Задание функции несколькими формулами объяснение. Графический способ задания функции

функция - это соответствие между элементами двух множеств, установленное по такому правилу, что каждому элементу одного множества ставится в соответствие некоторый элемент из другого множества.

график функции - это геометрическое место точек плоскости, абсциссы (x) и ординаты (y) которых связаны указанной функцией:

точка располагается (или находится) на графике функции тогда и только тогда, когда .

Таким образом, функция может быть адекватно описана своим графиком.

Табличный способ. Довольно распространенный, заключается в задании таблицы отдельных значений аргумента и соответствующих им значений функции. Такой способ задания функции применяется в том случае, когда область определения функции является дискретным конечным множеством.

При табличном способе задания функции можно приближенно вычислить не содержащиеся в таблице значения функции, соответствующие промежуточным значениям аргумента. Для этого используют способ интерполяции.

Преимущества табличного способа задания функции состоят в том, что он дает возможность определить те или другие конкретные значения сразу, без дополнительных измерений или вычислений. Однако, в некоторых случаях таблица определяет функцию не полностью, а лишь для некоторых значений аргумента и не дает наглядного изображения характера изменения функции в зависимости от изменения аргумента.

Графический способ. Графиком функции y = f(x) называется множество всех точек плоскости, координаты которых удовлетворяют данному уравнению.

Графический способ задания функции не всегда дает возможность точно определить численные значения аргумента. Однако он имеет большое преимущество перед другими способами - наглядность. В технике и физике часто пользуются графическим способом задания функции, причем график бывает единственно доступным для этого способом.

Чтобы графическое задание функции было вполне корректным с математической точки зрения, необходимо указывать точную геометрическую конструкцию графика, которая, чаще всего, задается уравнением. Это приводит к следующему способу задания функции.



Аналитический способ. Чаще всего закон, устанавливающий связь между аргументом и функцией, задается посредством формул. Такой способ задания функции называется аналитическим.

Этот способ дает возможность по каждому численному значению аргумента x найти соответствующее ему численное значение функции y точно или с некоторой точностью.

Если зависимость между x и y задана формулой, разрешенной относительно y, т.е. имеет вид y = f(x), то говорят, что функция от x задана в явном виде.

Если же значения x и y связаны некоторым уравнением вида F(x,y) = 0, т.е. формула не разрешена относительно y, что говорят, что функция y = f(x) задана неявно.

Функция может быть определена разными формулами на разных участках области своего задания.

Аналитический способ является самым распространенным способом задания функций. Компактность, лаконичность, возможность вычисления значения функции при произвольном значении аргумента из области определения, возможность применения к данной функции аппарата математического анализа - основные преимущества аналитического способа задания функции. К недостаткам можно отнести отсутствие наглядности, которое компенсируется возможностью построения графика и необходимость выполнения иногда очень громоздких вычислений.

Словесный способ. Этот способ состоит в том, что функциональная зависимость выражается словами.

Пример 1: функция E(x) - целая часть числа x. Вообще через E(x) = [x] обозначают наибольшее из целых чисел, которое не превышает x. Иными словами, если x = r + q, где r - целое число (может быть и отрицательным) и qпринадлежит интервалу = r. Функция E(x) = [x] постоянна на промежутке = r.

Пример 2: функция y = {x} - дробная часть числа. Точнее y ={x} = x - [x], где [x] - целая часть числа x. Эта функция определена для всех x. Если x - произвольное число, то представив его в виде x = r + q (r = [x]), где r - целое число и q лежит в интервале .
Мы видим,что добавление n к аргументу x, не меняет значение функции.
Наименьшее отличное от нуля число из n есть , таким образом, это период sin 2x .

Значение аргумента, при котором функция равна 0, называется нулём (корнем ) функции.

Функция может иметь несколько нулей.

Например, функция y = x (x + 1)(x-3) имеет три нуля: x = 0, x = - 1, x =3 .

Геометрически нуль функции – это абсцисса точки пересечения графика функции с осью Х .

На рис.7 представлен график функции с нулями: x = a, x = b и x = c .

Если график функции неограниченно приближается к некоторой прямой при своём удалении от начала координат, то эта прямая называется асимптотой .

Обратная функция

Пусть задана функция у=ƒ(х) с областью определения D и множеством значений Е. Если каждому значению уєЕ соответствует единственное значение хєD, то определена функция х=φ(у) с областью определения Е и множеством значений D (см. рис. 102).

Такая функция φ(у) называется обратной к функции ƒ(х) и записывается в следующем виде: х=j(y)=f -1 (y).Про функции у=ƒ(х) и х=φ(у) говорят, что они являются взаимно обратными. Чтобы найти функцию х=φ(у), обратную к функции у=ƒ (х), достаточно решить уравнение ƒ(х)=у относительно х (если это возможно).

1. Для функции у=2х обратной функцией является функция х=у/2;

2.Для функции у=х2 хє обратной функцией является х=√у; заметим, что для функции у=х 2 , заданной на отрезке [-1; 1], обратной не существует, т. к. одному значению у соответствует два значения х (так, если у=1/4, то х1=1/2, х2=-1/2).

Из определения обратной функции вытекает, что функция у=ƒ(х) имеет обратную тогда и только тогда, когда функция ƒ(х) задает взаимно однозначное соответствие между множествами D и Е. Отсюда следует, что любая строго монотонная функция имеет обратную. При этом если функция возрастает (убывает), то обратная функция также возрастает (убывает).

Заметим, что функция у=ƒ(х) и обратная ей х=φ(у) изображаются одной и той же кривой, т. е. графики их совпадают. Если же условиться, что, как обычно, независимую переменную (т. е. аргумент) обозначить через х, а зависимую переменную через у, то функция обратная функции у=ƒ(х) запишется в виде у=φ(х).

Это означает, что точка M 1 (x o ;y o) кривой у=ƒ(х) становится точкой М 2 (у о;х о) кривой у=φ(х). Но точки M 1 и М 2 симметричны относительно прямой у=х (см. рис. 103). Поэтому графики взаимно обратных функции у=ƒ(х) и у=φ(х) симметричны относительно биссектрисы первого и третьего координатных углов.

Сложная функция

Пусть функция у=ƒ(u) определена на множестве D, а функция u= φ(х) на множестве D 1 , причем для  x D 1 соответствующее значение u=φ(х) є D. Тогда на множестве D 1 определена функция u=ƒ(φ(х)), которая называется сложной функцией от х (или суперпозицией заданных функций, или функцией от функции).

Переменную u=φ(х) называют промежуточным аргументом сложной функции.

Например, функция у=sin2x есть суперпозиция двух функций у=sinu и u=2х. Сложная функция может иметь несколько промежуточных аргументов.

4. Основные элементарный функции и их графики.

Основными элементарными функциями называют следующие функции.

1) Показательная функция у=a х,a>0, а ≠ 1. На рис. 104 показаны графики показательных функций, соответствующие различным основаниям степени.

2) Степенная функция у=х α , αєR. Примеры графиков степенных функций, соответствующих различным показателям степени, предоставлены на рисунках

3)Логарифмическая функция y=log a x, a>0,a≠1;Графики логарифмических функций, соответствующие различным основаниям, показаны на рис. 106.

4) Тригонометрические функции у=sinx, у=cosx, у=tgх, у=ctgx; Графики тригонометрических функций имеют вид, показанный на рис. 107.

5) Обратные тригонометрические функции у=arcsinx, у=arccosх, у=arctgx, у=arcctgx. На рис. 108 показаны графики обратных тригонометрических функций.

Функция, задаваемая одной формулой, составленной из основных элементарных функций и постоянных с помощью конечного числа арифметических операций (сложения, вычитания, умножения, деления) и операций взятия функции от функции, называется элементарной функцией.

Примерами элементарных функций могут служить функции

Примерами неэлементарных функций могут служить функции

5. Понятия предела последовательности и функции. Свойства пределов.

Преде́л фу́нкции (предельное значение функции ) в заданной точке,предельной для области определения функции, - такая величина, к которой стремится значение рассматриваемой функции при стремлении её аргумента к данной точке.

В математике пределом последовательности элементов метрического пространства или топологического пространства называют элемент того же пространства, который обладает свойством «притягивать» элементы заданной последовательности. Пределом последовательности элементовтопологического пространства является такая точка, каждая окрестность которой содержит все элементы последовательности, начиная с некоторого номера. В метрическом пространстве окрестности определяются через функцию расстояния, поэтому понятие предела формулируется на языке расстояний. Исторически первым было понятиепредела числовой последовательности, возникающее в математическом анализе, где оно служит основанием для системы приближений и широко используется при построении дифференциального и интегральногоисчислений.

Обозначение:

(читается: предел последовательности икс-энное при эн, стремящемся к бесконечности, равен a )

Свойство последовательности иметь предел называют сходимостью : если у последовательности есть предел, то говорят, что данная последовательность сходится ; в противном случае (если у последовательности нет предела) говорят, что последовательность расходится . В хаусдорфовом пространстве и, в частности, метрическом пространстве , каждая подпоследовательность сходящейся последовательности сходится, и её предел совпадает с пределом исходной последовательности. Другими словами, у последовательности элементов хаусдорфово пространства не может быть двух различных пределов. Может, однако, оказаться, что у последовательности нет предела, но существует подпоследовательность (данной последовательности), которая предел имеет. Если из любой последовательности точек пространства можно выделить сходящуюся подпоследовательность, то, говорят, что данное пространство обладает свойством секвенциальной компактности (или, просто, компактности, если компактность определяется исключительно в терминах последовательностей).

Понятие предела последовательности непосредственно связано с понятием предельной точки (множества): если у множества есть предельная точка, то существует последовательность элементов данного множества, сходящаяся к данной точке.

Определение

Пусть дано топологическое пространство и последовательность Тогда, если существует элемент такой, что

где - открытое множество, содержащее , то он называется пределом последовательности . Если пространство является метрическим, то предел можно определить с помощью метрики: если существует элемент такой, что

где - метрика, то называется пределом .

· Если пространство снабжено антидискретной топологией, то пределом любой последовательности будет любой элемент пространства.

6. Предел функции в точке. Односторонние пределы.

Функция одной переменной. Определение предела функции в точке по Коши. Число b называется пределом функции у = f (x ) при х , стремящемся к а (или в точке а ), если для любого положительного числа  существует такое положительное число , что при всех х ≠ а, таких, что |x a | < , выполняется неравенство
| f (x ) – a | <  .

Определение предела функции в точке по Гейне. Число b называется пределом функции у = f (x ) при х , стремящемся к а (или в точке а ), если для любой последовательности {x n }, сходящейся к а (стремящейся к а , имеющей пределом число а ), причем ни при каком значении n х n ≠ а , последовательность {y n = f (x n)} сходится к b .

Данные определения предполагают, что функция у = f (x ) определена в некоторой окрестноститочки а , кроме, быть может, самой точки а .

Определения предела функции в точке по Коши и по Гейне эквивалентны: если число b служит пределом по одному из них, то это верно и по второму.

Указанный предел обозначается так:

Геометрически существование предела функции в точке по Коши означает, что для любого числа > 0 можно указать на координатной плоскости такой прямоугольник с основанием 2 > 0, высотой 2 и центром в точке (а; b ), что все точки графика данной функции на интервале (а – ; а + ), за исключением, быть может, точки М (а ; f (а )), лежат в этом прямоугольнике

Односторо́нний преде́л в математическом анализе - предел числовой функции, подразумевающий «приближение» к предельной точке с одной стороны. Такие пределы называют соответственно левосторо́нним преде́лом (или преде́лом сле́ва ) и правосторо́нним преде́лом (преде́лом спра́ва ). Пусть на некотором числовом множестве задана числовая функция и число - предельная точка области определения . Существуют различные определения для односторонних пределов функции в точке , но все они эквивалентны.

Понятие функции Способы задания функции Примеры функций Аналитическое задание функции Графический способ задания функции Предел функции в точке Табличный способ задания функции теоремы о пределах единственность предела ограниченность функции, имеющей предел переход к пределу в неравенстве Предел функции в бесконечности Бесконечно малые функции Свойства бесконечно малых функций


Понятие функции является основным и первоначальным, как и понятие множества. Пусть X - некоторое множество действительных чисел х. Если каждому х € X по некоторому закону поставлено в соответствие определенное действительное число у, то говорят, что на множестве X задана функция и пишут Введенную таким образом функцию называют числовой. При этом множество X называют областью onределения функции, а независимую переменную х - аргументом. Для указания функции иногда используют только символ, которым обозначен закон соответствия, т. е. вместо f(x) п и шут просто /. Таким образом, функция задана, если указаны 1) область определения 2) правило /, которое каждому значению а: € X ставит в соответствие определенное число у = /(х) - значение функции, отвечающее этому значению аргумента х. Функции / и g называют равными, если их области определения совпадают и равенство f(x) = g(x) верно для любого значения аргумента х из их обшей области определения. Так, функции у, не являются равными; они равны только на отрезке [О, I]. Примеры функций. 1. Последовательность {о„} есть функция целочисленного аргумента, определенная на множестве натуральных чисел, такая, что /(п) = ап (п = 1,2,...). 2. Функция у = п? (читается «эн-факториал»). Задана на множестве натуральных чисел: каждому натуральному числу п ставится в соответствие произведение всех натуральных чисел от 1 до п включительно: причем условно полагают 0! = 1. Обозначение sign происходит от латинского слова signum - знак. Эта функция определена на всей числовой прямой множество ее значений состоит из трех чисел -1,0, I (рис. 1). у = |х), где (х) обозначает целую часть действительного числа х, т. е. [х| - наибольшее целое число, не превосходящее Читается: -игрек равно антье икс» (фр. entier). Эта функция задана на всей числовой оси, а множество всех ее значений состоит из целых чисел (рис. 2). Способы задания функции Аналитическое задание функции Функция у = f(x) называется заданной аналитически, если она определяется с помощью формулы, указывающей, какие действия надо произвести над каждым значением х, чтобы получить соответствующее значение у. Например, функция задана аналитически. При этом под областью определения функции (если она заранее не указана) понимается множество всех действительных значений аргумента х, при которых аналитическое выражение, определяющее функцию, принимает лишь действительные и конечные значения. В этом смысле область определения функции называют также ее областью существования. Для функции областью определения является отрезок Для функции у - sin х область определения - вся числовая ось. Заметим, что не всякая формула определяет функцию. Например, формула никакую функцию не определяет, так как нет ни одного действительного значения х, при котором имели б ы действительные значения оба написанных выше корня. Аналитическое задание функции может выглядеть достаточно сложно. В частности, функция может быть задана различными формулами на различных частях своей области определения. Например, функция может быть определена так: 1.2. Графический способ задания функции Функция у = f(x) называется заданной графически, если задан ее график, т.е. множество точек (ху/(х)) на плоскости хОу, абсциссы которых принадлежат области определения функции, а ординаты равны соответствующим значениям функции (рис.4). Не для каждой функции ее график можно изобразить на рисунке. Например, функция Дирихле если х - рациональное, если х - иррациональное, ZX \о, не допускает такого изображения. Функция Я(х) задана на всей числовой оси, а множество ее значений состоит из двух чисел 0 и 1. 1.3. Табличный способ задания функции Функция называется заданной таблично, если приведена таблица, в которой указаны численные значения функции для некоторых значений аргумента. При табличном задании функции ее область определения состоит только из значений x\t x2i..., хп, перечисленных в таблице. §2. Предел функции в точке Понятие предела функции является центральным в математическом анализе. Пусть функция f(x) определена в некоторой окрестности Q точки xq, кроме, быть может, самой точки доопределение (Коши). Число А называется пределом функции f(x) в точке хо, если для любого числа е > 0. которое может быть как угодно малым, существует число <5 > 0, такое, что для всех iGH.i^ ж0, удовлетворяющих условию верно неравенство Понятие функции Способы задания функции Примеры функций Аналитическое задание функции Графический способ задания функции Предел функции в точке Табличный способ задания функции теоремы о пределах единственность предела ограниченность функции, имеющей предел переход к пределу в неравенстве Предел функции в бесконечности Бесконечно малые функции Свойства бесконечно малых функций Обозначение: С помощьюлогическихсимволов это определение выражается следующим образом Примеры. 1. Пользуясь определением предела функции в точке, показать, что Функция определена всюду, включая точку zo = 1: /(1) = 5. Возьмем любое. Для того, чтобы неравенство |(2х + 3) - 5| имело место, необходимо выполнение следующих неравенств Следовательно, если взять будем иметь. Это означает, что число 5 есть предел функции: в точке 2. Пользуясь определением предела функции, показать, что Функция не определена в точке хо = 2. Рассмотрим /(х) в некоторой окрестности точки-Xq = 2, например, на интервале (1, 5), не содержащем точку х = 0, в которой функция /(х) также не определена. Возьмем произвольное число с > 0 и преобразуем выражение |/(х) - 2| при х ф 2 следующим образом Для х б (1, 5) получаем неравенство Отсюда видно, что если взять 6 = с, то для всех х € (1,5), подчиненных условию будет верно неравенство Это означает, что число Л - 2 является пределом данной функции в точке Дадим геометрическое пояснение понятия предела функции в точке, обратившись к ее графику (рис. 5). При х значения функции /(х) определяются ординатами точек кривой М\М,при х > хо - ординатами точек кривой ММ2. Значение /(х0) определяется ординатой точки N. График данной функции получается, если взять «хорошую» кривую М\ММг и точку М(х0, А) на кривой заменитьточкой jV. Покажем, что в точке хо функция /(х) имеет предел, равный числу А (ординате точки М). Возьмем любое (как угодно малое) число е > 0. Отметим на оси Оу точки с ординатами А, А - е, А + е. Обозначим через Р и Q точки пересечения графика функции у = /(х) с прямыми у = А- епу = А + е. Пусть абсциссы этих точек есть х0 - Ль х0 + hi соответственно (ht > 0, /12 > 0). Из рисунка видно, что для любого х Ф х0 из интервала (х0 - h\, х0 + hi) значение функции /(х) заключено между. для всех х ^ хо, удовлетворя ющих условию верно неравенство Положим Тогда интервал будет содержаться в интервале и, следовательно, неравенство или, что тоже, будет выполнено для всех х, удовлетворяющих условию Это доказывает, что Таким образом, функция у = /(х) имеетпредел А вточкехо, если, какой быузкой ни была е-полоска между прямыми у = А- ену = А + е, найдется такое «5 > 0, что для всех х из проколотой окрестности точки х0 точки графика функции у = /(х) оказываются внутри указанной е-полоски. Замечание 1. Величина б зависитот е: 6 = 6(e). Замечание 2. В определении предела функции в точке Xq сама точка хо из рассмотрения исключается. Таким образом, значение функции в точке Хо нс влияет на предел функции в этой точке. Более того, функция может быть даже не определена в точке Xq. Поэтому две функции, равные в окрестности точки Xq, исключая, быть может, саму точку хо (в ней они могут иметь разные значения, одна из них или обе вместе могут быть не определены), имеют при х - Xq один и тот же предел или обе не имеют предела. Отсюда, в частности, следует, чтодля отыскания вточке хо предела дроби законно сокращать эту дробь на равные выражения, обращающиеся в нуль при х = Xq. Пример 1. Найти Функция /(х) = j для всех х Ф 0 равна единице, а в точке х = 0 не определена. Заменив /(х) на равную ей при х 0 функцию д(х) = 1, получаем Понятие функции Способы задания функции Примеры функций Аналитическое задание функции Графический способ задания функции Предел функции в точке Табличный способ задания функции теоремы о пределах единственность предела ограниченность функции, имеющей предел переход к пределу в неравенстве Предел функции в бесконечности Бесконечно малые функции Свойства бесконечно малых функций Пример 2. Найти lim /(х), где Функция, совпадает с функцией /(х) всюду, исключая точку х = 0, и имеет в точке х = 0 предел, равный нулю: lim д(х) = 0 (покажите это!). Поэтому lim /(х) = 0. Задача. Сформулировать с помощью неравенств (на языке е -6), что означает Пусть функция /(я) определена в некоторой окрестности П точки х0, кроме, быть может, самой точки х0. Определение (Гейне). Число А называется пределом функции /(х) в точке х0, если для любой последовательности {хп} значений аргумента х 6 П, z„ / х0), сходящейся к точке х0, соответствующая последовательность значений функции {/(х„)} сходится к числу А. Приведенным определением удобно пользоваться, когда надо установить, что функция /(х) не имеет предела в точке х0. Для этого достаточно найти какую-нибудь последовательность {/(хп)}, не имеющую предела, или же указать две последовательности {/(хп)} и {/(х"п)}, имеющие различные пределы. Покажем, например, чтофунк-иия /(х) = sin j (рис.7), определенная ВСЮДУ, Кроме ТОЧКИ X = О, Рис.7 н е имеет предела в точке х = 0. Рассмотрим две последовательности {, сходящиеся к точке х = 0. Соответствующие последовательности значений функции /(х) сходятся к разным пределам: последовательность {sinnTr} сходится к нулю, а последовательность {sin(5 + - к единице. Это означает, что функция /(х) = sin j в точке х = 0 предела не имеет. Замечание. Оба определения предела функии» в точке (определение Коши и определение Гейне) равносильны. §3. Теоремы о пределах Теорема 1 (единственность предела). Если функция f(x) имеет предел в точке хо, то этот предел единственный. А Пусть lim /(х) = А. Покажем, что никакое число В ф А не может быть пределом х-х0 функции /(х) вточкех0. Тотфакт,что lim /(х) ф Вспомощьюлогическихсимволов ХО формулируется так: Воспользовавшись неравенством получаем, Возьмем е = > 0. Поскольку lim /(х) = А, для выбранного е > 0 найдется 6 > 0 такое, что Из соотношения (1) для указанных значений х имеем Итак, нашлось такое, что каким бы малым ни было существуют х Ф xQ, такие, что и вместе с тем ^ е. Отсюда В Определение. Функция /(х) называется ограниченной в окрестности точки х0> если существуют числа М > 0 и 6 > 0 такие, что Теорема 2 (ограниченность функции, имеющей предел). Если функция f{x) определена в окрестности точки х0 и имеет в точке х0 конечный предел, то она ограничена в некоторой окрестности этой точки. м Пусть Тогда для любого например, для е = 1, найдется такое 6 > О, что для всех х Ф х0, удовлетворяющих условию будет верно неравенство Замечая, что всегда получим Положим. Тогда в каждой точке х интервала будем иметь Это означает, согласно определению, что функция /(х) ограничена в окрестности Напротив, из ограниченности функции /(х) в окрестности точки х0 не следует существования предела функции /(х) в точке х0. Например, функция /(х) = sin офаничена в окрестности точки но не имеет предела в точке х = 0. Сформулируем еще две теоремы, геометрический смысл которыхдостаточноясен. Теорема 3 (переход к пределу в неравенстве). Если /(х) ^ ip(x) для всех х из некоторой окрестности точки х0, кроме, быть может, самой точки х0, и каждая из функций /(х) и ip(x) в точке х0 имеет предел, то Заметим, что из строгого неравенства для функций не обязательно следует строгое неравенство для их пределов. Если эти пределы существуют, то мы можем утверждать лишь, что Так, например, для функций выполнено неравенство в то время как Теорема 4 (предел промежуточной функции). Если для всех х в некоторой окрестности точки Xq, кроме, быть может, самой точки х0 (рис.9), и функции f{x) и ip(x) в точке хо имеют один и тот же предел А, то и функция f(x) в точке х0 имеет предел, равный этому же чиыу А. § 4. Предел функции в бесконечности Пусть функция /(х) определена либо на всей числовой оси, либо по крайней мерс для всех х, удовлетворяющих условию jx| > К при некотором К > 0. Определение. Число А называют пределом функции f(x) при х, стремящемся к бесконечности, и пишут если для любого е > 0 существует число jV > 0 такое, что для всех х, удовлетворяющих условию |х| > Лг, верно неравенство Заменив в этом определении условие соответственно, получим определения Из этих определений следует, что тогда и только тогда, когда одновременно Тот факт, геометрически означает следующее: какой бы узкой ни была е-полоска между прямыми у = А- еиу = А + е, найдется такая прямая х = N >0, что правее нес график функции у = /(ж) целиком содержится в указанной е-полоске (рис. 10). В этом случае говорят, что при х +оо график функции у = /(ж) асимптотически приближается к прямой у = А. Пример, Функция /(х) = jtjj- определена на всей числовой оси и представляет собой дробь, у которой числитель постоянен, а знаменатель неограниченно возрастает при |х| +оо. Естественно ожидать, что lim /(х)=0. Покажем это. М Возьмем любое е > 0, подчиненное условию Чтобы имело место соотношение должно выполняться неравенство с или, что то же, откуда Таким образом. если взять будем иметь. Это означает, что число есть предел данной функции при Заметим, что подкоренное выражение лишь для t ^ 1. В случае, когда, неравенство с выполняется автоматически для всех График четной функции у = - асимптотически приближается к прямой Задача. Сформулировать с помощью неравенств, что означает §5. Бесконечно малые функции Пусть функция а(х) определена в некоторой окрестности точки хо, кроме, быть может, самой точки х0. Определение. Функция а(х) называется бесконечно малой функцией (сокращенно б. м. ф.) при х, стремящемся к хо, если Понятие функции Способы задания функции Примеры функций Аналитическое задание функции Графический способ задания функции Предел функции в точке Табличный способ задания функции теоремы о пределах единственность предела ограниченность функции, имеющей предел переход к пределу в неравенстве Предел функции в бесконечности Бесконечно малые функции Свойства бесконечно малых функций Например, функция а(х) = х - 1 является б. м. ф. при х 1,таккак lim(x-l) = 0. График функции у = х-1 1-1 изображен на рис. II. Вообще, функция а(х)=х-х0 является простейшим примером б. м. ф. при х-»хо. Принимая во внимание определение предела функции вточке, определение б. м. ф. можно сформулировать так. Определение. Функция а(х) называется бесконечно малой при х -* хо, если для любого £ > 0 существует такое «5 > 0, что для всех х, удовлетворяющих условию, верно неравенство Наряду с понятием бесконечно малой функции при х хо вводится понятие бесконечно малой функции при Определение. Функция а(х) называется бесконечно малой при х -» оо, если то функция а(х) называется бесконечно малой соответственно при или при Например, функция является бесконечно малой при х -» оо, поскольку lim j = 0. Функция а(х) = е~х естьбесконечно малая функция при х-* +оо, так как В дальнейшем все понятия и теоремы, связанные с пределами функций, мы будем, как правило, рассматривать только применительнок случаю предела функции в точке, предоставляя читателю самому сформулировать соответствующие понятия и доказать аналогичные теоремы дня случаев, когда Свойства бесконечно малых функций Теорема 5. Если а{х) и Р(х) - б. м. ф. при х -* хо, то их сумма а(х) + Р(х) есть также б.м. ф. при х -» хо. 4 Возьмем любое е > 0. Так как а(х) - б.м.ф. при х -* хо, то найдется «51 > 0 такое, что для всех х Ф хо, удовлетворяющих условию верно неравенство По условию Р{х) также б.м.ф. при х хо, поэтому найдется такое, что для всех х Ф хо, удовлетворяющих условию верно неравенство Положим 6 = min{«5j, 62}. Тогда для всех х Ф хо, удовлетворяющих условию будут одновременно верны неравенства (1) и (2). Поэтому Это означает, что сумма а(х) +/3(х) есть б.м.ф. при х xq. Замечание. Теорема остается справедливой для суммы любого конечного числа функций, б. м. при х zo. Теорема б (произведение б. м. ф. на ограниченную функцию). Если функция а(х) является б. м. ф. при х -* х0, а функция f(x) ограничена в окрестности точки Хо, то произведение а(х)/(х) есть б. м. ф. при х -» х0. По условию функция /(х) ограничена в окрестности точки х0. Это означает, что существуют такие числа 0 и М > 0, что Возьмем любое е > 0. Так как по условию, то найдется такое 62 > 0, что для всех х ф х0, удовлетворяющих условию |х - xol , будет верно неравенство Положим я всех х ф х0, удовлетворяющих условию |х - х0|, будут одновременно верны неравенства Поэтому Это означает, что произведение а(х)/(х) есть б. м.ф. при Пример. Функцию у = xsin - (рис.12) можно рассматривать как произведение функций a(ar) = х и f(x) = sin j. Функция а(аг) есть б. м. ф. при х - 0, а функция f с помощью трех формул.

Если зависимость между х и у задана формулой, разрешенной относительно у, т.е. имеет вид у = f(x) , то говорят, что функция от х задана в явном виде, например,. Если же значения х и у связаны некоторым уравнением видаF(x,y) = 0, т.е. формула не разрешена относительно у, то говорят, что функция задана неявно. Например,. Заметим, что не всякую неявную функцию можно представить в виде у =f(x), наоборот, любую явную функцию всегда можно представить в виде неявной:
. Еще одна разновидность аналитического задания функции – параметрическое, когда аргумент х и функция у являются функциями третьей величины – параметраt:
, где
, Т – некоторый промежуток. Такой способ широко применяется в механике, в геометрии.

Аналитический способ является самым распространенным способом задания функции. Компактность, возможность применения к данной функции аппарата математического анализа, возможность вычисления значений функции при любых значениях аргумента – его основные преимущества.

4. Словесный способ. Этот способ состоит в том, что функциональная зависимость выражается словами. Например, функция Е(х) – целая часть числа х, функция Дирихле, функция Римана,n!,r(n) – число делителей натурального числаn.

5. Полуграфический способ. Здесь значения функции представляются в виде отрезков, а значения аргумента – в виде чисел, проставленных на концах отрезков, указывающих значения функции. Так, например, в термометре есть шкала с равными делениями, у которых проставлены числа. Эти числа являются значениями аргумента (температуры). Они стоят на том месте, которое определяет графическое удлинение столбца ртути (значения функции) в связи с ее объемным расширением в результате температурных изменений.

Что означают слова "задать функцию"? Они означают: объяснить всем желающим, о какой конкретной функции идёт речь. Причём, объяснить чётко и однозначно!

Как это можно сделать? Как задать функцию?

Можно написать формулу. Можно нарисовать график. Можно составить табличку. Любой способ - это какое-то правило, по которому можно узнать значение игрека для выбранного нами значения икса. Т.е. "задать функцию" , это значит - показать закон, правило, по которому икс превращается в игрек.

Обычно, в самых различных заданиях присутствуют уже готовые функции. Они нам уже заданы. Решай себе, да решай.) Но... Чаще всего школьники (да и студенты) работают с формулами. Привыкают, понимаешь... Так привыкают, что любой элементарный вопрос, относящийся к другому способу задания функции, тотчас огорчает человека...)

Во избежание подобных случаев, имеет смысл разобраться с разными способами задания функций. Ну и, конечно, применить эти знания к "хитрым" вопросам. Это достаточно просто. Если знаете, что такое функция...)

Поехали?)

Аналитический способ задания функции.

Самый универсальный и могучий способ. Функция, заданная аналитически, это функция, которая задана формулами. Собственно, это и есть всё объяснение.) Знакомые всем (хочется верить!)) функции, например: y = 2x, или y = x 2 и т.д. и т.п. заданы именно аналитически.

К слову сказать, не всякая формула может задавать функцию. Не в каждой формуле соблюдается жёсткое условие из определения функции. А именно - на каждый икс может быть только один игрек. Например, в формуле у = ±х , для одного значения х=2, получается два значения у: +2 и -2. Нельзя этой формулой задать однозначную функцию. А с многозначными функциями в этом разделе математики, в матанализе, не работают, как правило.

Чем хорош аналитический способ задания функции? Тем, что если у вас есть формула - вы знаете про функцию всё! Вы можете составить табличку. Построить график. Исследовать эту функцию по полной программе. Точно предсказать, где и как будет вести себя эта функция. Весь матанализ стоит именно на таком способе задания функций. Скажем, взять производную от таблицы крайне затруднительно...)

Аналитический способ достаточно привычен и проблем не создаёт. Разве что некоторые разновидности этого способа, с которыми сталкиваются студенты. Я про параметрическое и неявное задание функций.) Но такие функции - в специальном уроке.

Переходим к менее привычным способам задания функции.

Табличный способ задания функции.

Как следует из названия, этот способ представляет собой простую табличку. В этой таблице каждому иксу соответствует (ставится в соответствие ) какое-то значение игрека. В первой строчке - значения аргумента. Во второй строчке - соответствующие им значения функции, например:

Таблица 1.

x - 3 - 1 0 2 3 4
y 5 2 - 4 - 1 6 5

Прошу обратить внимание! В данном примере игрек зависит от икса как попало. Я специально так придумал.) Нет никакой закономерности. Ничего страшного, так бывает. Значит, именно так я задал эту конкретную функцию. Именно так я установил правило, по которому икс превращается в игрек.

Можно составить другую табличку, в которой будет закономерность. Этой табличкой будет задана другая функция, например:

Таблица 2.

x - 3 - 1 0 2 3 4
y - 6 - 2 0 4 6 8

Уловили закономерность? Здесь все значения игрека получаются умножением икса на двойку. Вот и первый "хитрый" вопрос: можно ли функцию, заданную с помощью Таблицы 2, считать функцией у = 2х ? Подумайте пока, ответ будет ниже, в графическом способе. Там это всё очень наглядно.)

Чем хорош табличный способ задания функции? Да тем, что считать ничего не надо. Всё уже посчитано и написано в таблице.) А более ничего хорошего нет. Мы не знаем значения функции для иксов, которых нет в таблице. В этом способе такие значения икса просто не существуют. Кстати, это подсказка к хитрому вопросу.) Мы не можем узнать, как ведёт себя функция за пределами таблицы. Ничего не можем. Да и наглядность в этом способе оставляет желать лучшего... Для наглядности хорош графический способ.

Графический способ задания функции.

В данном способе функция представлена графиком. По оси абсцисс откладывается аргумент (х), а по оси ординат - значение функции (у). По графику тоже можно выбрать любой х и найти соответствующее ему значение у . График может быть любой, но... не какой попало.) Мы работаем только с однозначными функциями. В определении такой функции чётко сказано: каждому х ставится в соответствие единственный у . Один игрек, а не два, или три... Для примера, посмотрим на график окружности:

Окружность, как окружность... Почему бы ей не быть графиком функции? А давайте найдем, какой игрек будет соответствовать значению икса, например, 6? Наводим курсор на график (или касаемся рисунка на планшете), и... видим, что этому иксу соответствует два значения игрека: у=2 и у=6.

Два и шесть! Стало быть, такой график не будет графическим заданием функции. На один икс приходится два игрека. Не соответствует этот график определению функции.

Но если условие однозначности выполнено, график может быть совершенно любым. Например:

Эта самая кривулина - и есть закон, по которому можно перевести икс в игрек. Однозначный. Захотелось нам узнать значение функции для х = 4, например. Надо найти четвёрку на оси иксов и посмотреть, какой игрек соответствует этому иксу. Наводим мышку на рисунок и видим, что значение функции у для х=4 равно пяти. Какой формулой задано такое превращение икса в игрек - мы не знаем. И не надо. Графиком всё задано.

Теперь можно вернуться к "хитрому" вопросу про у=2х. Построим график этой функции. Вот он:

Разумеется, при рисовании этого графика мы не брали бесконечное множество значений х. Взяли несколько значений, посчитали у, составили табличку - и всё готово! Самые грамотные вообще всего два значения икса взяли! И правильно. Для прямой больше и не надо. Зачем лишняя работа?

Но мы совершенно точно знали, что икс может быть любым. Целым, дробным, отрицательным... Любым. Это по формуле у=2х видно. Поэтому смело соединили точки на графике сплошной линией.

Если же функция будет нам задана Таблицей 2, то значения икса нам придётся брать только из таблицы. Ибо другие иксы (и игреки) нам не даны, и взять их негде. Нет их, этих значений, в данной функции. График получится из точек. Наводим мышку на рисунок и видим график функции, заданной Таблицей 2. Значения икс-игрек на осях я не писал, разберётесь, поди, по клеточкам?)

Вот и ответ на "хитрый" вопрос. Функция, заданная Таблицей 2 и функция у=2х - разные.

Графический способ хорош своей наглядностью. Сразу видно, как ведёт себя функция, где возрастает. где убывает. По графику сразу можно узнать некоторые важные характеристики функции. А уж в теме с производной, задания с графиками - сплошь и рядом!

Вообще, аналитический и графический способы задания функции идут рука об руку. Работа с формулой помогает построить график. А график частенько подсказывает решения, которые в формуле и не заметишь... Мы с графиками дружить будем.)

Почти любой ученик знает три способа задания функции, которые мы только что рассмотрели. Но на вопрос: "А четвёртый!?" - зависает основательно.)

Такой способ есть.

Словесное описание функции.

Да-да! Функцию можно вполне однозначно задать словами. Великий и могучий русский язык на многое способен!) Скажем, функцию у=2х можно задать следующим словесным описанием: каждому действительному значению аргумента х ставится в соответствие его удвоенное значение. Вот так! Правило установлено, функция задана.

Более того, словесно можно задать функцию, которую формулой задать крайне затруднительно, а то и невозможно. Например: каждому значению натурального аргумента х ставится в соответствие сумма цифр, из которых состоит значение х. Например, если х=3, то у=3. Если х=257, то у=2+5+7=14. И так далее. Формулой это записать проблематично. А вот табличку легко составить. И график построить. Кстати, график забавный получается...) Попробуйте.

Способ словесного описания - способ достаточно экзотичный. Но иногда встречается. Здесь же я его привёл, чтобы придать вам уверенности в неожиданных и нестандартных ситуациях. Нужно просто понимать смысл слов "функция задана..." Вот он, этот смысл:

Если есть закон однозначного соответствия между х и у - значит, есть функция. Какой закон, в какой форме он выражен - формулой, табличкой, графиком, словами, песнями, плясками - сути дела не меняет. Этот закон позволяет по значению икса определить соответствующее значение игрека. Всё.

Сейчас мы применим эти глубокие знания к некоторым нестандартным заданиям.) Как и обещано в начале урока.

Задание 1:

Функция у = f(x) задана Таблицей 1:

Таблица 1.

Найти значение функции p(4), если p(х)= f(x) - g(x)

Если вы вообще не можете понять, что к чему - прочитайте предыдущий урок "Что такое функция?" Там про такие буковки и скобочки очень понятно написано.) А если вас смущает только табличная форма, то разбираемся здесь.

Из предыдущего урока ясно, что, если, p(х) = f(x) - g(x) , то p(4) = f(4) - g(4) . Буквы f и g означают правила, по которым каждому иксу ставится в соответствие свой игрек. Для каждой буквы (f и g ) - своё правило. Которое задано соответствующей таблицей.

Значение функции f(4) определяем по Таблице 1. Это будет 5. Значение функции g(4) определяем по Таблице 2. Это будет 8. Остаётся самое трудное.)

p(4) = 5 - 8 = -3

Это правильный ответ.

Решить неравенство f(x) > 2

Вот-те раз! Надо решить неравенство, которое (в привычной форме) блистательно отсутствует! Остаётся либо бросать задание, либо включить голову. Выбираем второе и рассуждаем.)

Что значит решить неравенство? Это значит, найти все значения икса, при которых выполняется данное нам условие f(x) > 2 . Т.е. все значения функции (у ) должны быть больше двойки. А у нас на графике игрек всякий есть... И больше двойки есть, и меньше... А давайте, для наглядности, по этой двойке границу проведём! Наводим курсор на рисунок и видим эту границу.

Строго говоря, эта граница есть график фукции у=2, но это не суть важно. Важно то, что сейчас на графике очень хорошо видно, где, при каких иксах, значения функции, т.е. у, больше двойки. Они больше при х> 3. При х> 3 вся наша функция проходит выше границы у=2. Вот и всё решение. Но выключать голову ещё рано!) Надо ещё ответ записать...

На графике видно, что наша функция не простирается влево и вправо на бесконечность. Об этом точки на концах графика говорят. Кончается там функция. Стало быть, в нашем неравенстве все иксы, которые уходят за пределы функции смысла не имеют. Для функции этих иксов не существует. А мы, вообще-то, неравенство для функции решаем...

Правильный ответ будет:

3 < х 6

Или, в другой форме:

х(3; 6]

Теперь всё, как надо. Тройка не включается в ответ, т.к. исходное неравенство строгое. А шестёрка включается, т.к. и функция при шестёрке существует, и условие неравенства выполняется. Мы успешно решили неравенство, которого (в привычной форме) нету...

Вот так некоторые знания и элементарная логика спасают в нестандартных случаях.)

Одними из классических определений понятия «функция» считаются определения на базе соответствий. Приведем ряд таких определений.

Определение 1

Зависимость, при которой каждому значению независимой переменной соответствует единственное значение зависимой переменной, называется функцией .

Определение 2

Пусть даны два непустых множества $X$ и $Y$. Соответствие $f$, которое каждому $x\in X$ сопоставляет один и только один $y\in Y$ Называется функцией ($f:X → Y$).

Определение 3

Пусть $M$ и $N$ - два произвольных числовых множества. Говорят, что на $M$ определена функция $f$, принимающая значения из $N$, если каждому элементу $x\in X$ поставлен в соответствие один и только один элемент из $N$.

Следующее определение дается через понятие переменной величины. Переменной величиной называется величина, которая в данном исследовании принимает различные числовые значения.

Определение 4

Пусть $M$ - множество значений переменной величины $x$. Тогда, сели каждому значению $x\in M$ соответствует одно определенное значение другой переменной величины $y$ есть функция величины $x$, определенной на множестве $M$.

Определение 5

Пусть $X$ и $Y$ - некоторые числовые множества. Функцией называется множество $f$ упорядоченных пар чисел $(x,\ y)$ таких, что $x\in X$, $y\in Y$ и каждое $x$ входит в одну и только одну пару этого множества, а каждое $y$ входит, по крайней мере, в одну пару .

Определение 6

Всякое множество $f=\{\left(x,\ y\right)\}$ упорядоченных пар $\left(x,\ y\right)$ таких, что для любых пар $\left(x",\ y"\right)\in f$ и $\left(x"",\ y""\right)\in f$ из условия $y"≠ y""$ следует, что $x"≠x""$ называется функцией или отображением .

Определение 7

Функция $f:X → Y$ - это множество $f$ упорядоченных пар $\left(x,\ y\right)\in X\times Y$, таких, что для любого элемента $x\in X$ существует единственный элемент $y\in Y$ такой, что $\left(x,\ y\right)\in f$, то есть функция -- кортеж объектов $\left(f,\ X,\ Y\right)$.

В этих определениях

$x$ - независимая переменная.

$y$ - зависимая переменная.

Все возможные значения переменной $x$ называется областью определения функции , а все возможные значения переменной $y$ называется областью значения функции.

Аналитический способ задания функции

Для этого способа нам понадобится понятие аналитического выражения.

Определение 8

Аналитическим выражением называется произведение всех возможных математических операций над какими-либо числами и переменными.

Аналитическим способом задания функции и является её задание с помощью аналитического выражения.

Пример 1

$y=x^2+7x-3$, $y=\frac{x+5}{x+2}$, $y=cos5x$.

Плюсы:

  1. С помощью формул мы можем определить значение функции для любого определенного значения переменной $x$;
  2. Функции, заданные таким способом можно изучать с помощью аппарата математического анализа.

Минусы:

  1. Малая наглядность.
  2. Иногда приходится производить очень громоздкие вычисления.

Табличный способ задания функции

Данный способ задания состоит в том, что для нескольких значений независимой переменной выписываются значения зависимой переменной. Все это вносится в таблицу.

Пример 2

Рисунок 1.

Плюс: Для любого значения независимой переменной $x$, которая внесена в таблицу, сразу узнается соответствующее значение функции $y$.

Минусы:

  1. Чаще всего, нет полного задания функции;
  2. Малая наглядность.


Понравилась статья? Поделитесь с друзьями!