Что такое отц. Основы теории цепей - Зевеке Г., Ионкин П.А., Нетушил А.В

ОТЦ – основы теории цепей – аббревиатура понятная далеко не всем. Как, собственно, и суть предмета. Синтез, анализ и расчет линейных цепей, изучение переходных процессов, основы теории четырехполюсников – вот лишь несколько разделов данной дисциплины. Помимо теории, курс ОТЦ обычно включает в себя практические занятия и лабораторный практикум. Мы не понаслышке знаем, что в определенных условиях груз знаний может стать неподъемным. Для того, чтобы сделать обучение студентов приятным, существует наша компания. Изучайте любимый предмет вместе с профессионалами и получайте от учебы удовольствие.

Почему стоит обратиться в Zaochnik?

Мы предлагаем своим клиентам:

  • Низкие цены и конфиденциальность. Zaochnik предлагает действительно разумные цены и неизменно высокий уровень качества работ. C нами Ваша репутация под надежной защитой!
  • Профессиональные авторы. Наши специалисты – преподаватели и аспиранты, кандидаты наук. Это практикующие профессионалы, шагающие в ногу со временем.
  • Личный менеджер. Специально обученный сотрудник обеспечивает индивидуальный контроль выполнения работы. Любая работа выполняется «с нуля», с учетом Ваших пожеланий и методических указаний. Мы всегда на связи, а Вы полностью контролируете ситуацию.
  • Официальная гарантия качества. Один из основных принципов нашей компании – это высокое качество работы и четкое соблюдение сроков. Прежде чем попасть к Вам, каждая работа проходит проверку в специальном отделе контроля. При необходимости, корректировки выполняются бесплатно!

Как получить выполненную работу по предмету «Основы теории цепей»?

Очень просто! Вот несколько простых шагов к Вашей работе по дисциплине «ОТЦ»

  • После оформления заявки на работу с Вами оперативно свяжется менеджер обсудит все подробности.
  • Внесите предоплату (всего 25% от общей стоимости заказа) . Пока наши специалисты оказывают Вам помощь в написании работы, займитесь чем-нибудь приятным и полезным.
  • Скачайте готовую работу в личном кабинете, внеся оставшуюся стоимость.

Сотни тысяч клиентов, которым мы помогли, говорят сами за себя. Сохраните свои нервы и время. С нами Вы можете быть уверены в том, что Ваша работа по ОТЦ будет оценена на высший балл. С Zaochnik написание даже самой сложной и специфической работы не является проблемой!

Целью преподавания дисциплины является изучение студентами теории различных электрических цепей для решения проблем передачи, обработки и распределения электрических сигналов в системах связи. Дисциплина должна обеспечивать формирование общетехнического фундамента подготовки будущих специалистов в области инфокоммуникационных технологий и систем связи, а также, создавать необходимую базу для успешного овладения последующими специальными дисциплинами учебного плана. Она должна способствовать развитию творческих способностей студентов, умению формулировать и решать задачи изучаемой специальности, умению творчески применять и самостоятельно повышать свои знания. Эти цели достигаются на основе фундаментализации, интенсификации и индивидуализации процесса обучения путём внедрения и эффективного использования достижений инфокоммуникационных технологий. В результате изучения дисциплины у студентов должны сформироваться знания, умения и навыки, позволяющие проводить самостоятельный анализ различных электрических цепей инфокоммуникационных устройств.

Главной задачей изучения ОТЦ является обеспечение целостного представления студентов о проявлении электромагнитного поля в электрических цепях, составляющих основу различных устройств инфокоммуникационных технологий. Другими задачами изучения ОТЦ являются: усвоение современных методов анализа, синтеза и расчёта электрических цепей, а также, методов моделирования и исследования различных режимов электрических цепей на персональных ЭВМ.

ОТЦ является первой дисциплиной, в которой студенты изучают основы построения, преобразования и расчета электрических цепей инфокоммуникационных устройств. Она находится на стыке дисциплин, обеспечивающих базовую и специальную подготовку студентов. Изучая эту дисциплину, студенты впервые знакомятся с принципами функционирования, методами анализа и синтеза рассматриваемых электрических цепей. Приобретенные студентами знания и навыки необходимы как для грамотной эксплуатации инфокоммуникационной аппаратуры, так и для разработки устройств, связанных с передачей и обработкой сигналов.

  1. Бакалов В.П., Дмитриков В.Ф., Крук Б.И. Основы теории цепей: Учебник для вузов; Под ред. В.П. Бакалова. 2-е изд., перераб. и доп. М., Радио и связь, 2000, 592 с.
  2. Белецкий А.Ф. Теория линейных электрических цепей. Санкт-Петербург, Лань, 2009, 544 с.
  3. Бессонов Л.А. Теоретические основы электротехники. Под ред. Л.А. Бессонова. М., Высшая школа, 1980, 472 с.
  4. Попов В.II. Основы теории цепей. М., Высшая школа, 1985, 496 с.
  5. Основы теории цепей: Учебник для вузов / Г.В. Зевеке, П.А. Ионкин, А.Н. Нетушил, С.В. Страхов. М., Энергоатомиздат, 1989, 528 с.
  6. Шебес М.Р., Каблукова М.В. Задачник по теории линейных электрических цепей. М., Высшая школа, 1986, 596 с.
  7. Основы теории цепей: тестовое оценивание учебных достижений и качества подготовки \ Дмитриев В.Н., Зелинский М.М., Семенова Т.Н., Урядников Ю.Ф., Шашков М.С. Под ред. Ю.Ф. Урядникова. М., Горячая линия. Телеком, 2006, 240 с.

Список дополнительной литературы:

  1. Атабеков Г.И. Теоретические основы электротехники. Линейные электрические цепи. Санкт- Петербург, Лань, 2009,592 с.
  2. Атабеков Г.И. Основы теории цепей. Санкт-Петербург, Лань, 2009, 432 с.
  3. Баскаков С.И. Радиотехнические цепи и сигналы: Учеб. для вузов по спец. “Радиотехника”. М., Высшая школа, 1988, 448 с.
  4. Бирюков В.Н., Попов В.П., Семенцов В.И. Сборник задач по теории цепей. М., Высшая школа, 1990, 238 с.
  5. Данилов J1.B. и др. Теория нелинейных электрических цепей Л.В. Данилов, П.Н. Матханов, Е.С. Филиппов. Л., Энергоатомиздат, 1990, 256 с.
  6. Добротворский И.Н. Теория электрических цепей: Учебник для техникумов. М., Радио и связь, 1990, 472 с.
  7. Сборник задач по теоретическим основам электротехники. Под ред. Л. А. Бессонова. М., Высшая школа, 1980, 472 с.
  8. Теория электрических цепей. Ч. I. / Под ред. Ю.Ф. Урядникова. Учебное пособие/ МТУСИ. М., 1999, 66 с.
  9. Теория электрических цепей. Ч. II. / Под ред. Ю.Ф. Урядникова. Учебное пособие / МТУСИ. М., 2000, 64 с.
  10. Теория электрических цепей. Ч. 111. / Под ред. Ю.Ф. Урядникова. Учебное пособие / МТУСИ. М., 2001, 66 с.
  11. Фриск В.В. Основы теории цепей/ Учебное пособие. М., ИП РадиоСофг, 2002, 288 с.
  12. Фриск В.В., Логвинов В.В. Основы теории цепей, основы схемотехники, радиоприемные устройства. Лабораторный практикум на персональном компьютере. М., СОЛОН-Пресс, 2008, 608 с.

Условные обозначения основных величин
Предисловие
Часть первая. Линейные электрические цепи
Глава 1. Основные свойства и преобразования электрических цепей
§ 1.1. Топология (геометрия) электрической цепи
§ 1.2. Эквивалентные схемы источников электрической энергии
§ 1.3. Эквивалентные преобразования источников электрической энергии
§ 1.4. Преобразование схем с двумя узлами, содержащих источники
§ 1.5. Основные свойства и теоремы линейных электрических цепей
§ 1.6. Дуальные элементы и схемы
§ 1.7. Алгоритм графического построения дуальной планарной схемы
§ 1.8. Электростатические схемы
§ 1.9. Методы расчета электростатических схем
§ 1.10. Основные величины, характеризующие гармонический ток
§ 1.11. Комплексный метод
§ 1.12. Алгоритм расчета комплексным методом
§ 1.13. Комплексные числа
§ 1.14. Основные комплексные величины и законы, характеризующие гармоническое напряжение (ток)
§ 1.15. Пассивные элементы в схеме гармонического тока
§ 1.16. Соединения и преобразования пассивных элементов
§ 1.17. Примеры эквивалентных преобразований
§ 1.18. Последовательное соединение элементов
§ 1.19. Параллельное соединение элементов
§ 1.20. Резонансы в линейных электрических цепях
§ 1.21. Двухполюсники
§ 1.22. Мощности цепи гармонического тока
§ 1.23. Векторные диаграммы простейших схем
§ 1.24. Круговая диаграмма для токов четырехполюсника
§ 1.25. Топографическая диаграмма
§ 1.26. Цепи с взаимной индуктивностью
§ 1.27. Согласное последовательное соединение индуктивно связанных катушек
§ 1.28. Встречное последовательное соединение индуктивно связанных катушек
§ 1.29. Параллельное соединение индуктивно связанных катушек. 46
§ 1.30. Опытное определение взаимной индуктивности
§ 1.31. Трансформатор без ферромагнитного сердечника (воздушный трансформатор)
§ 1.32. Расчет разветвленных цепей с взаимной индукцией
Глава 2. Негармонические токи
§ 2.1. Ряд Фурье для некоторых периодических негармонических функций
§ 2.2. Негармонические кривые с периодической огибающей
§ 2.3. Основные величины и коэффициенты негармонического тока
§ 2.4. Расчет цепей при периодических негармонических токах
§ 2.5. Измерение негармонических токов и напряжений
Глава 3. Цепи трехфазного тока
§ 3.1. Трехфазный генератор
§ 3.2. Симметричный режим в трехфазных цепях
§ 3.3. Напряжение смещения нейтрали при соединении неравномерной нагрузки звездой
§ 3.4. Определение токов в трехфазной цепи
§ 3.5. Преобразование трехфазной цепи со смешанной нагрузкой
§ 3.6. Метод симметричных составляющих
§ 3.7. Фазный множитель
§ 3.8. Сопротивления симметричной трехфазной цепи токам различных последовательностей
§ 3.9. Продольная и поперечная несимметрии трехфазной цепи
§ 3.10. Продольная несимметрия трехфазной цепи
§ 3.11. Виды продольной несимметрии
§ 3.12. Поперечная несимметрия трехфазной цепи
§ 3.13. Виды поперечной несимметрии
§ 3.14. Алгоритм расчета несимметричной трехфазной цепи
Глава 4. Методы расчета электрических схем
§ 4.1. Расчет схем по закону Ома
§ 4.2. Расчет схем по уравнениям Кирхгофа
§ 4.3. Матричная форма записи уравнений Кирхгофа
§ 4.4. Метод контурных токов
§ 4.5. Матричная форма записи уравнений методом контурных токов
§ 4.6. Метод узловых потенциалов
§ 4.7. Матричная форма записи уравнений методом узловых потенциалов
§ 4.8. Метод двух узлов
§ 4.9. Метод наложения
§ 4.10. Метод эквивалентного источника
§ 4.11. Метод компенсации
Глава 5. Топологические методы расчета электрических схем
§ 5.1. Основные понятия и определения
§ 5.2. Топологические матрицы графа
§ 5.3. Составление уравнений электрической схемы в матричной форме
§ 5.4. Нахождение определителя схемы по топологическим формулам
§ 5.5. Сигнальные графы
§ 5.6. Алгоритм построения сигнального графа по системе линейных уравнений
§ 5.7. Составление системы уравнений по сигнальному графу
§ 5.8. Преобразование сигнальных графов
§ 5.9. Топологическое правило определения передачи графа (формула Мэзона)
§ 5.10. Сигнальные графы уравнений четырехполюсников
§ 5.11. Сигнальные графы соединений четырехполюсников
Глава 6. Четырехполюсники
§ 6.1. Основные определения
§ 6.2. Уравнения пассивного четырехполюсника
§ 6.3. Уравнения четырехполюсника в А-форме (основные уравнения)
§ 6.4. Эквивалентные схемы и параметры пассивных четырехполюсников
§ 6.5. Соединения четырехполюсников
§ 6.6. Характеристические параметры четырехполюсников
§ 6.7. Передаточная функция (коэффициент передачи или амплитудно-фазовая характеристика) четырехполюсника
§ 6.8. Единицы измерения постоянной ослабления
Глава 7. Электрические фильтры
§ 7.1. Классификация
§ 7.2. Электрические реактивные цепные фильтры
§ 7.3. Реактивные фильтры типа k
§ 7.4. Реактивные фильтры типа т
§ 7.5. Безындукционные фильтры (RС-фильтры)
Глава 8. Переходные процессы в линейных электрических цепях
§ 8.1. Методы расчета
§ 8.2. Законы коммутации
§ 8.3. Классический метод
§ 8.4. Характер свободного процесса в зависимости от корней характеристического уравнения
§ 8.5. Составление характеристического уравнения
§ 8.6. Определение степени характеристического уравнения
§ 8.7. Начальные условия (начальные значения токов и напряжений при t=0
§ 8.8. Определение зависимых начальных условий
§ 8.9. Определение начальных условий для свободных составляющих токов и напряжений
§ 8.10. Алгоритм расчета переходных процессов классическим методом
§ 8.11. Переходные процессы в простейших схемах
§ 8.12. Операторный метод
§ 8.13. Эквивалентные операторные схемы для элементов цепи с ненулевыми начальными условиями
§ 8.14. Закон Ома и законы Кирхгофа в операторной форме. Эквивалентные операторные схемы
§ 8.15. Нахождение оригинала по изображению
§ 8.16. Таблица оригиналов и изображений по Лапласу
§ 8.17. Основные операторные преобразования по Лапласу
§ 8.18. Алгоритм расчета переходных процессов операторным методом
§ 8.19. Расчет свободных составляющих операторным методом
§ 8.20. Расчет переходных процессов методом интеграла Дюамеля
§ 8.21. Единичные и переходные функции
§ 8.22. Действие единичных ступенчатых и единичных импульсных источников на индуктивный и емкостный элементы
§ 8.23. Алгоритм расчета переходных процессов методом интеграла Дюамеля
§ 8.24. Приведение схемы к нулевым начальным условиям
§ 8.25. Частотный метод
§ 8.26. Основные свойства одностороннего преобразования Фурье
§ 8.27. Спектральные характеристики некоторых функций
§ 8.28. Ряд и интеграл Фурье
§ 8.29. Алгоритм расчета переходных процессов частотным методом
§ 8.30. Метод переменных состояния
§ 8.31. Матричная форма записи уравнений методом переменных состояния
§ 8.32. Составление дифференциальных уравнений состояния с помощью уравнений Кирхгофа
§ 8.33. Составление дифференциальных уравнений состояния методом наложения
Глава 9. Установившиеся процессы в длинных линиях (цепях с распределенными постоянными)
§ 9.1. Общие сведения
§ 9.2. Параметры длинной линии 157
§ 9.3. Зависимость от геометрических размеров простейших линий
§ 9.4. Уравнения однородной длинной линии с потерями
§ 9.5. Входное сопротивление длинной линии с потерями
§ 9.6. Длинная линия без потерь
§ 9.7. Входное сопротивление длинной линии без потерь
§ 9.8. Стоячие волны
§ 9.9. Свойства распределения действующих значений напряжения и тока вдоль линии без потерь при
§ 9.10. Линия без искажений
§ 9.11. Линия, согласованная с нагрузкой
§ 9.12. Согласование линии без потерь с нагрузкой
§ 9.13. Измерительная линия
§ 9.14. Искусственная линия
§ 9.15. Длинная линия с переменными по длине параметрами
Глава 10. Переходные процессы в длинных линиях без потерь
§ 10.1. Падающая и отраженная волны
§ 10.2. Отражение волны от конца линии
§ 10.3. Многократное отражение волн при подключении источника постоянного напряжения к линии
§ 10.4. Эквивалентная схема для определения токов и напряжений в узлах линии
§ 10.5. Распределение напряжения и тока вдоль линий, соединенных через L или С
§ 10.6. Волны при включении и отключении ветвей
Глава 11. Синтез линейных электрических цепей
§ 11.1. Общие сведения
§ 11.2. Определение, свойства и признаки положительной вещественной функции
§ 11.3. Признаки положительности и вещественности рациональной функции
§ 11.4. Положительные вещественные функции Z(p) и Y(p) простейших двухполюсников
§ 11.5. Реализация реактивных двухполюсников разложением входной функции на простые дроби (реализация двухполюсников по Фостеру)
§ 11.6. Разложение по Фостеру мнимой входной функции Z (р)
§ 11.7. Разложение по Фостеру мнимой входной функции Y (р)
§ 11.8. Реализация вещественных положительных входных функций, имеющих полюсы и нули на мнимой оси и вещественной положительной полуоси
§ 11.9. Разложение входной функции в непрерывную дробь (реализация двухполюсников по Кауэру)
§ 11.10. Синтез четырехполюсников
§ 11.11. Передаточные функции четырехполюсника
§ 11.12. Реализация LC- и RС-четырехполюсников мостовой схемой
§ 11.13. Необходимые свойства параметров пассивного четырехполюсника при его синтезе
§ 11.14. Особенности передаточной функции напряжения четырехполюсников Ни
§ 11.15. Реализация LC- и RС-четырехполюсников цепной схемой
Часть вторая. Нелинейные электрические цепи
Глава 12. Нелинейные элементы
§ 12.1. Общие сведения
§ 12.2. Резистивные элементы
§ 12.3. Двухполюсные резистивные элементы
§ 12.4. Управляемые двухполюсные резистивные элементы
§ 12.5. Управляемые трехполюсные резистивные элементы
§ 12.6. Расчет нелинейных цепей постоянного тока
§ 12.7. Метод двух узлов
§ 12.8. Статическое и дифференциальное сопротивления
§ 12.9. Эквивалентная замена нелинейного резистивного элемента линейным резистивным элементом и источником э. д. с.
§ 12.10. Расчет разветвленной схемы с нелинейными элементами
Глава 13. Нелинейные индуктивные и емкостные элементы
§ 13.1. Нелинейные индуктивные элементы
§ 13.2. Кривые намагничивания В(H) ферромагнитных материалов
§ 13.3. Потери в реальном индуктивном элементе
§ 13.4. Основные величины и зависимости, характеризующие магнитное поле
§ 13.5. Формальная аналогия между электрической и магнитной цепями постоянного тока
§ 13.6. Расчет магнитной цепи при постоянном токе. Прямая задача
§ 13.7. Расчет магнитной цепи при постоянном токе. Обратная задача
§ 13.8. Неразветвленная магнитная цепь постоянного магнита
§ 13.9. Катушка с ферромагнитным сердечником
§ 13.10. Нелинейные цепи с управляемым индуктивным элементом
§ 13.11. Магнитный усилитель мощности
§ 13.12. Трансформатор с ферромагнитным сердечником
§ 13.13. Пик-трансформатор
§ 13.14. Нелинейные емкостные элементы
§ 13.15. Резонансные явления в нелинейных цепях
Глава 14. Аппроксимация нелинейных характеристик
§ 14.1. Аппроксимирующие функции
§ 14.2. Аппроксимация характеристик нелинейных элементов
§ 14.3. Кусочно-линейная аппроксимация вольт-амперных характеристик
§ 14.4. Схемы замещения идеальных элементов с кусочно-линейными характеристиками
§ 14.5. Выпрямление переменного тока
§ 14.6. Определение коэффициентов аппроксимирующей функции
Глава 15. Аналитические методы анализа периодических процессов в нелинейных цепях
§ 15.1. Общие сведения
§ 15.2. Метод гармонической линеаризации (частотный метод)
§ 15.3. Метод гармонического баланса
§ 15.4. Метод медленно меняющихся амплитуд
§ 15.5. Метод кусочно-линейной аппроксимации
§ 15.6. Метод аналитической аппроксимации
Глава 16. Графические методы анализа периодических процессов в нелинейных цепях
§ 16.1. Расчет по характеристике для мгновенных значений
§ 16.2. Расчет по характеристике для первой гармоники
§ 16.3. Расчет по характеристике для действующих значений
Глава 17. Методы расчета переходных процессов в нелинейных цепях
§ 17.1. Методы расчета переходных процессов в схемах с одним нелинейным реактивным элементом
§ 17.2. Метод линейной аппроксимации
§ 17.3. Метод кусочно-линейной аппроксимации
§ 17.4. Метод аналитической аппроксимации
§ 17.5. Метод последовательных интервалов
§ 17.6. Метод графического интегрирования
§ 17.7. Метод фазовой плоскости
Глава 18. Автоколебания
§ 18.1. Общие сведения
§ 18.2. Релаксационные колебания
§ 18.3. Почти гармонические колебания
§ 18.4. Устойчивость состояния равновесия
§ 18.5. Устойчивость в малом
§ 18.6. Алгоритм получения линеаризованных уравнений для исследуемой величины
§ 18.7. Теорема А. М. Ляпунова об установлении устойчивости в малом автономных нелинейных систем
§ 18.8. Критерий устойчивости Гурвица
Глава 19. Электрические цепи с переменными параметрами
§ 19.1. Общие сведения
§ 19.2. Элементы с переменными параметрами
§ 19.3. Цепь с резистивным элементом
§ 19.4. Цепь с индуктивным элементом
§ 19.5. Цепь с емкостным элементом
§ 19.6. Анализ цепей с переменными параметрами
§ 19.7. Параметрические колебания
Список рекомендуемой литературы
Предметный указатель

Эта статья для тех, кто только начинает изучать теорию электрических цепей. Как всегда не будем лезть в дебри формул, но попытаемся объяснить основные понятия и суть вещей, важные для понимания. Итак, добро пожаловать в мир электрических цепей!

Хотите больше полезной информации и свежих новостей каждый день? Присоединяйтесь к нам в телеграм .

Электрические цепи

– это совокупность устройств, по которым течет электрический ток.

Рассмотрим самую простую электрическую цепь. Из чего она состоит? В ней есть генератор – источник тока, приемник (например, лампочка или электродвигатель), а также система передачи (провода). Чтобы цепь стала именно цепью, а не набором проводов и батареек, ее элементы должны быть соединены между собой проводниками. Ток может течь только по замкнутой цепи. Дадим еще одно определение:

– это соединенные между собой источник тока, линии передачи и приемник.

Конечно, источник, приемник и провода – самый простой вариант для элементарной электрической цепи. В реальности в разные цепи входит еще множество элементов и вспомогательного оборудования: резисторы, конденсаторы, рубильники, амперметры, вольтметры, выключатели, контактные соединения, трансформаторы и прочее.


Классификация электрических цепей

По назначению электрические цепи бывают:

  • Силовые электрические цепи;
  • Электрические цепи управления;
  • Электрические цепи измерения;

Силовые цепи предназначены для передачи и распределения электрической энергии. Именно силовые цепи ведут ток к потребителю.

Также цепи разделяют по силе тока в них. Например, если ток в цепи превышает 5 ампер, то цепь силовая. Когда вы щелкаете чайник, включенный в розетку, Вы замыкаете силовую электрическую цепь.

Электрические цепи управления не являются силовыми и предназначены для приведения в действие или изменения параметров работы электрических устройств и оборудования. Пример цепи управления – аппаратура контроля, управления и сигнализации.

Электрические цепи измерения предназначены для фиксации изменений параметров работы электрического оборудования.

Расчет электрических цепей

Рассчитать цепь – значит найти все токи в ней. Существуют разные методы расчета электрических цепей: законы Кирхгофа, метод контурных токов, метод узловых потенциалов и другие. Рассмотрим применение метода контурных токов на примере конкретной цепи.


Сначала выделим контуры и обозначим ток в них. Направление тока можно выбирать произвольно. В нашем случае – по часовой стрелке. Затем для каждого контура составим уравнения по 2 закону Кирхгофа. Уравнения составляются так: Ток контура умножается на сопротивление контура, к полученному выражению добавляются произведения тока других контуров и общих сопротивлений этих контуров. Для нашей схемы:

Полученная система решается с подставкой исходных данных задачи. Токи в ветвях исходной цепи находим как алгебраическую сумму контурных токов



Понравилась статья? Поделитесь с друзьями!