Записать определение предела. Определение конечного предела последовательности

Формы записи ряда Фурье. Сигнал называется пери­одическим, если его форма циклически повторяется во времени Периодический сигнал u(t) в общем виде записывается так:

u(t)=u(t+mT), m=0, ±1,±2,…

Здесь Т-период сигнала. Периодические сигналы могут быть как простыми, так и сложными.

Для математического представления периодических сигналоа с периодом Т часто пользуются рядом (2.2), в котором как ба­зисные функции выбираются гармонические (синусоидальные и косинусоидальные) колебания кратных частот

y 0 (t)=1; y 1 (t)=sinw 1 t; y 2 (t)=cosw 1 t;

y 3 (t)=sin2w 1 t; y 4 (t)=cos2w 1 t; …,(2.3)

где w 1 =2p/T- основная угловая частота последовательности

функций. При гармонических базисных функциях из ряда (2.2) получаем ряд Фурье (Жан Фурье - французский математик и фи­зик XIX века).

Гармонические функции вида (2.3) в ряде Фурье имеют сле­дующие преимущества: 1) простое математическое описание; 2) инвариантность к линейным преобразованиям, т. е. если на входе линейной цепи действует гармоническое колебание, то и на выходе ее также будет гармоническое колебание, отличающееся от входного только амплитудой и начальной фазой; 3) как и сиг­нал, гармонические функции периодические и имеют бесконечную длительность; 4) техника генерирования гармонических функций достаточно проста.

Из курса математики известно, что для разложения периоди­ческого сигнала в ряд по гармоническим функциям (2.3) необхо­димо выполнение условий Дирихле. Но все реальные периодичес­кие сигналы этим условиям удовлетворяют и их можно предста­вить в виде ряда Фурье, который может быть записан в одной из следующих форм:

u(t)=A 0 /2+ (A’ mn cosnw 1 t+A” mn nw 1 t), (2.4)

где коэффициенты

А 0 =

A mn ”= (2.5)

u(t)=A 0 /2+ (2.6)

A mn = (2.7)

или в комплексной форме

u(t)= (2.8)

C n = (2.9)

Из (2.4) - (2.9) следует, что в общем случае периодический сигнал u(t) содержит постоянную составляющую A 0 /2и набор гармонических колебаний основной частоты w 1 =2pf 1 и ее гармоник с частотами w n =nw 1 , n=2,3,4,… Каждое из гармонических

колебаний ряда Фурье характеризуется амплитудойи начальной фазой y n .nn

Спектральная диаграмма и спектр периодиче­ского сигнала. Если какой-либо сигнал представлен в виде суммы гармонических колебаний с разными частотами, то гово­рят, что осуществлено спектральное разложение сигнала.

Спектральной диаграммой сигнала принято называть графиче­ское изображение коэффициентов ряда Фурье этого сигнала. Раз­личают амплитудные и фазовые диаграммы. На рис. 2.6 в неко­тором масштабе по горизонтальной оси отложены значения час­тот гармоник, по зертикальной оси - их амплитуды A mn и фазы y n . Причем амплитуды гармоник могут принимать только поло­жительные значения, фазы - как положительные, так и отрица­тельные значения в интервале -p£y n £p


Спектр сигнала - это совокупность гармонических составляю­щих с конкретными значениями частот, амплитуд и начальных фаз, образующих в сумме сигнал. В технических приложениях на практике спектральные диаграммы называют более кратко - ам­плитудный спектр, фазовый спектр. Чаще всего интересуются ам­плитудной спектральной диаграммой. По ней можно оценить про­центное содержание гармоник в спектре.

Пример 2.3. Разложить в ряд Фурье периодическую последовательность прямоугольных видеоимпульсов с известными параметрами (U m , T, t z), четную "Относительно точки t=0. Построить спектральную диаграмму амплитуд и фаз при U m =2B, T=20мс, S=T/t и =2 и 8.

Заданный периодический сигнал на интервале одного периода можно запи­сать как

u(t) =

Воспользуемся для представления этого сигнала формой записи ряда Фурье в виде (2.4). Так как сигнал четный, то в разложении останутся только косинусоидальные составляющие.

Рис. 2.6. Спектральные диаграммы периодического сигнала:

а - амплитудная; б - фазoвая

Интеграл от нечетной функции за период равеy нулю. По формулам (2.5) находим коэффициенты

позволяющие записать ряд Фурье:

Для построения спектральных диаграмм при конкретных числовых данных задаемся я=0, 1, 2, 3, ... и вычисляем коэффициенты гармоник. Результаты расчета первых восьми составляющих спектра сведены в табл. 2.1. В ряде (2.4) А" mn =0 и согласно (2.7) A mn =|A’ mn |, основная частота f 1 =1/T= 1/20-10 -3 =50 Гц, w 1 =2pf 1 =2p*50=314рад/с. Амплитудный спектр на рис.

2.7 построен для таких n, при которых А mn больше 5% максимального зна­чения.

Из приведенного примера 2.3 следует, что с увеличением скваж­ности увеличивается число спектральных составляющих и умень­шаются их амплитуды. Говорят, что такой сигнал обладает бога­тым спектром. Необходимо отметить, что для многих практиче­ски применяемых сигналов нет необходимости проводить вычисление амплитуд и фаз гармоник по приведенным ранее форму­лам.

Таблица 2.1. Амплитуды составляющих ряда Фурье периодической последова­тельности прямоугольных импульсов

Рис. 2.7. Спектральные диаграммы периодической последовательности импуль­сов: а -при скважности S-2; - б-при скважности S=8

В математических справочниках имеются таблицы разложе­ний сигналов в ряд Фурье. Одна из таких таблиц приведена в приложении (табл. П.2).

Часто возникает вопрос: сколько же взять спектральных со-ставляющих (гармоник), чтобы представить реальный сигнал ря­дом Фурье? Ведь ряд-то, строго говоря, бесконечный. Однознач­ного ответа здесь нельзя дать. Все зависит от формы сигнала и точности его представления рядом Фурье. Более плавное измене­ние сигнала - меньше требуется гармоник. Если сигнал имеет скачки (разрывы), то необходимо суммировать большее число гармоник для достижения такой же погрешности. Однако во мно­гих случаях, например в телеграфии, считают, что и для пере­дачи прямоугольных импульсов с крутыми фронтами достаточно трех гармоник.

где , - частота основной гармоники, ;

() – высшие гармоники; (включая ) и – коэффициенты Фурье.

,

Постоянную составляющую (среднее значение) функции удобно вычислять по отдельному выражению полученному из при :

, тогда ,

Очевидно, что если сигнал представляет собой четную функцию времени , то в тригонометрической записи ряда Фурье (1.14) остаются только косинусоидальные составляющие , так как коэффициенты обращаются в нуль. Для сигнала определяемого нечетной функцией времени, наоборот, в нуль обращаются коэффициенты , и ряд содержит синусоидальные составляющие

Часто выражение (1.15) удобно представлять в другой, эквивалентной форме ряда Фурье:

,

где , - амплитуда, - начальная фаза - ой гармоники.

На рис. 1.10 приведены графики, иллюстрирующие представление периодической последовательности прямоугольных импульсов конечным числом слагаемых () ряда Фурье.

Для функции (рис.1.10) разложение имеет вид

Периодическая последовательность прямоугольных импульсов представляется как результат сложения постоянной составляющей и синусоидальных сигналов с частотами , причем период синусоиды с частотой совпадает с периодом последовательности импульсов . Для удобства можно представить в виде .

Совокупность всех гармонических составляющих разложения функции в ряд Фурье называется спектром функции.

Наличие отдельных гармонических составляющих спектра и величины из амплитуд можно наглядно показать с помощью спектральной диаграммы (рис.1.11), у которой горизонтальная ось служит осью частот, а вертикальная – осью амплитуд.

В точках оси частот отображаются амплитуды соответствующих гармонических составляющих разложения функции.

Легко заметить, что график суммы двух первых слагаемых разложения (1.16) воспроизводит форму графика функции очень грубо, только в основных чертах. Учет третьего слагаемого существенно улучшает совпадение суммы с функцией . Таким образом, с увеличением числа учитываемых гармоник точность представления возрастает.

На практике спектральные диаграммы называют более кратко – амплитудный спектр, фазовый спектр. Чаще всего интересуются амплитудным спектром (рис. 1.11). По нему можно оценить процентное содержание гармоник, наличие и уровни отдельных гармонических составляющих спектра.

Пример 1.1. Разложим в ряд Фурье периодическую последовательность прямоугольных видеоимпульсов с известными параметрами (, , ) (рис. 1.12), четную относительно точки :

.

Воспользуемся для представления этого сигнала формой записи ряда Фурье в виде (1.12). Для спектрального представления последовательности прямоугольных импульсов начало отсчета целесообразно брать в середине импульса. Действительно, в этом случае и в разложении останутся только косинусоидальные составляющие, так как интегралы от нечетных функций за период равны нулю bk=0.

По формулам (1.14) находим коэффициенты:

, ,

позволяющие записать ряд Фурье:

,

где - скважность импульсной последовательности.

Для построения спектральных диаграмм при конкретных числовых данных полагаем и вычисляем коэффициенты гармоник. Результаты расчета первых восьми составляющих спектра при , , и 8 сведены в табл. 1.1 и построены спектральные диаграммы на рис.1.13.

Таблица 1.1. Амплитуды спектральных составляющих для периодической последовательности прямоугольных импульсов

Из приведенного примера следует, что с увеличением скважности увеличивается число спектральных составляющих и уменьшаются их амплитуды.

Выбор количества спектральных составляющих зависит от формы сигнала и точности его представления рядом Фурье. Плавное изменение формы сигнала потребует меньше числа гармоник при той же точности представления, чем для скачкообразного сигнала. Для приближенного представления прямоугольных импульсов на практике обычно считают, что достаточно трех - пяти гармоник.

Сегодня на уроке мы разберём строгое определение последовательности и строгое определение предела функции , а также научимся решать соответствующие задачи теоретического характера. Статья предназначена, прежде всего, для студентов 1-го курса естественнонаучных и инженерно-технических специальностей, которые начали изучать теорию математического анализа, и столкнулись с трудностями в плане понимания этого раздела высшей математики. Кроме того, материал вполне доступен и учащимся старших классов.

За годы существования сайта я получил недобрый десяток писем примерно такого содержания: «Плохо понимаю математический анализ, что делать?», «Совсем не понимаю матан, думаю бросить учёбу» и т.п. И действительно, именно матан часто прореживает студенческую группу после первой же сессии. Почему так обстоят дела? Потому что предмет немыслимо сложен? Вовсе нет! Теория математического анализа не столь трудна, сколько своеобразна . И её нужно принять и полюбить такой, какая она есть =)

Начнём с самого тяжёлого случая. Первое и главное – не надо бросать учёбу. Поймите правильно, бросить, оно всегда успеется;-) Безусловно, если через год-два от выбранной специальности будет тошнить, тогда да – следует задуматься (а не пороть горячку!) о смене деятельности. Но пока стОит продолжить. И, пожалуйста, забудьте фразу «Ничего не понимаю» – так не бывает, чтобы СОВСЕМ ничего не понимать.

Что делать, если с теорией плохо? Это, кстати, касается не только математического анализа. Если с теорией плохо, то сначала нужно СЕРЬЁЗНО налечь на практику. При этом решаются сразу две стратегические задачи:

– Во-первых, значительная доля теоретических знаний появилась благодаря практике. И поэтому многие люди понимают теорию через… – всё верно! Нет-нет, вы не о том подумали =)

– И, во-вторых, практические навыки с большой вероятностью «вытянут» вас на экзамене, даже если…, но не будем так настраиваться! Всё реально и всё реально «поднять» в достаточно короткие сроки. Математический анализ – это мой любимый раздел высшей математики, и поэтому я просто не мог не протянуть вам ноги руку помощи:

В начале 1-го семестра обычно проходят пределы последовательностей и пределы функций. Не понимаете, что это такое и не знаете, как их решать? Начните со статьи Пределы функций , в которой «на пальцах» рассмотрено само понятие и разобраны простейшие примеры. Далее проработайте другие уроки по теме, в том числе урок о пределах последовательностей , на котором я фактически уже сформулировал строгое определение.

Какие значки помимо знаков неравенств и модуля вы знаете?

– длинная вертикальная палка читается так: «такое, что», «такая, что», «такой, что» либо «такие, что» , в нашем случае, очевидно, речь идёт о номере – поэтому «такой, что»;

– для всех «эн», бОльших чем ;

знак модуля означает расстояние , т.е. эта запись сообщает нам о том, что расстояние между значениями меньше эпсилон.

Ну как, убийственно сложно? =)

После освоения практики жду вас в следующем параграфе:

И в самом деле, немного порассуждаем – как сформулировать строгое определение последовательности? …Первое, что приходит на ум в свете практического занятия : «предел последовательности – это число, к которому бесконечно близко приближаются члены последовательности».

Хорошо, распишем последовательность :

Нетрудно уловить, что подпоследовательность бесконечно близко приближаются к числу –1, а члены с чётными номерами – к «единице».

А может быть предела два? Но тогда почему у какой-нибудь последовательности их не может быть десять или двадцать? Так можно далеко зайти. В этой связи логично считать, что если у последовательности существует предел, то он единственный .

Примечание : у последовательности нет предела, однако из неё можно выделить две подпоследовательности (см. выше), у каждой из которых существует свой предел.

Таким образом, высказанное выше определение оказывается несостоятельным. Да, оно работает для случаев вроде (чем я не совсем корректно пользовался в упрощённых объяснениях практических примеров) , но сейчас нам нужно отыскать строгое определение.

Попытка вторая: «предел последовательности – это число, к которому приближаются ВСЕ члены последовательности, за исключением, разве что их конечного количества». Вот это уже ближе к истине, но всё равно не совсем точно. Так, например, у последовательности половина членов вовсе не приближается к нулю – они ему просто-напросто равны =) К слову, «мигалка» вообще принимает два фиксированных значения.

Формулировку нетрудно уточнить, но тогда возникает другой вопрос: как записать определение в математических знаках? Научный мир долго бился над этой проблемой, пока ситуацию не разрешил известный маэстро , который, по существу, и оформил классический матанализ во всей его строгости. Коши предложил оперировать окрестностями , чем значительно продвинул теорию.

Рассмотрим некоторую точку и её произвольную -окрестность:

Значение «эпсилон» всегда положительно, и, более того, мы вправе выбрать его самостоятельно . Предположим, что в данной окрестности находится множество членов (не обязательно все) некоторой последовательности . Как записать тот факт, что, например десятый член попал в окрестность? Пусть он находится в правой её части. Тогда расстояние между точками и должно быть меньше «эпсилон»: . Однако если «икс десятое» расположено левее точки «а», то разность будет отрицательна, и поэтому к ней нужно добавить знак модуля : .

Определение : число называется пределом последовательности, если для любой его окрестности (заранее выбранной) существует натуральный номер – ТАКОЙ, что ВСЕ члены последовательности с бОльшими номерами окажутся внутри окрестности:

Или короче: , если

Иными словами, какое бы малое значение «эпсилон» мы ни взяли, рано или поздно «бесконечный хвост» последовательности ПОЛНОСТЬЮ окажется в этой окрестности.

Так, например, «бесконечный хвост» последовательности ПОЛНОСТЬЮ зайдёт в любую сколь угодно малую -окрестность точки . Таким образом, это значение является пределом последовательности по определению. Напоминаю, что последовательность, предел которой равен нулю, называют бесконечно малой .

Следует отметить, что для последовательности уже нельзя сказать «бесконечный хвост зайдёт » – члены с нечётными номерами по факту равны нулю и «никуда не заходят» =) Именно поэтому в определении использован глагол «окажутся». И, разумеется, члены такой последовательности, как тоже «никуда не идут». Кстати, проверьте, будет ли число её пределом.

Теперь покажем, что у последовательности не существует предела. Рассмотрим, например, окрестность точки . Совершенно понятно, что нет такого номера, после которого ВСЕ члены окажутся в данной окрестности – нечётные члены всегда будут «выскакивать» к «минус единице». По аналогичной причине не существует предела и в точке .

Закрепим материал практикой:

Пример 1

Доказать что предел последовательности равен нулю. Указать номер , после которого, все члены последовательности гарантированно окажутся внутри любой сколь угодно малой -окрестности точки .

Примечание : у многих последовательностей искомый натуральный номер зависит от значения – отсюда и обозначение .

Решение : рассмотрим произвольную найдётся ли номер – такой, что ВСЕ члены с бОльшими номерами окажутся внутри этой окрестности:

Чтобы показать существование искомого номера , выразим через .

Так как при любом значении «эн» , то знак модуля можно убрать:

Используем «школьные» действия с неравенствами, которые я повторял на уроках Линейные неравенства и Область определения функции . При этом важным обстоятельством является то, что «эпсилон» и «эн» положительны:

Поскольку слева речь идёт о натуральных номерах, а правая часть в общем случае дробна, то её нужно округлить:

Примечание : иногда для перестраховки справа добавляют единицу, но на самом деле это излишество. Условно говоря, если и мы ослабим результат округлением в меньшую сторону , то ближайший подходящий номер («тройка») всё равно будет удовлетворять первоначальному неравенству.

А теперь смотрим на неравенство и вспоминаем, что изначально мы рассматривали произвольную -окрестность, т.е. «эпсилон» может быть равно любому положительному числу.

Вывод : для любой сколько угодно малой -окрестности точки нашлось значение . Таким образом, число является пределом последовательности по определению. Что и требовалось доказать .

К слову, из полученного результата хорошо просматривается естественная закономерность: чем меньше -окрестность – тем больше номер , после которого ВСЕ члены последовательности окажутся в данной окрестности. Но каким бы малым ни было «эпсилон» – внутри всегда будет «бесконечный хвост», а снаружи – пусть даже большое, однако конечное число членов.

Как впечатления? =) Согласен, что странновато. Но строго! Пожалуйста, перечитайте и осмыслите всё ещё раз.

Рассмотрим аналогичный пример и познакомимся с другими техническими приёмами:

Пример 2

Решение : по определению последовательности нужно доказать, что (проговариваем вслух!!!) .

Рассмотрим произвольную -окрестность точки и проверим, существует ли натуральный номер – такой, что для всех бОльших номеров выполнено неравенство:

Чтобы показать существование такого , нужно выразить «эн» через «эпсилон». Упрощаем выражение под знаком модуля:

Модуль уничтожает знак «минус»:

Знаменатель положителен при любом «эн», следовательно, палки можно убрать:

Перетасовка:

Теперь надо бы извлечь квадратный корень, но загвоздка состоит в том, что при некоторых «эпсилон» правая часть будет отрицательной. Чтобы избежать этой неприятности усилим неравенство модулем:

Почему так можно сделать? Если, условно говоря, окажется, что , то подавно будет выполнено и условие . Модуль может только увеличить разыскиваемый номер , и это нас тоже устроит! Грубо говоря, если подходит сотый, то подойдёт и двухсотый! В соответствии с определением, нужно показать сам факт существования номера (хоть какого-то), после которого все члены последовательности окажутся в -окрестности. Кстати, именно поэтому нам не страшнО финальное округление правой части в бОльшую сторону.

Извлекаем корень:

И округляем результат:

Вывод : т.к. значение «эпсилон» выбиралось произвольно, то для любой сколько угодно малой -окрестности точки нашлось значение , такое, что для всех бОльших номеров выполнено неравенство . Таким образом, по определению. Что и требовалось доказать .

Советую особо разобраться в усилении и ослаблении неравенств – это типичные и очень распространённые приёмы математического анализа. Единственное, нужно следить за корректностью того или иного действия. Так, например, неравенство ни в коем случае нельзя ослаблять , вычитая, скажем, единицу:

Опять же условно: если номер точно подойдёт, то предыдущий может уже и не подойти.

Следующий пример для самостоятельного решения:

Пример 3

Используя определение последовательности, доказать, что

Краткое решение и ответ в конце урока.

Если последовательность бесконечно велика , то определение предела формулируется похожим образом: точка называется пределом последовательности, если для любого, сколь угодно большого числа существует номер , такой, что для всех бОльших номеров , будет выполнено неравенство . Число называют окрестностью точки «плюс бесконечность» :

Иными словами, какое бы большое значение мы ни взяли, «бесконечный хвост» последовательности обязательно зайдёт в -окрестность точки , оставив слева лишь конечное число членов.

Дежурный пример:

И сокращённая запись: , если

Для случая запишите определение самостоятельно. Правильная версия в конце урока.

После того, как вы «набили» руку на практических примерах и разобрались с определением предела последовательности, можно обратиться к литературе по математическому анализу и/или своей тетрадке с лекциями. Рекомендую закачать 1-й том Бохана (попроще – для заочников) и Фихтенгольца (более подробно и обстоятельно) . Из других авторов советую Пискунова, курс которого ориентирован на технические ВУЗы.

Попытайтесь добросовестно изучить теоремы, которые касаются предела последовательности, их доказательства, следствия. Поначалу теория может казаться «мутной», но это нормально – просто нужно привыкнуть. И многие даже войдут во вкус!

Строгое определение предела функции

Начнём с того же самого – как сформулировать данное понятие? Словесное определение предела функции формулируется значительно проще: «число является пределом функции , если при «икс», стремящемся к (и слева, и справа) , соответствующие значения функции стремятся к » (см. чертёж) . Всё вроде бы нормально, но слова словами, смысл смыслом, значок значком, а строгих математических обозначений маловато. И во втором параграфе мы познакомимся с двумя подходами к решению данного вопроса.

Пусть функция определена на некотором промежутке за исключением, возможно, точки . В учебной литературе общепринято считают, что функция там не определена:

Такой выбор подчёркивает суть предела функции : «икс» бесконечно близко приближается к , и соответствующие значения функции – бесконечно близко к . Иными словами, понятие предела подразумевает не «точный заход» в точки, а именно бесконечно близкое приближение , при этом не важно – определена ли функция в точке или нет.

Первое определение предела функции, что неудивительно, формулируется с помощью двух последовательностей. Во-первых, понятия родственные, и, во-вторых, пределы функций обычно изучают после пределов последовательностей.

Рассмотрим последовательность точек (на чертеже отсутствуют) , принадлежащих промежутку и отличных от , которая сходится к . Тогда соответствующие значения функции тоже образуют числовую последовательность, члены которой располагаются на оси ординат.

Предел функции по Гейне для любой последовательности точек (принадлежащих и отличных от ) , которая сходится к точке , соответствующая последовательность значений функции сходится к .

Эдуард Гейне – это немецкий математик. …И не надо тут ничего такого думать, гей в Европе всего лишь один – это Гей-Люссак =)

Второе определение предела соорудил… да-да, вы правы. Но сначала разберёмся в его конструкции. Рассмотрим произвольную -окрестность точки («чёрная» окрестность) . По мотивам предыдущего параграфа, запись означает, что некоторое значение функции находится внутри «эпсилон»-окрестности.

Теперь найдём -окрестность, которая соответствует заданной -окрестности (мысленно проводим чёрные пунктирные линии слева направо и затем сверху вниз) . Обратите внимание, что значение выбирается по длине меньшего отрезка, в данном случае – по длине более короткого левого отрезка. Более того, «малиновую» -окрестность точки можно даже уменьшить, поскольку в нижеследующем определении важен сам факт существования этой окрестности. И, аналогично, запись означает, что некоторое значение находится внутри «дельта»-окрестности.

Предел функции по Коши : число называется пределом функции в точке , если для любой заранее выбранной окрестности (сколь угодно малой) , существует -окрестность точки , ТАКАЯ , что: КАК ТОЛЬКО значения (принадлежащие ) входят в данную окрестность: (красные стрелки) – ТАК СРАЗУ соответствующие значения функции гарантированно зайдут в -окрестность: (синие стрелки) .

Должен предупредить, что в целях бОльшей доходчивости я немного сымпровизировал, поэтому не злоупотребляйте =)

Короткая запись: , если

В чём суть определения? Образно говоря, бесконечно уменьшая -окрестность, мы «сопровождаем» значения функции до своего предела, не оставляя им альтернативы приближаться куда-то ещё. Довольно необычно, но опять же строго! Чтобы как следует проникнуться идеей, перечитайте формулировку ещё раз.

! Внимание : если вам потребуется сформулировать только определение по Гейне или только определение по Коши , пожалуйста, не забывайте о существенном предварительном комментарии: «Рассмотрим функцию , которая определена на некотором промежутке за исключением, возможно, точки » . Я обозначил это единожды в самом начале и каждый раз не повторял.

Согласно соответствующей теореме математического анализа, определения по Гейне и по Коши эквивалентны, однако наиболее известен второй вариант (ещё бы!) , который также называют «предел на языке »:

Пример 4

Используя определение предела, доказать, что

Решение : функция определена на всей числовой прямой кроме точки . Используя определение , докажем существование предела в данной точке.

Примечание : величина «дельта»-окрестности зависит от «эпсилон», отсюда и обозначение

Рассмотрим произвольную -окрестность. Задача состоит в том, чтобы по этому значению проверить, существует ли -окрестность, ТАКАЯ , что из неравенства следует неравенство .

Предполагая, что , преобразуем последнее неравенство:
(разложили квадратный трёхчлен )



Понравилась статья? Поделитесь с друзьями!