Закон минимума гласит что. Реферат: Лимитирующие факторы


Тема воздействия человека на экологию и экологии на жизнь на планете сегодня очень актуальна. Всё больше говорится об отрицательном влиянии деятельности человека на природу, глобальном потеплении, угрозе исчезновения некоторых видов животных, загрязнении мирового океана и т.д. Мы же, являясь теми, кому всё это далеко не безразлично, не можем не посвятить одну из наших статей экологической теме.

Ниже мы поговорим о том, как могут воздействовать экологические факторы на живые организмы, что поможет каждому из нас сделать определённые выводы.

Вместо введения

Невзирая на то, что многообразие экологических факторов просто огромно, а природа их происхождения нередко может различаться, есть такие закономерности и правила воздействия этих экологических факторов на живые организмы, которые являются универсальными.

Каким бы ни был экологический фактор, воздействовать на живые организмы он будет так:

  • Происходят изменения в географическом распространении видов
  • Происходят изменения в плодовитости и смертности видов
  • Возникает миграция видов
  • У видов появляются приспособительные качества и адаптации

Однако максимально эффективно действовать фактор будет в том случае, если его значение является для организма оптимальным, а не критическим. Воздействие же фактора будет сказываться абсолютно на всех живых организмах, в том числе и на человеке.

Закономерности воздействия экологических факторов на организмы

  • Правило оптимума
  • Закон минимума Либиха
  • Закон толерантности Шелфорда

Правило оптимума

В первую очередь следует сказать о том, что результат действия экологического фактора зависит от того, насколько он интенсивен. Наиболее благоприятный диапазон воздействия называется зоной оптимума, гарантирующей нормальную жизнедеятельность. И если действие фактора отклоняется от зоны оптимума, то оказывается негативное воздействие на жизнедеятельность популяции вида, т.е. фактор переходит в зону угнетения.

Минимальные и максимальные значения фактора называются критическими точками, вне пределов которых организм существовать уже не может. Диапазон воздействия экологического фактора между критическими точками – это зона толерантности организма в отношении конкретного фактора.

Если, например, отобразить действие фактора графически, то точка на оси X, которая будет соответствовать лучшему показателю жизнедеятельности организма, будет являться оптимальной величиной фактора или просто точкой оптимума. Однако определить её очень трудно, поэтому чаще в расчёт берётся зона оптимума или .

Из этого следует, что точки, соответствующие минимальным, максимальным и оптимальным показателям, являются кардинальными точками, определяющими возможные варианты реагирования организма на конкретный фактор. И если среда характеризуется такими условиями, где фактор или несколько факторов выходят заграницы зоны оптимума и действуют на организм угнетающе, то она будет являться экстремальной средой.

Представленные закономерности и являются правилом оптимума.

Закон минимума Либиха

Для поддержания жизнедеятельности живых организмов нужно, чтобы условия среды сочетались определённым образом. Например, когда среда обладает всеми благоприятными условиями, кроме одного, это одно условие играет решающую роль в жизни конкретного организма. Учитывая то, что он ограничивает развитие организма, его следует называть лимитирующим фактором. Другими словами, лимитирующим является экологический фактор со значением, выходящим за пределы выживаемости вида.

Изначально учёные остановили, что развитие живых организмов лимитируется недостатком какого-то одного элемента (света, влаги, минеральных солей и т.д.). Однако в середине XIX столетия немецким химиком-органиком Юстасом Либихом было впервые экспериментально доказано, что рост растений находится в зависимости от компонента питания, изначально присутствующего в минимальном количестве. Данное явление получило название закона минимума Либиха.

Если же дать этому закону современную формулировку, то выглядеть она будет следующим образом: выносливость живого организма определяет самое слабое звено в цепочке его экологических потребностей.

Закон толерантности Шелфорда

Через 70 лет после открытия закона минимума Либиха было установлено, что лимитирующее воздействие оказывается не только недостатком, но и преизбытком фактора (обильные дожди губят урожай, почва становится неплодородной от перенасыщения удобрениями и т.п.).

Эта идея была введена американским зоологом Виктором Шелфордом, который и сформулировал закон толерантности. Этот закон звучит так: роль лимитирующего фактора процветания организма может выполнять и минимум, и максимум экологического воздействия, а имеющийся между ними диапазон указывает на предел толерантности (величину выносливости) или экологическую валентность организма к конкретному экологическому фактору.

Сам же принцип ограничивающих факторов применим к любым типам живых организмов: животным и растениями, биотическим и абиотическим формам. К примеру, конкуренция одного вида с другим – это лимитирующий фактор; сорняки, вредители или недостаточная популяция другого вида – это тоже лимитирующие факторы. Однако, исходя из закона толерантности, если какое-то вещество или энергия присутствуют в среде в избытке, начинается загрязнение среды.

Что же касается предела выносливости организма, то измерить его можно на стадии перехода от одной стадии развития к другой, т.к. нередко молодые особи являются более требовательными к среде и уязвимыми, нежели взрослые. Самым же критическим с позиции влияния любых факторов можно назвать именно период размножения, когда множество факторов приобретают статус лимитирующих.

Следует также отметить, что всё, сказанное до этого, относительно выносливости организма, касалось лишь одного фактора, однако для живой природы характерно всех экологических факторов.

Взаимодействие экологических факторов

Смещение самой оптимальной зоны и пределов толерантности живого организма в отношении какого-то экологического фактора зависит от сочетания действий других факторов. Этот феномен называется констелляцией или взаимодействием экологических факторов.

К примеру, каждый знает, что жаркая погода гораздо легче переносится, когда воздух сухой, а не влажный; замёрзнуть при низкой температуре можно быстрее, когда дует ветер; растущие в тени растения меньше нуждаются в цинке, чем растения, растущие на солнце и т.д. Говоря несколько иначе, имеет место компенсация действия экологических факторов.

Но эта компенсация ограничена, ведь один фактор не способен на 100% заменить другой. Если не будет воды или одного из питательных элементов, то растения погибнут, даже если другие факторы будут находиться в идеальном сочетании. И из этого можно заключить, что каждое условие среды, которое поддерживает жизнь, имеет одинаковое значение, а лимитировать существование живого организма может любой фактор. Этот закон называется законом равнозначности условий жизни.

В огромном количестве законов, которые определяют взаимодействие особи или человека с окружающей средой, можно также выделить и правило соответствия условий среды генетической предопределённости организма. Согласно этому правилу, существование какого-либо вида обусловлено соответствием окружающей природной среды его генетическому потенциалу адаптации к изменениям и колебаниям.

Послесловие

Любой из видов живых организмов появился в конкретной среде, в какой-то мере к ней адаптировался и продолжение его жизни возможно только лишь в ней или в максимально к ней близкой. Быстрые и резкие изменения среды обитания могут стать причиной того, что организм просто не сможет к ней приспособиться, т.к. его генетический адаптивный потенциал окажется недостаточным для этого.

И это является одной из основных гипотез, объясняющих вымирание крупных пресмыкающихся по причине резкого изменения экологических условий на планете, ведь приспособиться крупным организмам намного сложнее, нежели мелким, и адаптация требует огромных временных затрат. Исходя из этого, серьёзные преобразования окружающей среды представляют угрозу для любого живого существа на планете, и для человека в том числе.

Берегите природу и старайтесь сохранять чистоту не только внутри себя, но и снаружи!

Дети начинают получать в начальной школе, а в средствах массовой информации вопросы экологии занимают не последнее место, экология все еще остается молодой, сложной и загадочной наукой. Ее научная база не так велика, а сложные модели запутаны. Тем не менее знание и понимание основных законов в этой области - это основа мировоззрения современного человека. В данной статье будет рассмотрен один из главных законов экологии - закон минимума, сформулированный задолго до формирования самой науки.

К истории открытия

Закон минимума сформулировал в 1840 году выдающийся химик, профессор Гессенского Юстас фон Либих. Этот ученый и выдающийся педагог известен еще и изобретением холодильника Либиха, которым и сегодня пользуются в химических лабораториях для фракционного разделения химических соединений. Его книга «Химия в приложении к земледелию» фактически дала начало науке агрохимии, а ему - титул барона и два ордена Святой Анны. Либих изучал выживаемость растений и роль химических добавок в ее повышении. Так им был сформулирован закон минимума или лимитирующего фактора, который оказался верным для всех биологических систем. И не только для биологических, что продемонстрируем на примерах.

Немного теории

Зона комфорта

Чаще всего экологические факторы переносятся организмами в некоторых пределах, которые ограничены пороговыми показателями, за которыми наступает угнетение жизнедеятельности организма. Это критические точки существования. Между ними находятся зоны толерантности (терпимости) и зона оптимума (комфорта) - диапазон благотворного влияния фактора. Точки минимума и максимума воздействия экологического фактора определяют возможности реакции организма на конкретный фактор. Выход за пределы зоны оптимума может привести к следующему:

  • устранению вида с конкретного ареала (например, сдвиг популяционного ареала или миграция вида);
  • изменение плодовитости и смертности (например, при резких изменениях условий окружающей среды);
  • к адаптации (приспособлению) и возникновению новых видов с новыми фенотипическими и генетическими особенностями.

Суть закона минимума

Жизнь биологической системы, будь то организм или популяция, зависит от действия множества факторов биотического и абиотического характера. Формулировка закона минимума может варьировать, но суть остается постоянной: когда какой-либо фактор существенно отклоняется от нормы, то именно он становится наиболее значимым для системы и самым критическим для жизни. При этом лимитирующими факторами для организма в разные периоды времени могут выступать различные показатели.

Варианты возможны

Все живые организмы живут и приспосабливаются к комплексу факторов окружающей среды. И воздействие факторов этого комплекса всегда неравнозначно. Фактор может быть ведущим (очень важным) или второстепенным. Ведущими для разных организмов будут разные факторы, а в разные периоды жизни одного организма для него основными могут быть определенные экологические факторы. Кроме того, одни и те же факторы могут быть лимитирующими для одних организмов и не лимитирующими для других. Например, солнечный свет для растений - это необходимый элемент для обеспечения процессов фотосинтеза. А вот для грибов, почвенных сапротрофов или глубоководных животных он совсем не обязателен. Или наличие кислорода в воде будет а его наличие в почве - нет.

Условия применения

Закон минимума ограничен в применении двумя вспомогательными принципами:

  1. Закон применим без уточнений только к равновесным системам, а именно только в условиях стационарного состояния системы, когда обмен энергией и веществами системы с окружающей средой регулируется их утечкой.
  2. Второй принцип применения закона минимума связан с компенсаторными возможностями организмов и систем. В определенных условиях лимитирующий фактор может быть заменен не лимитирующим, но присутствующем в достаточном или высоком содержании. Это приведет к изменению потребности в том веществе, которое имеется в минимальном количестве.

Наглядная иллюстрация

Наглядно показывает действие этого закона бочка, названная именем ученого. В этой поломанной бочке лимитирующий фактор - это высота досок. В соответствии с экологическим законом минимума починку ее необходимо начинать с наименьшей доски. Именно она и является тем фактором, который наиболее удалился от нормальных значений, оптимальных для выживания организма. Без устранения воздействия этого фактора нет смысла наполнять бочку - другие факторы не так существенно влияют в данный момент времени.

Где тонко - там и рвется

Именно эта пословица передает суть закона минимума в экологии и не только. Например, в сельском хозяйстве учитываются показатели содержания минеральных веществ в почвах. Если в почве только 20 % фосфора от нормы, кальция - 50 %, а калия -95 %, то вносить надо в первую очередь удобрения, которые содержат фосфор. В дикой природе для оленя летом лимитирующим фактором будет количество пищи, а зимой - высота снежного покрова. Или для сосны, которая растет в тенистом лесу, ограничивающим фактором будет свет, на сухом песчаном грунте - вода, а в болотистой местности - температура летом.

Еще такой пример, не относящийся к экологии. Если правый защитник в команде является самым слабым, то именно с его фланга вероятнее всего прорвется противник. Это верно в спорте, в искусстве, в бизнесе. Существенной ошибкой бизнесменов часто становится недооценка того вреда, которую наносит слабый работник даже на второстепенных должностях. Ведь недаром говорят, что качество фирмы определяется качеством ее самых плохих сотрудников. А прочность цепочки всегда зависит от ее самого слабого звена.

В 1840 году немецкий химик Юстус Либих, выращивая растения на синтетических средах, обнаружил, что для нормального роста растения необходимо определенное число и количество химических элементов и соединений. Одни из них должны находится в среде в очень больших количествах, другие в малых, а третьи вообще в виде следов. И, что особенно важно: одни элементы не могут быть заменены другими. Среда, содержащая все элементы в изобилии, кроме одного, обеспечивает рост растения лишь до того момента, пока количество последнего не будет исчерпано. Рост ограничивается, таким образом, нехваткой единственного элемента, количество которого было ниже необходимого минимума. Этот закон, сформулированный Ю. Либихом применительно к роли химических эдафических факторов в жизни растений и названный им законом минимума, имеет, как выяснилось позже, универсальный экологический характер и играет важную роль в экологии.

Закон минимума: “Если все условия окружающей среды оказываются благоприятными для рассматриваемого организма за исключением одного, проявленного недостаточно (значение которого приближается к экологическому минимуму), то в этом случае это последнее условие, называемое лимитирующим фактором, приобретает решающее значение для жизни или смерти рассматриваемого организма, а следовательно, его присутствия или отсутствия в данной экосистеме”.

2. Закон толерантности шелфорда.

В 1913 году американский эколог В. Шелфорд обобщил закон минимума Либиха, открыв, что кроме нижнего предела интенсивности существует также и верхний предел интенсивности факторов внешней среды, определяющий верхнюю границу диапазона интенсивностей, соответствующего условиям нормальной жизнедеятельности организмов. В этой формулировке закон, названный экологическим законом толерантности, стал иметь более общий универсальный характер.

Закон толерантности (лат. tolerantia - терпение): ” Каждый организм характеризуется экологическим минимумом и экологическим максимумом интенсивности каждого фактора внешней среды, в пределах которых возможна жизнедеятельность“.

Диапазон экологического фактора между минимумом и максимумом называется диапазоном или областью толерантности.

Несмотря на большое разнообразие экологических факторов, в характере их воздействия и в ответных реакциях живых организмов можно выявить ряд общих закономерностей.

Количественный диапазон фактора, наиболее благоприятный для жизнедеятельности, называется экологическим оптимумом (лат. оptimus -

наилучший).

Значения фактора, лежащие в зоне угнетения, называются экологическим пессимумом (лат. pessimum - наихудший).

Минимальные и максимальные значения фактора, при которых наступает гибель, называются соответственно экологическим минимумом и экологическим максимумом .

Графически это иллюстрируется на рис.3-1 . Кривая на рис.3-1, как правило, не является симметричной.

Например, по такому фактору как температура, экологический максимум соответствует температурам, при которых разрушаются ферменты и белки (+50 ¸ +60 °С). Однако, отдельные организмы могут существовать и при более высоких температурах. Так, в горячих источниках Комчатки и Америки обнаружены водоросли при t > +80 °С. Нижний предел температуры, при котором возможна жизнь, около -70 °С, хотя кустарники в Якутии не вымерзают даже при такой температуре. В анабиозе (гр. anabiosis - выживание), т.е. в неактивном состоянии, некоторые организмы сохраняются при абсолютном нуле (-273 °С).

Рис. 3-1. Зависимость жизнедеятельности от интенсивности

экологического фактора.

Можно сформулировать ряд положений, дополняющих закон толерантности:

1. Организмы могут иметь широкий диапазон толерантности в отношении одного фактора внешней среды и узкий диапазон в отношении другого.

2. Организмы с широким диапазоном толерантности по большинству факторов обычно наиболее широко распространены.

3. Если условия по одному экологическому фактору не оптимальны для данного вида, то может сузиться и диапазон толерантности по другим экологическим факторам. Например, при близком к минимальному содержанию азота в почве снижается засухоустойчивость злаков.

4. В период размножения диапазон толерантности, как правило, сужается.

Организмы с узким диапазоном толерантности, или узкоприспособленные виды, способные существовать лишь при небольших отклонениях фактора от оптимального значения, носят название стенобионтных, или стеноэков (гр. stenos - узкий, тесный).

Организмы с широким диапазоном толерантности, или широкоприспособленные виды, способные выдерживать большую амплитуду колебаний экологического фактора, носят название эврибионтных, или эвриэков (гр. eurys - широкий).

Свойство организмов адаптироваться к существованию в том или ином диапазоне экологического фактора называется экологической пластичностью .

Близким к экологической пластичности является понятие экологической валентности , которое определяется как способность организма заселять разнообразные среды.

Таким образом, стенобионты экологически непластичны, т.е. маловыносливы, имеют низкую экологическую валентность; эврибионты напротив - экологически пластичны, т.е. более выносливы, и имеют высокую экологическую валентность.

Для обозначения отношения организмов к конкретному фактору к его названию прибавляют приставки: стено- и эври- . Так, по отношению к температуре бывают стенотермные (карликовая береза, банановое дерево) и эвритермные (растения умеренного пояса) виды; по отношению к солености - стеногалинные (карась, камбала) и эвригалинные (колюшка); по отношению к свету - стенофонтные (ель) и эврифонтные (шиповник) и т.д.

Стено- и эврибионтность проявляется, как правило, по отношению к одному или немногим факторам. Эврибионты обычно широко распространены. Многие простейшие эврибионты (бактерии, грибы, водоросли) являются космополитами. Стенобионты, напротив, имеют ограниченный ареал распространения. Экологическая пластичность и экологическая валентность организмов часто изменяется при переходе от одной стадии развития к другой; молодые особи, как правило, более уязвимы и более требовательны к условиям среды, чем взрослые.

Вместе с тем организмы не являются рабами физических условий среды; они приспосабливаются сами и изменяют условия среды так, чтобы ослабить влияние лимитирующего фактора. Такая компенсация лимитирующих факторов особенно эффективна на уровне сообщества, но возможна и на уровне популяции.

Виды с широким географическим распространением почти всегда образуют адаптированные к местным условиям популяции, называемые экотипами . Их оптимумы и пределы толерантности соответствуют местным условиям. Появление экотипов иногда сопровождается генетическим закреплением приобретенных свойств и признаков, т.е. к появлению рас.

Организмы, живущие длительное время в относительно стабильных условиях, утрачивают экологическую пластичность, а те, которые были подвержены значительным колебаниям фактора, становятся более выносливыми к нему, т.е. увеличивают экологическую пластичность. У животных компенсация лимитирующих факторов возможна благодаря адаптивному поведению - они избегают крайних значений лимитирующих факторов.

При приближении к экстремальным условиям возрастает энергетическая цена адаптации. Если в реку сбрасывается перегретая вода, то рыбы и другие организмы тратят почти всю энергию на преодоление этого стресса. Им не хватает энергии на добывание пищи, защиту от хищников, размножение, что приводит к вымиранию.

Итак, организмы в природе зависят от:

Лимитирующие факторы. "Закон минимума" Либиха

Понятно, что потребности у разных видов в каждых конкретных условиях разные. Однако, наряду с этим, есть минимум факторов, которые необходимы для существования живого организма. При так называемом стационарном состоянии (состояние системы более или менее стабилен и не является переходным) лимитирующим будет вещество, количество которой будет наиболее близка к необходимому минимуму. Впервые вопросом минимального количества необходимого вещества занимался Ю. Либих, который в 1840 г.., Еще задолго до появления самого термина «экология», на основе изучения минерального питания растений исследовал зависимость их роста от тех или иных химических элементов или веществ. На основе своих исследований Ю. Либих вывел так называемый закон минимума: рост растений зависит не столько от наличия всех веществ, сколько от минимального количества какого-либо вещества, отсутствие которой, в свою очередь, приводит к задержке роста. Компенсация недостатка одного элемента другим не проходит. Веществом, которое находится в минимальных количествах, регулируется урожай и определяются величина и устойчивость его во времени.

Со временем к этому закону вносили определенные дополнения, но они не меняли сути самого закона (температура, время и т.д.), а значительно усложняли применения установленной закономерности. Кроме того, со времени установления Ю. Либих этой закономерности учеными было отмечено, что она при применении на практике требует уточнения. Ю. Одум для применения закона минимума предлагает пользоваться вспомогательными принципами, которых, по его мнению, должно быть два.

Первый вспомогательный принцип - ограничивающий принцип: закон Либиха можно применять без уточнений только к условиям стационарного состояния, когда приток энергии и веществ регулируется утечкой, то есть система находится в состоянии равновесия.

Ю. Одум обращает внимание на то, что система характеризуется динамикой, и поэтому введение ограничивающего принципа ограничит погрешности, возникающие при длительных исследованиях экосистем.

Второй вспомогательный принцип касается взаимодействия факторов. Было отмечено, что в определенных условиях высокая концентрация или достаточность определенного вещества, или действие вторых, лимитирующего, фактора может изменять потребность в минимальном количестве вещества.

Примером может быть замена использования моллюсками кальция стронцием, или такая закономерность: растениям, которые растут на солнце, потребность в цинке меньше, поэтому цинк перестает быть лимитирующим элементом. Второй вспомогательный при

нципа, введен Ю. Одум, указывает на нецелесообразность анализа состояния системы на основе небольшого количества элементов. Он настаивает на необходимости комплексного анализа при любом экологическом исследовании.

Взаимодействие экологических факторов. "Закон толерантности" Шелфорда

Как показали исследования Либиха, развитие живого организма обусловлен не только недостаточностью того или иного фактора, но также и их избытком. Итак, каждый организм имеет свои пределы, которые колеблются между минимумом и максимумом, то есть оптимум, который обеспечивает существование организма. У каждого вида - свои пределы. Понятие о лимитирующий роль максимума и минимума и необходимость оптимальных условий для существования вида ввел В.Шелфорда (1913). Его принцип более известен как закон толерантности;

Естественным ограничивающим фактором существования организма может быть как минимальный, так и максимальный экологическое воздействие, диапазон между которыми определяет степень выносливости (толерантности) организма к этому фактору.

Ю. Одум (1975) вводит ряд дополнений в закон Шелфорда, касающихся неоднородности воздействия экологических факторов и реакции на них живых организмов:

Организмам присущ более широкий диапазон толерантности к другу фактора, так и узкий к другому;

Организмы с большим диапазоном толерантности, как правило, широко распространенные;

Если условия существования, определенные одним экологическим фактором, меняются за пределы оптимума, то меняется и диапазон толерантности к другим экологических факторов;

В природе организмы часто попадают в условия, далекие от оптимально установленных в лабораторных экспериментах;

Период размножения, роста, как правило, является критическим, границы толерантности организма в это время гораздо уже, чем у взрослой особи.

Разъяснения, предоставленные Ю. Одум, во многом помогают при выяснении причин неоднородности полученных результатов при проведении экологических исследований. Следовательно, при любом экологическом исследовании необходимость тщательного анализа не только физико-химических условий среды или степени влияния живых организмов друг на друга, но и фаз существования организма. Наглядно влияние оптимальных условий на рост, размножение и существование определенных организмов можно продемонстрировать на темпах развития и плодоношения сельскохозяйственных культур зависимости от температурных параметров. Те из них, которые будут выращивать в оптимальных условиях, расти быстрее и созревать раньше тех, которые растут в условиях, близких к критическим.

Рис. 2.3. Рост растения по отношению к температуре (Назарук, Сенчина, 2000)

Для характеристики амплитуды толерантности видов в экологии используют ряд терминов. К названию екофактора, характеризующий влияние на живой организм, добавляются два слова: стен (гр. Стенос) - узкий и евры (гр. Еурос - широкий) стенотермным - эвритермные отношению к температуры

Стеногидричний - евригидричний - // - воды

Стенофаґний - еврифагний - // - пищи

Стеногалинные - Эвригалинные - // - cолоности

Стеноойкний - евриойкний - // - места проживания

Пример: развитие икры разных рыб происходит при различных температурах. Если икра лосося развивается при температуре от 0 до 14 ° С при оптимуме 4 ° С, то по отношению к икры лягушки она будет стенотермным, поскольку температурные пределы развития икры лягушки - от 0 ° С до 30 ° С при оптимуме 22 ° С.

Взаимодействие основных экологических факторов может зависеть от изменений, которые происходят в системе, то есть от взаимодействия абиотических и биотических факторов. Изменение солнечного излучения (свет, как известно, принадлежит к главным климатических факторов) приводит к изменению освещенности земной поверхности, что, в свою очередь, может привести к изменению фотопериодизма в жизни животных и растений. Изменение освещенности может привести к изменению температурного режима и влажности данной системы. Повышение влажности вместе с солнечным излучением может изменять температурный режим. Ярким примером взаимодействия факторов может быть лес, где ярусность и изменение определенных биотических и абиотических факторов хорошо выражены. Для Закарпатья, в частности для горной части области, характерно перевыпас скота, и, как следствие, имеется быстрое нарушение функционирования лесных участков, где ветви и листья обглоданные до определенной высоты, а дорастание отсутствует. Нередко человек выступает основным биотическим элементом экосистемы и благодаря ее деятельности появляется новый тип системы. Наглядным примером в этом плане является высокогорные луга Карпат. Долгое время считали, что высокогорные луга (горная Руна, Красная, Тяпиш и другие) - это природные образования. На ошибочность такого мнения указывает эксперимент профессора С.С. Фодора. Им было замечено, что совокупность екофакторив отдельных участков высокогорья не является характерной для субальпийских лугов. Чтобы убедиться в правильности этого предположения, им был основан эксперимент в долине Руна (1 428 м н. У. М.) По восстановлению верхней границы леса. В течение 35 лет проводились наблюдения за искусственными насаждениями хвойных деревьев. Все деревья, насаженные в данном месте, прекрасно чувствуют себя, то есть комплекс екофакторив обеспечивает им оптимальные условия существования. Вывод: подавляющее большинство долин Карпат искусственные, созданные человеком. Каждый вид или видовое группировки выбирает условия, обеспечивающие ему оптимальное существования, то есть распределяется по Градиент условий.

В основу экологической характеристики организмов положено их реакцию на воздействие факторов среды. Организм способен выжить только в диапазоне изменчивости данного фактора, который еще называют амплитудой. Как очень высокие (максимальные), так и очень низкие (малые) значения факторов среды могут быть губительными для организма. Критическое значение данного фактора, выраженного в цифрах, выше или ниже которого организм на может существовать, называют критической точкой. Между этими критическими значениями и расположена зона экологической толерантности (рис. 2.4).

В пределах зоны экологической толерантности напряженность факторов среды различна. Наряду с критическими точками расположены песимальни зоны, в которых активность организма значительно ограничена действием внешних условий. Далее расположены зоны комфорта, в которых наблюдается четкое роста экологических ре

акций организма. В центре находится зона оптимума, которая является благоприятной для функционирования организма.

Схема отношений в диапазоне экологической толерантности была предложена в 1924 г.. Немецким экологом и зоогеографы Р. Гессе, который назвал ее валентности экологических факторов. Стоит отметить, что кривая, которая представляет экологическую валентность в пределах зоны толерантности, не всегда имеет симметричный вид с оптимальной зоной, расположенной в центре. Например, для пресноводных организмов оптимум находится в нижней границе содержания соли в воде, тогда как в морских организмов - на противоположном конце изменчивости фактора в зоне толерантности, где содержание соли высокий.

1. Общие положения. Среда – это все, что окружает организм, т.е. это та часть природы, с которой организм находится в прямых или косвенных взаимодействиях.

Под средой мы понимаем комплекс окружающих условий, влияющих на жизнедеятельность организмов. Комплекс условий складывается из разнообразных элементов – факторов среды . Не все из них с одинаковой силой влияют на организмы. Так, сильный ветер зимой неблагоприятен для крупных, обитающих открыто животных, но он не действует на более мелких, которые укрываются под снегом или в норах, либо живут в земле. Те факторы, которые оказывают какое-либо действие на организмы и вызывают у них приспособительные реакции, называются экологическими факторами .

Влияние экологических факторов сказывается на всех процессах жизнедеятельности организмов и, прежде всего, на их обмене вещества. Приспособления организмов к среде носят название адаптаций . Способность к адаптации – одно из основных свойств жизни вообще, так как обеспечивает самую возможность ее существования, возможность организмов выжить и размножаться.

2. Классификация экологических факторов . Экологические факторы имеют разную природу и специфику действия. По своему характеру они подразделены на две крупные группы: абиотические и биотические. Если мы будем подразделять факторы по причинам их возникновения, то они могут быть подразделены на природные (естественные) и антропогенные. Антропогенные факторы могут также быть абиотическими и биотическими.

Абиотические факторы (или физико-химические факторы) – температура, свет, рН среды, соленость, радиоактивное излучение, давление, влажность воздуха, ветер, течения. Это все свойства неживой природы, которые прямо или косвенно влияют на живые организмы.

Биотические факторы – это формы воздействия живых существ друг на друга. Окружающий органический мир – составная часть среды каждого живого существа. Взаимные связи организмов – основа существования популяций и биоценозов.

Антропогенные факторы – это формы действия человека, которые приводят к изменению природы как среды обитания других видов или непосредственно сказываются на их жизни.

Действие экологических факторов может приводить:

– к устранению видов с биотопов (смена биотопа, территории, сдвиг ареала популяции; пример: миграции птиц);

– к изменению плодовитости (плотности популяций, репродукционные пики) и смертности (смерть при быстрых и резких изменениях условий окружающей среды);

– к фенотипической изменчивости и адаптации: модификационная изменчивость – адаптивные модификации, зимняя и летняя спячка, фотопериодические реакции и т.п.

3. Лимитирующие факторы .Законы Шелфорда и Либиха

Реакция организма на воздействие фактора обусловлена дозировкой этого фактора. Очень часто фактор среды, особенно абиотический, переносится организмом лишь в определенных пределах. Наиболее эффективно действие фактора при некоторой оптимальной для данного организма величине. Диапазон действия экологического фактора ограничен соответствующими крайними пороговыми значениями (точками минимума и максимума) данного фактора, при котором возможно существование организма. Максимально и минимально переносимые значения фактора – это критические точки, за пределами которых наступает смерть. Пределы выносливости между критическими точками называют экологической валентностью или толерантностью живых существ по отношению к конкретному фактору среды. Распределение плотности популяции подчиняется нормальному распределению. Плотность популяции тем выше, чем ближе значение фактора к среднему значению, которое называется экологическим оптимумом вида по данному параметру. Такой закон распределения плотности популяции, а следовательно, и жизненной активности получил название общего закона биологической стойкости.

Диапазон благоприятного воздействия фактора на организмы данного вида называется зоной оптимума (или зоной комфорта). Точки оптимума, минимума и максимума составляют три кардинальные точки, определяющие возможность реакции организма на данный фактор. Чем сильнее отклонение от оптимума, тем больше выражено угнетающее действие данного фактора на организм. Этот диапазон величины фактора называется зоной пессимума (или зоной угнетения). Рассмотренные закономерности воздействия фактора на организм известно, как правило оптимума .

Установлены и другие закономерности, характеризующие взаимодействия организма и среды. Одна из них была установлена немецким химиком Ю. Либихом в 1840 году и получила название закона минимума Либиха , согласно которому рост растений ограничивается нехваткой единственного биогенного элемента, концентрация которого лежит в минимуме. Если другие элементы будут содержаться в достаточном количестве, а концентрация этого единственного элемента опустится ниже нормы, растение погибнет. Такие элементы получили название лимитирующих факторов. Итак, существование и выносливость организма определяются самым слабым звеном в комплексе его экологических потребностей. Или относительное действие фактора на организм тем больше, чем больше этот фактор приближается к минимуму по сравнению с прочими. Величина урожая определяется наличием в почве того из элементов питания, потребность в котором удовлетворена меньше всего, т.е. данный элемент находится в минимальном количестве. По мере повышения его содержания урожай будет возрастать, пока в минимуме не окажется другой элемент.

Позднее закон минимума стал трактоваться более широко, и в настоящее время говорят о лимитирующих экологических факторах. Экологический фактор играет роль лимитирующего в том случае, когда он отсутствует или находится ниже критического уровня, или превосходит максимально выносимый предел. Иными словами, этот фактор обусловливает возможности организма в попытке вторгнуться в ту или иную среду. Одни и те же факторы могут быть или лимитирующими или нет. Пример со светом: для большинства растений это необходимый фактор как поставщик энергии для фотосинтеза, тогда как для грибов или глубоководных и почвенных животных этот фактор не обязателен. Фосфаты в морской воде – лимитирующий фактор развития планктона. Кислород в почве не лимитирующий фактор, а в воде – лимитирующий.

Следствие из закона Либиха: недостаток или чрезмерное обилие какого-либо лимитирующего фактора, может компенсироваться другим фактором, изменяющим отношение организма к лимитирующему фактору.

Однако ограничивающее значение имеют не только те факторы, которые находятся в минимуме. Впервые представление о лимитирующем влиянии максимального значения фактора наравне с минимумом было высказано в 1913 году американским зоологом В. Шелфордом. Согласно сформулированному закону толерантности Шелфорда существование вида определяется как недостатком, так и избытком любого из факторов, имеющих уровень, близкий к пределу переносимости данным организмом. В связи с этим все факторы, уровень которых приближается к пределу выносливости организма, называются лимитирующими .

4. Периодичность действия экологических факторов . Действие фактора может быть: 1) регулярно-периодическим, меняющим силу воздействия в связи со временем суток, сезона года или ритмом приливов и отливов в океане; 2) нерегулярным, без четкой периодичности, например катастрофические явления – бури, ливни, смерчи и т.д.; 3) направленным на протяжении известных отрезков времени, например, глобальные похолодания, или зарастание водоемов.

Организмы всегда приспосабливаются ко всему комплексу условий, а не к одному какому-либо фактору. Но в комплексном действии среды значение отдельных факторов неравноценно. Факторы могут быть ведущими (главными) и второстепенными. Ведущие факторы различаются для разных организмов, даже если они и живут в одном месте. Они различаются и для одного организма в разные периоды его жизни. Так, для ранневесенних растений ведущим фактором является свет, а после цветения – влага и достаток питательных веществ.

Первичные периодические факторы (дневная, лунная, сезонная, годовая) – происходит адаптация организмов, укоренившаяся в наследственной основе (генофонде), поскольку эта периодичность существовала до появления жизни на Земле. Климатическая зональность, температура, приливы и отливы, освещенность. Именно с первичными периодическими факторами связаны климатические зоны, которые определяют распространение видов на Земле.

Вторичные периодические факторы. Факторы, являющиеся следствием изменений первичных факторов (температура – влажность, температура – соленость, температура – время суток).

5. Абиотические факторы. Универсальные группы: климатические, эдафические, факторы водной среды. В природе существует общее взаимодействие факторов. Принцип обратной связи: выброс токсических веществ уничтожил лес – изменение микроклимата – изменение экосистемы.

1)Климатические факторы . Зависят от главных факторов: широты и положения континентов. Климатическая зональность привела к формированию биогеографических зон и поясов (зона тундр, зона степей, зона тайги, зона широколиственных лесов, зона пустынь и саванн, зона субтропических лесов, зона тропических лесов). В океане выделяются арктическо-антарктическая, бореальная, субтропическая и тропическо-экваториальная зоны. Есть множество вторичных факторов. Например, зоны муссонного климата, формирующие уникальный животный и растительный мир. Широта наиболее сильно сказывается на температуре. Положение континентов – причина сухости или влажности климата. Внутренние области суше периферийных, что сильно влияет на дифференциацию животных и растений на материках. Ветровой режим (составная часть климатического фактора) играет чрезвычайно важную роль в формировании жизненных форм растений.

Важнейшие климатические факторы: температура, влажность, свет.

Температура. Все живое – в температурном диапазоне – от 00до 500С. Это летальные температуры. Исключения. Космический холод. Эвритермные1 и стенотермные организмы. Холодолюбивые стенотермные и теплолюбивые стенотермные. Абиссальная среда (0˚) – самая постоянная среда. Биогеографическая зональность (арктические, бореальные, субтропические и тропические). Пойкилотермные организмы – холодноводные с непостоянной температурой. Температура тела приближается к температуре среды. Гомойотермные – теплокровные организмы с относительно постоянной внутренней температурой. Эти организмы обладают большими преимуществами в использовании среды.

Влажность. Вода в почве и вода в воздухе – факторы, имеющие огромное значение в жизни органического мира.

Гидробионты (водные) – обитают только в воде. Гидрофилы (гидрофиты) – очень влажные среды (лягушки, дождевые черви). Ксерофилы (ксерофиты) – обитатели засушливого климата.

Свет. Определяет существование автотрофных организмов (синтез хлорофилла), составляющих важнейший уровень в трофических цепях. Но есть растения и без хлорофилла (грибы, бактерии – сапрофиты, некоторые орхидеи).

2)Эдафические факторы . Все физические и химические свойства почв. Главным образом воздействуют на обитателей почв.

3)Факторы водной среды . Температура, давление, химический состав (кислород, соленость). По степени концентрации солей в водной среде организмы бывают: пресноводные, солоноводные, морские эвригалинные и стеногалинные (т.е. живущие в условиях широкого и узкого диапазона солености соответственно). По температурному фактору организмы подразделяются на холодноводных и тепловодных, а также группу космополитов. По образу жизни в водной среде (глубина, давление) организмы подразделены на планктонные, бентосные, глубоководные и мелководные.

6. Биотические факторы . Это факторы, контролирующие взаимоотношения организмов в популяциях или сообществах. Выделяют два основных типа таких отношений:

– внутривидовые – популяционные и межпопуляционные (демографические, этологические);

7. Антропогенные факторы . Хотя человек влияет на живую природу через изменение абиотических факторов и биотических связей видов, деятельность людей на планете выделяют в особую силу. Основными способами антропогенного влияния являются: завоз растений и животных, сокращение ареалов и уничтожение видов, непосредственное воздействие на растительный покров, распашка земель, вырубка и выжигание лесов, выпас домашних животных, выкашивание, осушение, орошение и обводнение, загрязнение атмосферы, создание рудеральных мест обитания (мусорные свалки, пустыри) и отвалов, создание культурных фитоценозов. К этому следует добавить многообразные формы растениеводческой и животноводческой деятельности, мероприятия по защите растений, охране редких и экзотических видов, промысел животных, их акклиматизацию и т.п. Влияние антропогенного фактора с момента появления человека на Земле постоянно усиливалось. В настоящее время судьба живого покрова нашей планеты и всех видов организмов находится в руках человеческого общества, зависит от антропогенного влияния на природу.

2.Шумовое загрязнение среды. Защита от шумового воздействия.

Шумовое (акустическое) загрязнение (англ. Noise pollution , нем. Lärm ) - раздражающий шум антропогенного происхождения, нарушающий жизнедеятельность живых организмов и человека. Раздражающие шумы существуют и в природе (абиотические и биотические), однако считать загрязнением их неверно, поскольку живые организмы адаптировались к ним в процессе эволюции .

Главным источником шумового загрязнения являются транспортные средства - автомобили, железнодорожные поезда и самолёты.

В городах уровень шумового загрязнения в жилых районах может быть сильно увеличен за счёт неправильного городского планирования (например, расположение аэропорта в черте города).

Помимо транспорта (60÷80 % шумового загрязнения) другими важными источниками шумового загрязнения в городах являются промышленные предприятия, строительные и ремонтные работы, автомобильная сигнализация, собачий лай, шумные люди и т. д.

С наступлением постиндустриальной эпохи всё больше и больше источников шумового загрязнения (а также электромагнитного ) появляется и внутри жилища человека. Источником этого шума является бытовая и офисная техника.

Более половины населения Западной Европы проживает в районах, где уровень шума составляет 55÷70 дБ.

Защита от шумового воздействия

Как и все другие виды антропогенных воздействий, проблема загрязнения среды шумом имеет международный характер. Всемирная организация здравоохранения, учитывая глобальный характер шумового загрязнения окружающей среды, разработала долгосрочную программу по снижению шума в городах и населенных пунктах мира.
В России защита от шумового воздействия регламентируется Законом Российской Федерации «Об охране окружающей среды» (2002) (ст. 55), а также постановлениями правительства о мерах по снижению шума на промышленных предприятиях, в городах и других населенных пунктах.
Защита от шумового воздействия - очень сложная проблема и для ее решения необходим комплекс мер: законодательных, технико-технологических, градостроительных, архитектурно - планировочных, организационных и др. Для защиты населения от вредного влияния шума нормативно - законодательными актами регламентируется его интенсивноеть, время действия и другие параметры. Госстандартом установлены единые санитарно-гигиенические нормы и правила по ограничению шума на предприятиях, в городах и других населенных пунктах. В основу норм положены такие уровни шумового воздействия, действие которых в течение длительного времени не вызывает неблагоприятных изменений в организме человека, а именно: 40 дБ днем и 30 - ночью. Допустимые уровни транспортного шума установлены в пределах 84- 92 дБ и со временем будут снижаться.
Технико-технологические меры сводятся к шумозащите, под которой понимают комплексные технические меры по снижению шума на производстве (установка звукоизолирующих кожухов станков, звукопоглощение и др.), на транспорте (глушители выбросов, замена колодочных тормозов на дисковые, шу-мопоглощающий асфальт и др.).
На градостроительном уровне защита от шумового воздействия может быть достигнута следующими мероприятиями (Швецов, 1994):
- зонированием с выносом источников шумов за пределы застройки;
- организацией транспортной сети, исключающей прохождение шумных магистралей через районы жилой застройки;
- удалением источников шума и устройством защитных зон вокруг и вдоль источников шумового воздействия и организация зеленых насаждений;
- прокладкой магистралей в туннелях, устройством шу-мозащитных насыпей и других поглощающих шум препятствий на путях распространения шума (экраны, выемки, ковал ьеры);
Архитектурно-планировочные меры предусматривают создание шумозащитных зданий, т. е. таких зданий, которые обеспечивают помещениям нормальный акустический режим с помощью конструктивных, инженерных и других мер (герметизация окон, двойные двери с тамбуром, облицовка стен звукопоглощающими материалами и др.).
Определенный вклад в защиту среды от шумового воздей-твия вносит запрещение звуковых сигналов автотранспорта, виаполетов над городом, ограничение (или запрещение) взле-ов и посадок самолетов в ночное время и другие организаци-
ннные меры.

Однако указанные меры вряд ли дадут должный экологический эффект, если не будет понято главное: защита от шу-Ыового воздействия - проблема не только техническая, но и Асоциальная. Необходимо воспитывать звуковую культуру (Бон-Едаренко, 1985) и осознанно не допускать действий, которые способствовали бы возрастанию шумового загрязнения среды.

Закон лимитирующих факторов

В совокупном давлении среды выделяются факторы, которые сильнее всего ограничивают успешность жизни организмов. Такие факторы называют ограничивающими, или лимитирующими. В простейшем виде основной закон минимума, сформулированный Ю.Либихом в 1840 г., касается успешности роста и урожайности сельскохозяйственных культур, зависящих от вещества, находящегося в минимуме по сравнению с другими необходимыми агрохимическими веществами. Позднее (в 1909г.) закон минимума был истолкован Ф. Блекманом боле широко, как действие любого экологического фактора, находящегося в минимуме: факторы среды, имеющие в конкретных условиях наихудшее значение, особенно ограничивают возможность существования вида в данных условиях вопреки и, не смотря на оптимальное сочетание других отельных условий.

Кроме минимума в законе В. Шелфорда учитывается и максимум экологического фактора: лимитирующим фактором может быть как минимум, так и максимум экологического воздействия.

Ценность концепции лимитирующих факторов заключается в том, что дается отправная точка при исследовании сложных ситуации. Возможно выделение вероятных слабых звеньев среды, которые могут оказаться критическими или лимитирующими. Выявление ограничивающих факторов - ключ к управлению жизнедеятельностью организмов. Например, в агроэкосистемах на сильно кислых почвах урожайность пшеницы можно увеличить, применяя разные агрономические воздействия, но наилучший эффект получен только в результате известкования, которое снимет ограничивающее влияние кислотности. Для успешного применения закона лимитирующих факторов на практике необходимо соблюдать два принципа. Первый - ограничительный, то есть закон строго применим лишь в условиях стационарного состояния, когда приток и отток энергии и веществ сбалансированы. Второй - учитывает взаимодействие факторов и приспособляемость организмов. Например, некоторым растениям нужно меньше цинка, если они растут не на ярком солнечном свету, а в тени.

Экологическое значение отдельных факторов для различных групп и видов организмов крайне разнообразно и требует грамотного учета.

2. Шумовое загрязнение. Основные параметры

Мир звуков - неотъемлемая составляющая среда обитания человека, многих животным и не безразличен для некоторых растений. Шелест листвы, плеск волн, шум дождя, пение птиц- все это привычно для человека. Между тем разнообразные и многомасштабные процессы техногенеза существенным образом изменили и меняют естественное акустическое поле биосферы, что проявляется в шумовом загрязнении природной среды, ставшим серьезным фактором негативного воздействия. Согласно сложившимся представлениям шумовое загрязнение - одна из форм физического (волнового) загрязнения окружающей среды, адаптация организмов к которому не возможна. Обусловлено оно превышением естественного уровня шума и не нормальным изменением звуковых характеристик (периодичности, силы звука). В зависимости от силы и длительности действия шума способен причинить ощутимый вред здоровью. Многолетнее воздействие шума ведет к повреждению органов слуха. Измеряют шум в белах (Б).

Шум как фактор загрязнения селитебной зоны воспринимается людьми довольно-таки индивидуально. Дифференциация восприятия шумовых воздействий меняются по возрастам, а также в зависимости от темперамента и общего состояния здоровья. Орган слуха человека может приспосабливаться к некоторым постоянным или повторяющимся шумам, но во всех случаях это не защищает от возникновения и развития какой либо патологии. Шумовые раздражения - одна из причин нарушения сна. Последствия этого хроническая усталость, нервное истощение, сокращение продолжительности жизни, которое, по данным исследований ученых может составлять 8-12 лет. Шкала силы звука представлена на рисунке 2.1. Шумовой стресс характерен для всех высших организмов. Шум, превышающий 80-90дб, влияет на выделение гормонов гипофиза, контролирующих выработку других гормонов. Например, может возрасти выделение кортизона из коры надпочечников. Кортизон ослабляет борьбу печени с вредными для организма веществами. Под влиянием такого шума происходит перестройка энергетического обмена в мышечной ткани. Чрезмерный шум может послужить причиной язвенной болезни.

По данным Всемирной организации здравоохранения, реакция на шум со стороны нервной системы начинается при 40дб, а при 70бд и более возможны существенные ее нарушения. Отмечаются также функциональные нарушения в организме, проявляющееся в изменении активности мозга и ЦНС, повышение давления. Доступным считают такую силу шума, которая не нарушает звуковой комфорт, не вызывает неприятных ощущений и при длительном воздействии не наблюдается изменений в комплексе физиологических показателей. Нормирование шумов приводят в соответствие с Санитарными нормами допустимого шума.

В целом проблема уменьшения шумового загрязнения является достаточно сложной, и решение ее должно основываться на комплексном подходе. Одно из целесообразных, экологически обоснованных направлений борьбы с шумом - максимальное озеленение территории. Растения обладают исключительной способностью задерживать и поглощать значительную часть звуковой энергии. Густая живая изгородь способна в 10 раз уменьшить шум, производимый машинами. Доказано, что наивысшей звукоизолирующей способностью обладают зеленые перегородки из клена (до 15,5 дБ), тополя (до 11дБ), липы (до 9дБ) и ели (до 5дБ). При регламентации физических воздействий существенное значение имеют экологическая грамотность и культура населения. Зачастую человек сам усугубляет обстановку, направляя на себя или принимая внешние воздействия, связанные с бытом или развлекательными мероприятиями.



Понравилась статья? Поделитесь с друзьями!