои валентные электроны, т.е. являться их донором, и превращаться в положительно заряженные ионы или принимать электроны другого атома, т.е. являться их акцептором, и превращаться в отрицательно заряженные ионы:

О 0 +2e → О 2- ;

О 0 -1e → О 1+ .

Молекула и атом кислорода

Молекула кислорода состоит из двух атомов - О 2 . Приведем некоторые свойства, характеризующие атом и молекулу кислорода:

Примеры решения задач

ПРИМЕР 1

Земная кора на 50% состоит из кислорода. Элемент также присутствует в составе минералов в виде солей и оксидов. Кислород в связанном виде входит в состав (процентное соотношение элемента около 89%). Также кислород присутствует в клетках всех живых организмов и растений. Кислород находится в воздухе в свободном состоянии в виде О₂ и его аллотропной модификации в виде озона О₃, и занимает пятую часть его состава,

Физические и химические свойства кислорода

Кислород О₂ - это газ без цвета, вкуса и запаха. Слабо растворяется в воде, кипит при температуре (-183) °С. Кислород в виде жидкости имеет голубой цвет, в твердом виде элемент образует синие кристаллы. Кислород плавится при температуре (-218,7) °С.

Жидкий кислород при комнатной температуре

При нагревании кислород вступает в реакцию с разными простыми веществами (металлами и неметаллами), образуя в результате оксиды - соединения элементов с кислородом. Взаимодействие химических элементов с кислородом называется реакцией окисления. Примеры уравнений реакции:

4Na + О₂= 2Na₂O

S + О₂ = SO₂.

С кислородом вступают во взаимодействие и некоторые сложные вещества, образуя оксиды:

СН₄ + 2О₂= СО₂ + 2Н₂О

2СО + О₂ = 2СО₂

Кислород как химический элемент получают в лабораториях и на промышленных предприятиях. в лаборатории можно несколькими способами:

  • разложением (хлората калия);
  • разложением перекиси водорода при нагревании вещества в присутствии оксида марганца в роли катализатора;
  • разложением перманганата калия.

Химическая реакция горения кислорода

Чистый кислород не обладает особыми свойствами, которых нет у кислорода воздуха, то есть имеет такие же химические и физические свойства. В воздухе кислорода содержится в 5 раз меньше, чем в таком же объеме чистого кислорода. В воздухе кислород перемешан с большими количествами азота - газа, который не горит сам и не поддерживает горение. Поэтому если около пламени кислород воздуха уже израсходован, то следующая порция кислорода будет пробиваться через азот и продукты горения. Следовательно, более энергичное горение кислорода в атмосфере объясняется более быстрой подачей кислорода к месту горения. В ходе реакции процесс соединения кислорода с горящим веществом осуществляется энергичнее и тепла выделяется больше. Чем больше подавать к горящему веществу кислорода в единицу времени, тем ярче горит пламя, выше температура и сильнее идет процесс горения.


Как происходит реакция горения кислорода? Это можно проверить на опыте. Необходимо взять цилиндр и перевернуть его вверх дном, затем подвести под цилиндр трубку с водородом. Водород, который легче воздуха, полностью заполнит цилиндр. Необходимо зажечь водород около открытой части цилиндра и ввести в него сквозь пламя стеклянную трубку, через которую вытекает газообразный кислород. У конца трубки вспыхнет огонь, при этом пламя будет спокойно гореть внутри наполненного водородом цилиндра. В ходе реакции горит не кислород, а водород в присутствии небольшого количества кислорода, выходящего из трубки.

Что возникает в результате горения водорода и какой при этом образуется окисел? Водород окисляется до воды. На стенках цилиндра постепенно осаждаются капельки конденсированных паров воды. На окисление двух молекул водорода идет одна молекула кислорода, и образуется две молекулы воды. Уравнение реакции:

2Н₂ + O₂ → 2Н₂O

Если кислород вытекает из трубки медленно, он сгорает в атмосфере водорода полностью, и опыт проходит спокойно.

Как только подача кислорода увеличивается настолько, что он не успевает сгореть полностью, его часть уходит за пределы пламени, где образуются очаги смеси водорода с кислородом, появляются отдельные, похожие на взрывы, мелкие вспышки. Смесь кислорода с водородом - это гремучий газ.

При поджигании гремучего газа происходит сильный взрыв: когда кислород соединяется с водородом, образуется вода и развивается высокая температура. Пары воды с окружающими газами сильно расширяются, возникает большое давление, при котором может разорваться не только хрупкий цилиндр, но и более прочный сосуд. Поэтому работать с гремучей смесью необходимо крайне осторожно.

Расход кислорода в процессе горения

Для опыта стеклянный кристаллизатор объемом в 3 литра необходимо заполнить на 2/3 водой и добавить столовую ложку едкого натра или едкого калия. Воду подкрасить фенолфталеином или другим подходящим красителем. В небольшую колбочку насыпать песка и вертикально вставить в него проволоку с закрепленной на конце ватой. Колбочка ставится в кристаллизатор с водой. Вата остается выше поверхности раствора на 10 см.

Слегка смочить ватку спиртом, маслом, гексаном или другой горючей жидкостью и поджечь. Аккуратно накрыть горящую ватку 3-литровым бутылем и опустить его ниже поверхности раствора щелочи. В процессе горения кислород переходит в воду и . В результате реакции раствор щелочи в бутыле поднимается. Ватка скоро гаснет. Бутыль следует осторожно поставить на дно кристаллизатора. В теории бутыль должен заполниться на 1/5, так как в воздухе содержится 20.9 % кислорода. При горении кислород переходит в воду и углекислый газ CO₂, поглощаемый щелочью. Уравнение реакции:

2NaOH + CO₂ = Na₂­CO₃ + H₂O

На практике горение прекратится раньше, чем израсходуется весь кислород; часть кислорода переходит в угарный газ, который не поглощается щелочью, а часть воздуха в результате термического расширения покидает бутыль.

Внимание! Не пытайтесь повторить эти опыты самостоятельно!

Ком в горле — это кислород . Выяснено, что в состоянии стресса у расширяется голосовая щель. Она находится посредине гортани, ограничена 2-мя мышечными складками.

Они-то и давят на близлежащие ткани, создавая ощущение кома в горле. Расширение щели – следствие повышенного потребления кислорода. Он помогает справиться со стрессом. Так что, пресловутый ком в горле можно назвать кислородным.

8-ой элемент таблицы привычен в форме . Но, бывает и жидкий кислород. Элемент в таком состоянии магнитится. Впрочем, о свойствах кислорода и плюсах, которые из них можно извлечь, поговорим в основной части .

Свойства кислорода

За счет магнитных свойств кислород перемещают с помощью мощных . Если же говорить об элементе в привычном состоянии, он сам способен перемещать, в частности, электроны.

Собственно, на окислительно-восстановительном потенциале вещества строится система дыхания . Кислород в ней – конечный акцептор, то есть принимающий агент.

Донорами выступают ферменты. Вещества, окисленные кислородом, выделяются во внешнюю среду. Это углекислый . В час его вырабатывается от 5-ти до 18-ти литров.

Еще 50 граммов выходит воды. Так что обильное питье – обоснованная рекомендация медиков. Плюсом, побочными продуктами дыхания служат около 400-от веществ. Среди них есть ацетон. Его выделение усиливается при ряде заболеваний, к примеру, диабете.

В процессе дыхания участвует обычная модификация кислорода – О 2 . Это двухатомная молекула. В ней 2 неспаренных электрона. Оба находятся на разрыхляющих орбиталях.

На них больший энергетический заряд чем на связывающих. Поэтому, молекула кислорода легко распадается на атомы. Энергия диссоциации доходит почти до 500-от килоджоулей на моль.

В естественных условиях кислород – газ с почти инертными молекулами. В них сильная межатомная связь. Процессы окисления протекают едва заметно. Для ускорения реакций нужны катализаторы. В организме ими выступают ферменты. Они провоцируют образование радикалов, которые и возбуждают цепной процесс.

Катализатором химических реакций с кислородом может стать температура. 8-ой элемент реагирует даже на небольшой нагрев. Жар дает реакции с водородом, метаном и прочими горючими газами.

Взаимодействия протекают со взрывами. Не зря же взорвался один из первых в истории человечества дирижаблей. Он наполнялся водородом. Воздушное судно звалось «Гинденбург», крушение потерпело в 1937-ом.

Нагрев позволяет кислороду создавать связи со всеми элементами таблицы Менделеева, кроме инертных газов, то есть аргона, неона и гелия. Кстати, гелий стал заменой для наполнения дирижаблей.

В реакции газ не вступает, только вот стоит дорого. Но, вернемся к герою статьи. Кислород – химический элемент , взаимодействующий с металлами уже при комнатной температуре.

Ее же достаточно для контакта с некоторыми сложными соединениями. К последним относятся оксиды азота. А вот с простым азотом химический элемент кислород реагирует лишь при 1 200-от градусах Цельсия.

Для реакций героя статьи с неметаллами нужен нагрев хотя бы до 60-ти градусов Цельсия. Этого достаточно, к примеру, для контакта с фосфором. С серой герой статьи взаимодействует уже при 250-ти градусах. Кстати, сера входит в элементы подгруппы кислорода . Она главная в 6-ой группе таблицы Менделеева.

С углеродом кислород взаимодействует при 700-800-от градусах Цельсия. Имеется в виду окисление графита. Этот минерал – одна из кристаллических форм углерода.

Кстати, окисление – роль кислорода в любых реакциях. Большинство из них протекает с выделением света и тепла. Попросту говоря, взаимодействие веществ приводит к горению.

Биологическая активность кислорода обусловлена растворимостью в воде. При комнатной температуре в ней диссоциируют 3 миллилитра 8-го вещества. Расчет ведется на 100 миллилитров воды.

Большие показатели элемент показывает в этаноле и ацетоне. В них растворяются 22 грамма кислорода. Максимальная же диссоциация наблюдается в жидкостях, содержащих фтор, к примеру, перфторбутитетрагидрофуране. На 100 его миллилитров растворяются почти 50 граммов 8-го элемента.

Говоря о растворенном кислороде, упомянем его изотопы. Атмосферному причислен 160-ый номер. Его в воздухе 99,7%. 0,3% приходятся на изотопы 170 и 180. Их молекулы тяжелее.

Связываясь с ними, вода с трудом переходит в парообразное состояние. Вот в воздух и поднимается лишь 160-я модификация 8-го элемента. Тяжелые изотопы остаются в морях и океанах.

Интересно, что кроме газообразного и жидкого состояний, кислород бывает твердым. Он, как и жидкая версия, образуется при минусовых температурах. Для водянистого кислорода нужны -182 градуса, а для каменного минимум-223.

Последняя температура дает кубическую решетку кристаллов. От -229-ти до -249-ти градусов Цельсия кристаллическая структура кислорода уже гексагональная. Искусственно получены и прочие модификации. Но, для них кроме пониженных температур требуется повышенное давление.

В привычном состоянии кислород относится к элементам с 2-мя атомами, не имеет цвета и запаха. Однако, существует 3-атомная разновидность героя статьи. Это озон.

У него появляется выражено свежий аромат. Он приятен, но токсичен. Отличием от обычного кислорода является, так же, большая масса молекул. Атомы сходятся воедино при грозовых разрядах.

Поэтому, запах озона чувствуется после ливней. Чувствуется аромат и на больших высотах в 10-30 километров. Там образование озона провоцирует ультрафиолет. Атомы кислорода захватывают излучение солнца, соединяясь в крупные молекулы. Это, собственно, уберегает человечество от радиации.

Добыча кислорода

Промышленники добывают героя статьи из воздуха. Его очищают от паров воды, угарного газа и пыли. Затем, воздух сжижают. После очистки остается лишь азот и кислород. Первый испаряется при -192-ух градусах.

Кислород остается. Но, российские ученые обнаружили кладезь уже сжиженного элемента. Находится он в мантии Земли. Ее еще называют геосферой. Расположен слой под твердой корой планеты и над ее ядром.

Установить там знак элемента кислород помог лазерный пресс. Работали с ним в синхротронном центре DESY. Он находится в Германии. Изыскания проводились совместно с немецкими учеными. Вместе же подсчитали, что содержание кислорода в предполагаемой прослойке мании в 8-10 раз больше, чем в атмосфере.

Уточним практику вычисления глубинных рек кислорода. Физики работали с оксидом железа. Сдавливая и нагревая его, ученые получали все новые оксиды металла, неизвестные ранее.

Когда дело дошло до тысячеградусных температур и давления, превышающего атмосферное в 670 000 раз, получилось соединение Fe 25 O 32 . Описаны условия срединных слоев геосферы.

Реакция преобразования оксидов идет с глобальным выбросом кислорода. Следует предполагать, что тоже происходит внутри планеты. Железо – типичный для мантии элемент.

Соединение элемента с кислородом тоже типично. Нетипична версия, что атмосферный газ – просочившийся за миллионы лет из-под земли и накопившийся у ее поверхности.

Грубо говоря, ученые поставили под сомнение главенствующую роль растений в образовании кислорода. Зелень может давать лишь часть газа. В этом случае бояться нужно не только уничтожения флоры, но и остывания ядра планеты.

Снижение температуры мантии может блокировать процесс образования кислорода. Массовая доля его в атмосфере тоже пойдет на спад, а вместе с тем и жизнь на планете.

Вопрос, как добывать кислород из мании, не стоит. Пробурить землю на глубину свыше 7 000-8 000 километров невозможно. Остается ждать пока герой статьи просочиться к поверхности сам и извлекать его из атмосферы.

Применение кислорода

Активно применять кислород в промышленности начали с изобретением турбодетандеров. Они появились в середине прошлого века. Устройства сжижают воздух и разделяют его. Собственно, это установки для добычи кислорода.

Какими элементами образован круг «общения» героя статьи? Во-первых, это металлы. Речь не о прямом взаимодействии, а о расплавлении элементов. Кислород добавляют в горелки для максимально эффективного сжигания топлива.

В итоге, металлы быстрее размягчаются, смешиваясь в сплавы. Без кислорода, к примеру, не обходится конвекторный способ производства стали. Обычный воздух в качестве розжига малоэффективен. Не обходится без сжиженного газа в баллонах и резка металлов.

Кислород как химический элемент был открыт и фермерами. В сжиженном виде вещество попадает в коктейли для животных. Они активно прибавляют в весе. Связь между кислородом и массой животных прослеживается в Каменноугольном периоде развития Земли.

Эра отмечена жарким климатом, обилием растений, а следовательно, и 8-го газа. В итоге, по планете ползали сороконожки под 3 метра длиной. Найдены окаменелости насекомых. Схема работает и в современности. Дай животному постоянную добавку к привычной порции кислорода, получишь наращивание биологической массы.

Медики запасаются кислородом в баллонах для купирования, то есть остановки приступов астмы. Газ нужен и при устранении гипоксии. Так именуют кислородное голодание. Помогает 8-ой элемент, так же, при недугах желудочно-кишечного тракта.

В этом случае лекарством становятся кислородные коктейли. В остальных случаях вещество подают пациентам в прорезиненных подушках, или через специальные трубки и маски.

В химической промышленности герой статьи – окислитель. О реакциях, в кторых может участвовать 8-ой элемент, уже говорилось. Характеристика кислорода положительно рассмотрена, к примеру, в ракетостроении.

Героя статьи выбрали окислителем топлива кораблей. Самой мощной окислительной смесью признано соединение обеих модификаций 8-го элемента. То есть, ракетное топливо взаимодействует с обычным кислородом и озоном.

Цена кислорода

Героя статьи продают в баллонах. Они обеспечивают связь элемента. С кислородом можно приобрести баллоны в 5, 10, 20, 40, 50 литров. В общем, стандартен шаг между объемами тар в 5-10 литров. Разброс цен на 40-литровый вариант, к примеру, от 3 000 до 8 500 рублей.

Рядом с высокими ценниками, как правило, стоит указание соблюденного ГОСТа. Его номер – «949-73». В объявлениях с бюджетной стоимостью баллонов ГОСТ прописан редко, что настораживает.

Транспортировка кислорода в баллонах

Если же говорить в философском плане, кислород бесценен. Элемент является основой жизни. По организму человека кислород транспортирует железо. Связка элементов зовется гемоглобином. Его нехватка – анемия.

Заболевание имеет серьезные последствия. Первое из них – снижение иммунитета. Интересно, что у некоторых животных кислород крови переносится не железом. У мечехвостов, к примеру, доставку 8-го элемента к органам осуществляет медь.



Понравилась статья? Поделитесь с друзьями!